Skip to main content

Advertisement

Log in

BMP9 is produced by hepatocytes and circulates mainly in an active mature form complexed to its prodomain

  • Research article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

An Erratum to this article was published on 31 July 2011

Abstract

Bone Morphogenetic Protein 9 (BMP9) has been recently found to be the physiological ligand for the activin receptor-like kinase 1 (ALK1), and to be a major circulating vascular quiescence factor. Moreover, a soluble chimeric ALK1 protein (ALK1-Fc) has recently been developed and showed powerful anti-tumor growth and anti-angiogenic effects. However, not much is known concerning BMP9. This prompted us to investigate the human endogenous sources of this cytokine and to further characterize its circulating form(s) and its function. Analysis of BMP9 expression reveals that BMP9 is produced by hepatocytes and intrahepatic biliary epithelial cells. Gel filtration analysis combined with ELISA and biological assays demonstrate that BMP9 circulates in plasma (1) as an unprocessed inactive form that can be further activated by furin a serine endoprotease, and (2) as a mature and fully active form (composed of the mature form associated with its prodomain). Analysis of BMP9 circulating levels during mouse development demonstrates that BMP9 peaks during the first 3 weeks after birth and then decreases to 2 ng/mL in adulthood. We also show that circulating BMP9 physiologically induces a constitutive Smad1/5/8 phosphorylation in endothelial cells. Taken together, our results argue for the role of BMP9 as a hepatocyte-derived factor, circulating in inactive (40%) and active (60%) forms, the latter constantly activating endothelial cells to maintain them in a resting state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Anderson SB, Goldberg AL, Whitman M (2008) Identification of a novel pool of extracellular pro-myostatin in skeletal muscle. J Biol Chem 283:7027–7035

    Article  PubMed  CAS  Google Scholar 

  2. Bauskin AR, Jiang L, Luo XW, Wu L, Brown DA, Breit SN (2010) The TGF-beta superfamily cytokine MIC-1/GDF15: secretory mechanisms facilitate creation of latent stromal stores. J Interferon Cytokine Res 30:389–397

    Article  PubMed  CAS  Google Scholar 

  3. Beck S, Le Good JA, Guzman M, Ben Haim N, Roy K, Beermann F, Constam DB (2002) Extraembryonic proteases regulate nodal signalling during gastrulation. Nat Cell Biol 4:981–985

    Article  PubMed  CAS  Google Scholar 

  4. Bragdon B, Moseychuk O, Saldanha S, King D, Julian J, Nohe A (2011) Bone morphogenetic proteins: a critical review. Cell Signal 23:609–620

    Article  PubMed  CAS  Google Scholar 

  5. Brown MA, Zhao Q, Baker KA, Naik C, Chen C, Pukac L, Singh M, Tsareva T, Parice Y, Mahoney A, Roschke V, Sanyal I, Choe S (2005) Crystal structure of BMP-9 and functional interactions with pro-region and receptors. J Biol Chem 280:25111–25118

    Article  PubMed  CAS  Google Scholar 

  6. Canalis E, Economides AN, Gazzerro E (2003) Bone morphogenetic proteins, their antagonists, and the skeleton. Endocr Rev 24:218–235

    Article  PubMed  CAS  Google Scholar 

  7. Celeste AJ, Song JJ, Cox K, Rosen V, Wozney JM (1994) Bone morphogenetic protein-9, a new member of the TGF-β superfamily. J Bone Min Res 1:S136

    Google Scholar 

  8. Chen C, Grzegorzewski KJ, Barash S, Zhao Q, Schneider H, