Skip to main content
Log in

Methyl gallate attenuates inflammation induced by Toll-like receptor ligands by inhibiting MAPK and NF-Κb signaling pathways

  • Original Research Paper
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Objective and design

Methyl gallate (MG) is a prevalent polyphenol in the plant kingdom, which may be related to the effects of several medicinal plants. Although it is widely reported that polyphenols have therapeutic effects, there are few studies demonstrating that MG has anti-inflammatory action. This study aimed to investigate the molecular mechanism behind the anti-inflammatory activity of MG and its effect on hyperalgesia.

Methods

Swiss mice were pretreated orally with different doses of MG and subjected to i.pl. injection of zymosan to induce paw edema. RAW264.7 macrophages and BMDMs stimulated with different TLR agonists such as zymosan, LPS, or Pam3CSK4 were used to investigate the molecular mechanisms of MG

Results

MG inhibits zymosan-induced paw edema and hyperalgesia and modulates molecular pathways crucial for inflammation development. Pretreatment with MG inhibited cytokines production and NF-κB activity by RAW 264.7 cells stimulated with zymosan, Pam3CSK4 or LPS, but not with PMA. Moreover, pretreatment with MG decreased IκB degradation, nuclear translocation of NF-κBp65, c-jun and c-fos and ERK1/2, p38 and JNK phosphorylation.

Conclusion

Thus, the results of this study demonstrate that MG has a promising anti-inflammatory effect and suggests an explanation of its mechanism of action through the inhibition of NF-κB signaling and the MAPK pathway.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Sharma N, et al. Inflammation and joint destruction may be linked to the generation of cartilage metabolites of ADAMTS-5 through activation of toll-like receptors. Osteoarthr Cartil. 2019. https://doi.org/10.1016/j.joca.2019.11.002.

    Article  PubMed Central  Google Scholar 

  2. Agalave NM, et al. Spinal HMGB1 induces TLR4-mediated long-lasting hypersensitivity and glial activation and regulates pain-like behavior in experimental arthritis. Pain. 2014;155(9):1802–13.

    CAS  PubMed  Google Scholar 

  3. Christianson CA, et al. Spinal TLR4 mediates the transition to a persistent mechanical hypersensitivity after the resolution of inflammation in serum-transferred arthritis. Pain. 2011;152(12):2881–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Calil IL, et al. Lipopolysaccharide induces inflammatory hyperalgesia triggering a TLR4/MyD88-dependent cytokine cascade in the mice paw. PLoS ONE. 2014;9(3):e90013.

    PubMed  PubMed Central  Google Scholar 

  5. Yahfoufi N, et al. The immunomodulatory and anti-inflammatory role of polyphenols. Nutrients. 2018;10(11):1618.

    PubMed Central  Google Scholar 

  6. Rahimifard M, et al. Targeting the TLR4 signaling pathway by polyphenols: a novel therapeutic strategy for neuroinflammation. Ageing Res Rev. 2017;36:11–9.

    CAS  PubMed  Google Scholar 

  7. Molteni M, Bosi A, Rossetti C. Natural products with Toll-like receptor 4 antagonist activity. Int J Inflam. 2018;2018:2859135.

    PubMed  PubMed Central  Google Scholar 

  8. Azam S, et al. Regulation of Toll-like receptor (TLR) signaling pathway by polyphenols in the treatment of age-linked neurodegenerative diseases: focus on TLR4 signaling. Front Immunol. 2019;10:1000.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Cho EJ, et al. Rosa rugosa attenuates diabetic oxidative stress in rats with streptozotocin-induced diabetes. Am J Chin Med. 2004;32(4):487–96.

    PubMed  Google Scholar 

  10. Kang MS, et al. Effects of methyl gallate and gallic acid on the production of inflammatory mediators interleukin-6 and interleukin-8 by oral epithelial cells stimulated with Fusobacterium nucleatum. J Microbiol. 2009;47(6):760–7.

    CAS  PubMed  Google Scholar 

  11. Rosas EC, et al. Anti-inflammatory effect of Schinus terebinthifolius Raddi hydroalcoholic extract on neutrophil migration in zymosan-induced arthritis. J Ethnopharmacol. 2015. https://doi.org/10.1016/j.jep.2015.10.014.

    Article  PubMed  Google Scholar 

  12. Kamatham S, Kumar N, Gudipalli P. Isolation and characterization of gallic acid and methyl gallate from the seed coats of. Toxicol Rep. 2015;2:520–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Sharanya CS, et al. Designing of enzyme inhibitors based on active site specificity: lessons from methyl gallate and its lipoxygenase inhibitory profile. J Recept Signal Transduct Res. 2018;38(3):256–65.

    CAS  Google Scholar 

  14. Acharyya S, et al. Intracellular and membrane-damaging activities of methyl gallate isolated from Terminalia chebula against multidrug-resistant Shigella spp. J Med Microbiol. 2015;64(8):901–9.

    CAS  PubMed  Google Scholar 

  15. Park DJ, et al. Root bark of Paeonia suffruticosa extract and its component methyl gallate possess peroxynitrite scavenging activity and anti-inflammatory properties through NF-κB Inhibition in LPS-treated mice. Molecules. 2019;24(19):3483.

    CAS  PubMed Central  Google Scholar 

  16. Whang WK, et al. Methyl gallate and chemicals structurally related to methyl gallate protect human umbilical vein endothelial cells from oxidative stress. Exp Mol Med. 2005;37(4):343–52.

    CAS  PubMed  Google Scholar 

  17. Crispo JA, et al. Protective effects of methyl gallate on H2O2-induced apoptosis in PC12 cells. Biochem Biophys Res Commun. 2010;393(4):773–8.

    CAS  PubMed  Google Scholar 

  18. Lee H, et al. Methyl gallate exhibits potent antitumor activities by inhibiting tumor infiltration of CD4+CD25+ regulatory T cells. J Immunol. 2010;185(11):6698–705.

    CAS  PubMed  Google Scholar 

  19. Lee SH, et al. Antitumor activity of methyl gallate by inhibition of focal adhesion formation and Akt phosphorylation in glioma cells. Biochim Biophys Acta. 2013;1830(8):4017–29.

    CAS  PubMed  Google Scholar 

  20. Choi JG, et al. Antibacterial activity of methyl gallate isolated from Galla Rhois or carvacrol combined with nalidixic acid against nalidixic acid resistant bacteria. Molecules. 2009;14(5):1773–800.

    CAS  PubMed  Google Scholar 

  21. Correa LB, et al. Anti-inflammatory effect of methyl gallate on experimental arthritis: inhibition of neutrophil recruitment, production of inflammatory mediators, and activation of macrophages. J Nat Prod. 2016;79(6):1554–666.

    CAS  PubMed  Google Scholar 

  22. Zimmermann M. Ethical guidelines for investigations of experimental pain in conscious animals. Pain. 1983;16(2):109–10.

    CAS  PubMed  Google Scholar 

  23. Corrêa CR, Calixto JB. Evidence for participation of B1 and B2 kinin receptors in formalin-induced nociceptive response in the mouse. Br J Pharmacol. 1993;110(1):193–8.

    PubMed  Google Scholar 

  24. Bradley PP, Christensen RD, Rothstein G. Cellular and extracellular myeloperoxidase in pyogenic inflammation. Blood. 1982;60(3):618–22.

    CAS  PubMed  Google Scholar 

  25. Cunha TM, et al. An electronic pressure-meter nociception paw test for mice. Braz J Med Biol Res. 2004;37(3):401–7.

    CAS  PubMed  Google Scholar 

  26. Lavich TR, et al. A novel hot-plate test sensitive to hyperalgesic stimuli and non-opioid analgesics. Braz J Med Biol Res. 2005;38(3):445–51.

    CAS  PubMed  Google Scholar 

  27. Hohmann MS, et al. 5-lipoxygenase deficiency reduces acetaminophen-induced hepatotoxicity and lethality. Biomed Res Int. 2013;2013:627046.

    PubMed  PubMed Central  Google Scholar 

  28. Guedes RP, et al. Neuropathic pain modifies antioxidant activity in rat spinal cord. Neurochem Res. 2006;31(5):603–9.

    CAS  PubMed  Google Scholar 

  29. McLeish KR, Wellhausen SR, Stelzer GT. Mechanism of prostaglandin E2 inhibition of acute changes in vascular permeability. Inflammation. 1987;11(3):279–88.

    CAS  PubMed  Google Scholar 

  30. Cuzzocrea S, et al. Zymosan-activated plasma induces paw oedema by nitric oxide and prostaglandin production. Life Sci. 1997;60(3):215–20.

