Skip to main content

Advertisement

Log in

LAPTM4A interacts with hOCT2 and regulates its endocytotic recruitment

  • Research article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Human organic cation transporter 2 (hOCT2) is involved in the transport of endogenous and exogenous organic cations mainly in cells of the kidney and the brain. Here, we focus on the regulation of hOCT2 by direct protein–protein interaction. Screening within a mating-based split-ubiquitin-yeast-two-hybrid system (mBSUS) revealed the lysosomal-associated protein transmembrane 4 alpha (LAPTM4A) as a potential interacting protein. Interaction of LAPTM4A and hOCT2 was confirmed by pulldown assays, FRET microscopy analysis and immunofluorescence microscopy. Functionally, overexpression of LAPTM4A significantly decreased ASP+ uptake in HEK293 cells stably transfected with hOCT2, suggesting a negative regulation of hOCT2-mediated transport. Furthermore, overexpression of LAPTM4A leads to a significantly decreased hOCT2 plasma membrane expression in surface biotinylation experiments. In addition, significant expression of LAPTM4A in human kidney was demonstrated by immunoblotting and immunofluorescence.

In this work, LAPTM4A has been identified as interaction partner of hOCT2. LAPTM4A regulates the function of hOCT2 by influencing its trafficking to/from the cell membrane and processing it via the intracellular sorting machinery.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Busch AE, Karbach U, Miska D, Gorboulev V, Akhoundova A, Volk C, Arndt P, Ulzheimer JC, Sonders MS, Baumann C, Waldegger S, Lang F, Koepsell H (1998) Human neurons express the polyspecific cation transporter hOCT2, which translocates monoamine neurotransmitters, amantadine, and memantine. Mol Pharmacol 54:342–352

    PubMed  CAS  Google Scholar 

  2. Ogasawara M, Yamauchi K, Satoh Y, Yamaji R, Inui K, Jonker JW, Schinkel AH, Maeyama K (2006) Recent advances in molecular pharmacology of the histamine systems: organic cation transporters as a histamine transporter and histamine metabolism. J Pharmacol Sci 101:24–30

    Article  PubMed  CAS  Google Scholar 

  3. Urakami Y, Kimura N, Okuda M, Inui K (2004) Creatinine transport by basolateral organic cation transporter hOCT2 in the human kidney. Pharm Res 21:976–981

    Article  PubMed  CAS  Google Scholar 

  4. Barendt WM, Wright SH (2002) The human organic cation transporter (hOCT2) recognizes the degree of substrate ionization. J Biol Chem 277:22491–22496

    Article  PubMed  CAS  Google Scholar 

  5. Kimura N, Okuda M, Inui K (2005) Metformin transport by renal basolateral organic cation transporter hOCT2. Pharm Res 22:255–259

    Article  PubMed  CAS  Google Scholar 

  6. Yonezawa A, Masuda S, Yokoo S, Katsura T, Inui K (2006) Cisplatin and oxaliplatin, but not carboplatin and nedaplatin, are substrates for human organic cation transporters (SLC22A1–3 and multidrug and toxin extrusion family). J Pharmacol Exp Ther 319:879–886

    Article  PubMed  CAS  Google Scholar 

  7. Ciarimboli G, Ludwig T, Lang D, Pavenstadt H, Koepsell H, Piechota HJ, Haier J, Jaehde U, Zisowsky J, Schlatter E (2005) Cisplatin nephrotoxicity is critically mediated via the human organic cation transporter 2. Am J Pathol 167:1477–1484

    Article  PubMed  CAS  Google Scholar 

  8. Busch AE, Quester S, Ulzheimer JC, Waldegger S, Gorboulev V, Arndt P, Lang F, Koepsell H (1996) Electrogenic properties and substrate specificity of the polyspecific rat cation transporter rOCT1. J Biol Chem 271:32599–32604

    Article  PubMed  CAS  Google Scholar 

  9. Gorboulev V, Ulzheimer JC, Akhoundova A, Ulzheimer-Teuber I, Karbach U, Quester S, Baumann C, Lang F, Busch AE, Koepsell H (1997) Cloning and characterization of two human polyspecific organic cation transporters. DNA Cell Biol 16:871–881

    Article  PubMed  CAS  Google Scholar 

  10. Ciarimboli G, Schlatter E (2005) Regulation of organic cation transport. Pflugers Arch 449:423–441

    Article  PubMed  CAS  Google Scholar 

  11. Ciarimboli G (2008) Organic cation transporters. Xenobiotica 38:936–971

    Article  PubMed  CAS  Google Scholar 

  12. Taubert D, Grimberg G, Stenzel W, Schomig E (2007) Identification of the endogenous key substrates of the human organic cation transporter OCT2 and their implication in function of dopaminergic neurons. PLoS One 2:e385

    Article  PubMed  Google Scholar 

  13. Urakami Y, Okuda M, Masuda S, Akazawa M, Saito H, Inui K (2001) Distinct characteristics of organic cation transporters, OCT1 and OCT2, in the basolateral membrane of renal tubules. Pharm Res 18:1528–1534

    Article  PubMed  CAS  Google Scholar 

  14. Motohashi H, Sakurai Y, Saito H, Masuda S, Urakami Y, Goto M, Fukatsu A, Ogawa O, Inui KK (2002) Gene expression levels and immunolocalization of organic ion transporters in the human kidney. J Am Soc Nephrol 13:866–874

    PubMed  CAS  Google Scholar 

  15. Urakami Y, Okuda M, Saito H, Inui K (2000) Hormonal regulation of organic cation transporter OCT2 expression in rat kidney. FEBS Lett 473:173–176

    Article  PubMed  CAS  Google Scholar 

  16. Asaka J, Terada T, Okuda M, Katsura T, Inui K (2006) Androgen receptor is responsible for rat organic cation transporter 2 gene regulation but not for rOCT1 and rOCT3. Pharm Res 23:697–704

    Article  PubMed  CAS  Google Scholar 

  17. Cetinkaya I, Ciarimboli G, Yalcinkaya G, Mehrens T, Velic A, Hirsch JR, Gorboulev V, Koepsell H, Schlatter E (2003) Regulation of human organic cation transporter hOCT2 by PKA, PI3 K, and calmodulin-dependent kinases. Am J Physiol Renal Physiol 284:F293–F302

    PubMed  CAS  Google Scholar 

  18. Ciarimboli G, Struwe K, Arndt P, Gorboulev V, Koepsell H, Schlatter E, Hirsch JR (2004) Regulation of the human organic cation transporter hOCT1. J Cell Physiol 201:420–428

    Article  PubMed  CAS  Google Scholar 

  19. Schlatter E, Mönnich V, Cetinkaya I, Mehrens T, Ciarimboli G, Hirsch JR, Popp C, Koepsell H (2002) The organic cation transporters rOCT1 and hOCT2 are inhibited by cGMP. J Membr Biol 189:237–244

    Article  PubMed  CAS  Google Scholar 

  20. Mehrens T, Lelleck S, Cetinkaya I, Knollmann M, Hohage H, Gorboulev V, Boknik P, Koepsell H, Schlatter E (2000) The affinity of the organic cation transporter rOCT1 is increased by protein kinase C-dependent phosphorylation. J Am Soc Nephrol 11:1216–1224

    PubMed  CAS  Google Scholar 

  21. Soodvilai S, Chatsudthipong A, Chatsudthipong V (2007) Role of MAPK and PKA in regulation of rbOCT2-mediated renal organic cation transport. Am J Physiol Renal Physiol 293:F21–F27

    Article  PubMed  CAS  Google Scholar 

  22. Wilde S, Schlatter E, Koepsell H, Edemir B, Reuter S, Pavenstadt H, Neugebauer U, Schroter R, Brast S, Ciarimboli G (2009) Calmodulin-associated post-translational regulation of rat organic cation transporter 2 in the kidney is gender dependent. Cell Mol Life Sci 66:1729–1740

    Article  PubMed  CAS  Google Scholar 

  23. Cabrita MA, Hobman TC, Hogue DL, King KM, Cass CE (1999) Mouse transporter protein, a membrane protein that regulates cellular multidrug resistance, is localized to lysosomes. Cancer Res 59:4890–4897

    PubMed  CAS  Google Scholar 

  24. Schmid JA, Scholze P, Kudlacek O, Freissmuth M, Singer EA, Sitte HH (2001) Oligomerization of the human serotonin transporter and of the rat GABA transporter 1 visualized by fluorescence resonance energy transfer microscopy in living cells. J Biol Chem 276:3805–3810

    Article  PubMed  CAS  Google Scholar 

  25. Bartholomaus I, Milan-Lobo L, Nicke A, Dutertre S, Hastrup H, Jha A, Gether U, Sitte HH, Betz H, Eulenburg V (2008) Glycine transporter dimers: evidence for occurrence in the plasma membrane. J Biol Chem 283:10978–10991

    Article  PubMed  Google Scholar 

  26. Hogue DL, Ellison MJ, Young JD, Cass CE (1996) Identification of a novel membrane transporter associated with intracellular membranes by phenotypic complementation in the yeast Saccharomyces cerevisiae. J Biol Chem 271:9801–9808

    Article  PubMed  CAS  Google Scholar 

  27. Hogue DL, Nash C, Ling V, Hobman TC (2002) Lysosome-associated protein transmembrane 4 alpha (LAPTM4 alpha) requires two tandemly arranged tyrosine-based signals for sorting to lysosomes. Biochem J 365:721–730

    PubMed  CAS  Google Scholar 

  28. Maeda K, Horikoshi T, Nakashima E, Miyamoto Y, Mabuchi A, Ikegawa S (2005) MATN and LAPTM are parts of larger transcription units produced by intergenic splicing: intergenic splicing may be a common phenomenon. DNA Res 12:365–372

    Article  PubMed  CAS  Google Scholar 

  29. Hogue DL, Kerby L, Ling V (1999) A mammalian lysosomal membrane protein confers multidrug resistance upon expression in Saccharomyces cerevisiae. J Biol Chem 274:12877–12882

    Article  PubMed  CAS  Google Scholar 

  30. Cui M, Aras R, Christian WV, Rappold PM, Hatwar M, Panza J, Jackson-Lewis V, Javitch JA, Ballatori N, Przedborski S, Tieu K (2009) The organic cation transporter-3 is a pivotal modulator of neurodegeneration in the nigrostriatal dopaminergic pathway. Proc Natl Acad Sci USA 106:8043–8048

    Article  PubMed  CAS  Google Scholar 

  31. Swanson KS, Vester BM, Apanavicius CJ, Kirby NA, Schook LB (2009) Implications of age and diet on canine cerebral cortex transcription. Neurobiol Aging 30:1314–1326

    Article  PubMed  Google Scholar 

  32. Wang L, Giannoudis A, Lane S, Williamson P, Pirmohamed M, Clark RE (2008) Expression of the uptake drug transporter hOCT1 is an important clinical determinant of the response to imatinib in chronic myeloid leukemia. Clin Pharmacol Ther 83:258–264

    Article  PubMed  CAS  Google Scholar 

  33. Ciarimboli G, Deuster D, Knief A, Sperling M, Holtkamp M, Edemir B, Pavenstadt H, Lanvers-Kaminsky C, Am Zehnhoff-Dinnesen A, Schinkel AH, Koepsell H, Jurgens H, Schlatter E (2010) Organic cation transporter 2 mediates cisplatin-induced oto- and nephrotoxicity and is a target for protective interventions. Am J Pathol 176:1169–1180

    Article  PubMed  CAS  Google Scholar 

  34. Ma Y, Yuan RQ, Fan S, Hu C, Goldberg ID, Laterra JJ, Rosen EM (2006) Identification of genes that modulate sensitivity of U373MG glioblastoma cells to cis-platinum. Anticancer Drugs 17:733–751

    Article  PubMed  CAS  Google Scholar 

  35. McLean LA, Gathmann I, Capdeville R, Polymeropoulos MH, Dressman M (2004) Pharmacogenomic analysis of cytogenetic response in chronic myeloid leukemia patients treated with imatinib. Clin Cancer Res 10:155–165

    Article  PubMed  CAS  Google Scholar 

  36. White DL, Saunders VA, Dang P, Engler J, Zannettino AC, Cambareri AC, Quinn SR, Manley PW, Hughes TP (2006) OCT-1-mediated influx is a key determinant of the intracellular uptake of imatinib but not nilotinib (AMN107): reduced OCT-1 activity is the cause of low in vitro sensitivity to imatinib. Blood 108:697–704

    Article  PubMed  CAS  Google Scholar 

  37. Thomas J, Wang L, Clark RE, Pirmohamed M (2004) Active transport of imatinib into and out of cells: implications for drug resistance. Blood 104:3739–3745

    Article  PubMed  CAS  Google Scholar 

  38. Grefen C, Lalonde S, Obrdlik P (2007) Split-ubiquitin system for identifying protein-protein interactions in membrane and full-length proteins. Curr Protoc Neurosci 41:5.27.1–5.27.41

    Google Scholar 

  39. Xia Z, Liu Y (2001) Reliable and global measurement of fluorescence resonance energy transfer using fluorescence microscopes. Biophys J 81:2395–2402

    Article  PubMed  CAS  Google Scholar 

  40. Sorkin A, McClure M, Huang F, Carter R (2000) Interaction of EGF receptor and grb2 in living cells visualized by fluorescence resonance energy transfer (FRET) microscopy. Curr Biol 10:1395–1398

    Article  PubMed  CAS  Google Scholar 

  41. Feige JN, Sage D, Wahli W, Desvergne B, Gelman L (2005) PixFRET, an imageJ plug-in for FRET calculation that can accommodate variations in spectral bleed-throughs. Microsc Res Tech 68:51–58

    Article  PubMed  CAS  Google Scholar 

  42. Sitte HH, Farhan H, Javitch JA (2004) Sodium-dependent neurotransmitter transporters: oligomerization as a determinant of transporter function and trafficking. Mol Interv 4:38–47

    Article  PubMed  CAS  Google Scholar 

  43. Pietig G, Mehrens T, Hirsch JR, Cetinkaya I, Piechota H, Schlatter E (2001) Properties and regulation of organic cation transport in freshly isolated human proximal tubules. J Biol Chem 276:33741–33746

    Article  PubMed  CAS  Google Scholar 

  44. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2[-Delta Delta C(T)] method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Julia Humberg, Rita Schröter, Bernadette Gelschefarth and Ute Neugebauer for excellent technical assistance. This study was supported by the Deutsche Forschungsgemeinschaft (CI 107/4-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Grabner.

Additional information

A. Grabner and S. Brast contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Grabner, A., Brast, S., Sucic, S. et al. LAPTM4A interacts with hOCT2 and regulates its endocytotic recruitment. Cell. Mol. Life Sci. 68, 4079–4090 (2011). https://doi.org/10.1007/s00018-011-0694-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-011-0694-6

Keywords

Navigation