    CAS  PubMed  Google Scholar 

  31. Underhill DM. Macrophage recognition of zymosan particles. J Endotoxin Res. 2003;9(3):176–80.

    CAS  PubMed  Google Scholar 

  32. Suo J, et al. Neutrophils mediate edema formation but not mechanical allodynia during zymosan-induced inflammation. J Leukoc Biol. 2014;96(1):133–42.

    PubMed  Google Scholar 

  33. Gloire G, Piette J. Redox regulation of nuclear post-translational modifications during NF-kappaB activation. Antioxid Redox Signal. 2009;11(9):2209–22.

    CAS  PubMed  Google Scholar 

  34. Martinon F. Signaling by ROS drives inflammasome activation. Eur J Immunol. 2010;40(3):616–9.

    CAS  PubMed  Google Scholar 

  35. Fattori V, Amaral FA, Verri WA. Neutrophils and arthritis: role in disease and pharmacological perspectives. Pharmacol Res. 2016;112:84–988.

    CAS  PubMed  Google Scholar 

  36. Grace PM, et al. Nitroxidative signaling mechanisms in pathological pain. Trends Neurosci. 2016;39(12):862–79.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. Bélichard P, et al. Inflammatory hyperalgesia induced by zymosan in the plantar tissue of the rat: effect of kinin receptor antagonists. Immunopharmacology. 2000;46(2):139–47.

    PubMed  Google Scholar 

  38. Guerrero AT, et al. The role of PAF/PAFR signaling in zymosan-induced articular inflammatory hyperalgesia. Naunyn Schmiedebergs Arch Pharmacol. 2013;386(1):51–9.

    CAS  PubMed  Google Scholar 

  39. Gantner BN, et al. Collaborative induction of inflammatory responses by dectin-1 and Toll-like receptor 2. J Exp Med. 2003;197(9):1107–17.

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Lamkanfi M, Malireddi RK, Kanneganti TD. Fungal zymosan and mannan activate the cryopyrin inflammasome. J Biol Chem. 2009;284(31):20574–81.

    CAS  PubMed  PubMed Central  Google Scholar 

  41. Bauernfeind FG, et al. Cutting edge: NF-kappaB activating pattern recognition and cytokine receptors license NLRP3 inflammasome activation by regulating NLRP3 expression. J Immunol. 2009;183(2):787–91.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Angel P, Karin M. The role of Jun, Fos and the AP-1 complex in cell-proliferation and transformation. Biochim Biophys Acta. 1991;1072(2–3):129–57.

    CAS  PubMed  Google Scholar 

  43. Choi JG, et al. Methyl gallate from Galla rhois successfully controls clinical isolates of Salmonella infection in both in vitro and in vivo systems. PLoS ONE. 2014;9(7):e102697.

    PubMed  PubMed Central  Google Scholar 

  44. Cavalher-Machado SC, et al. The anti-allergic activity of the acetate fraction of Schinus terebinthifolius leaves in IgE induced mice paw edema and pleurisy. Int Immunopharmacol. 2008;8(11):1552–600.

    CAS  PubMed  Google Scholar 

  45. Hsieh TJ, et al. Protective effect of methyl gallate from Toona sinensis (Meliaceae) against hydrogen peroxide-induced oxidative stress and DNA damage in MDCK cells. Food Chem Toxicol. 2004;42(5):843–50.

    CAS  PubMed  Google Scholar 

  46. Kim SJ, et al. Effects of methyl gallate on arachidonic acid metabolizing enzymes: cyclooxygenase-2 and 5-lipoxygenase in mouse bone marrow-derived mast cells. Arch Pharm Res. 2006;29(10):874–8.

    CAS  PubMed  Google Scholar 

  47. Anzoise ML, et al. Potential usefulness of methyl gallate in the treatment of experimental colitis. Inflammopharmacology. 2018;26(3):839–49.

    CAS  PubMed  Google Scholar 

  48. Martins MA, et al. Pharmacological modulation of Paf-induced rat pleurisy and its role in inflammation by zymosan. Br J Pharmacol. 1989;96(2):363–71.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Tarayre JP, et al. Pharmacological studies on zymosan inflammation in rats and mice. 1: Zymosan-induced paw oedema in rats and mice. Pharmacol Res. 1989;21(4):375–84.

    CAS  PubMed  Google Scholar 

  50. Yuhki K, et al. Prostaglandin I2 plays a key role in zymosan-induced mouse pleurisy. J Pharmacol Exp Ther. 2008;325(2):601–9.

    CAS  PubMed  Google Scholar 

  51. Stefanova Z, et al. Effect of a total extract from Fraxinus ornus stem bark and esculin on zymosan- and carrageenan-induced paw oedema in mice. J Ethnopharmacol. 1995;46(2):101–6.

    CAS  PubMed  Google Scholar 

  52. Penido C, et al. Anti-inflammatory and anti-ulcerogenic properties of Stachytarpheta cayennensis (L.C. Rich) Vahl. J Ethnopharmacol. 2006;104(1–2):225–33.

    CAS  PubMed  Google Scholar 

  53. Manchope MF, et al. Naringenin inhibits superoxide anion-induced inflammatory pain: role of oxidative stress, cytokines, Nrf-2 and the NO-cGMP-PKG-KATP channel signaling pathway. PLoS ONE. 2016;11(4):e0153015.

    PubMed  PubMed Central  Google Scholar 

  54. Cho EJ, et al. Study on the inhibitory effects of Korean medicinal plants and their main compounds on the 1,1-diphenyl-2-picrylhydrazyl radical. Phytomedicine. 2003;10(6–7):544–51.

    CAS  PubMed  Google Scholar 

  55. Cunha TM, et al. A cascade of cytokines mediates mechanical inflammatory hypernociception in mice. Proc Natl Acad Sci USA. 2005;102(5):1755–60.

    CAS  PubMed  Google Scholar 

  56. Verri WA, et al. Hypernociceptive role of cytokines and chemokines: targets for analgesic drug development? Pharmacol Ther. 2006;112(1):116–38.

    CAS  PubMed  Google Scholar 

  57. Boettger MK, et al. Antinociceptive effects of tumor necrosis factor alpha neutralization in a rat model of antigen-induced arthritis: evidence of a neuronal target. Arthritis Rheum. 2008;58(8):2368–78.

    CAS  PubMed  Google Scholar 

  58. Inglis JJ, et al. The differential contribution of tumour necrosis factor to thermal and mechanical hyperalgesia during chronic inflammation. Arthritis Res Ther. 2005;7(4):R807–R816816.

    CAS  PubMed  PubMed Central  Google Scholar 

  59. Hess A, et al. Blockade of TNF-α rapidly inhibits pain responses in the central nervous system. Proc Natl Acad Sci USA. 2011;108(9):3731–6.

    CAS  PubMed  Google Scholar 

  60. Schaible HG. Nociceptive neurons detect cytokines in arthritis. Arthritis Res Ther. 2014;16(5):470.

    PubMed  PubMed Central  Google Scholar 

  61. Chae HS, et al. Methyl gallate inhibits the production of interleukin-6 and nitric oxide via down-regulation of extracellular-signal regulated protein kinase in RAW 264.7 cells. Am J Chin Med. 2010;38(5):973–83.

    CAS  PubMed  Google Scholar 

  62. Abreu LS, et al. Antinociceptive compounds and LC-DAD-ESIMSn profile from Dictyoloma vandellianum leaves. PLoS ONE. 2019;14(10):e0224575.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Kawai T, Akira S. The role of pattern-recognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol. 2010;11(5):373–84.

    CAS  PubMed  Google Scholar 

  64. Ospelt C, et al. Overexpression of toll-like receptors 3 and 4 in synovial tissue from patients with early rheumatoid arthritis: toll-like receptor expression in early and longstanding arthritis. Arthritis Rheum. 2008;58(12):3684–92.

    CAS  PubMed  Google Scholar 

  65. Arleevskaya MI, et al. Toll-like receptors, infections, and rheumatoid arthritis. Clin Rev Allergy Immunol. 2019. https://doi.org/10.1007/s12016-019-08742-z.

    Article  Google Scholar 

  66. Hayden MS, Ghosh S. Shared principles in NF-kappaB signaling. Cell. 2008;132(3):344–62.

    CAS  PubMed  Google Scholar 

  67. Dhanasekar C, Rasool M. Morin, a dietary bioflavonol suppresses monosodium urate crystal-induced inflammation in an animal model of acute gouty arthritis with reference to NLRP3 inflammasome, hypo-xanthine phospho-ribosyl transferase, and inflammatory mediators. Eur J Pharmacol. 2016;786:116–27.

    CAS  PubMed  Google Scholar 

  68. Arend WP, Palmer G, Gabay C. IL-1, IL-18, and IL-33 families of cytokines. Immunol Rev. 2008;223:20–38.

    CAS  PubMed  Google Scholar 

  69. Mariathasan S, et al. Cryopyrin activates the inflammasome in response to toxins and ATP. Nature. 2006;440(7081):228–32.

    CAS  PubMed  Google Scholar 

  70. Domiciano TP, et al. Quercetin inhibits inflammasome activation by interfering with ASC oligomerization and prevents interleukin-1 mediated mouse vasculitis. Sci Rep. 2017;7:41539.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Hayden MS, Ghosh S. Signaling to NF-kappaB. Genes Dev. 2004;18(18):2195–224.

    CAS  PubMed  Google Scholar 

  72. Arthur JS, Ley SC. Mitogen-activated protein kinases in innate immunity. Nat Rev Immunol. 2013;13(9):679–92.

    CAS  PubMed  Google Scholar 

  73. Xagorari A, Roussos C, Papapetropoulos A. Inhibition of LPS-stimulated pathways in macrophages by the flavonoid luteolin. Br J Pharmacol. 2002;136(7):1058–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Yang G, et al. Resveratrol alleviates rheumatoid arthritis via reducing ROS and inflammation, inhibiting MAPK signaling pathways, and suppressing angiogenesis. J Agric Food Chem. 2018;66(49):12953–60.

    CAS  PubMed  Google Scholar 

  75. Chen CC, et al. Flavonoids inhibit tumor necrosis factor-alpha-induced up-regulation of intercellular adhesion molecule-1 (ICAM-1) in respiratory epithelial cells through activator protein-1 and nuclear factor-kappaB: structure-activity relationships. Mol Pharmacol. 2004;66(3):683–93.

    CAS  PubMed  Google Scholar 

  76. Guo C, et al. Protective effects of pretreatment with quercetin against lipopolysaccharide-induced apoptosis and the inhibition of osteoblast differentiation via the MAPK and Wnt/β-catenin pathways in MC3T3-E1 Cells. Cell Physiol Biochem. 2017;43(4):1547–61.

    CAS  PubMed  Google Scholar 

  77. Wang R, et al. Inhibitory effects of quercetin on the progression of liver fibrosis through the regulation of NF-кB/IкBα, p38 MAPK, and Bcl-2/Bax signaling. Int Immunopharmacol. 2017;47:126–33.

    CAS  PubMed  Google Scholar 

  78. Silvers AL, Bachelor MA, Bowden GT. The role of JNK and p38 MAPK activities in UVA-induced signaling pathways leading to AP-1 activation and c-Fos expression. Neoplasia. 2003;5(4):319–29.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. Giri RS, et al. Design, synthesis and characterization of novel 2-(2,4-disubstituted-thiazole-5-yl)-3-aryl-3H-quinazoline-4-one derivatives as inhibitors of NF-kappaB and AP-1 mediated transcription activation and as potential anti-inflammatory agents. Eur J Med Chem. 2009;44(5):2184–9.

    CAS  PubMed  Google Scholar 

  80. Kawai T, Akira S. Signaling to NF-kappaB by Toll-like receptors. Trends Mol Med. 2007;13(11):460–9.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the Carlos Chagas Filho, the Rio de Janeiro State Research Supporting Foundation (FAPERJ) – Cientistas de Nosso Estado Nº E-26/202.887/2018; Brazilian Council for Scientific and Technological Development (CNPq)–313443/2018-1; Oswaldo Cruz Foundation (FIOCRUZ) Projeto INOVA Geração do Conhecimento Nº 1531. L. B. Correa was supported by a fellowship from the Coordination for the Improvement of Higher Education Personnel (CAPES), as student of the Post-graduation Program in Cellular and Molecular Biology from Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Brazil. The authors are grateful to Tatiana Almeida Pádua for providing help on graphical preparation.

Author information

Authors and Affiliations

Authors

Contributions

CLB; SLN, and REC designed and performed experiments; analyzed data and wrote the paper. MMF performed experiments and analyzed data. CTM and VWA designed, supervised experiments and assisted in drafting this manuscript. REC and HMG conceived the study, designed and supervised experiments and assisted in drafting this manuscript.

Corresponding authors

Correspondence to Maria G. Henriques or Elaine Cruz Rosas.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Responsible Editor: M. Teixeira

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 868 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Correa, L.B., Seito, L.N., Manchope, M.F. et al. Methyl gallate attenuates inflammation induced by Toll-like receptor ligands by inhibiting MAPK and NF-Κb signaling pathways. Inflamm. Res. 69, 1257–1270 (2020). https://doi.org/10.1007/s00011-020-01407-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-020-01407-0

Keywords

Navigation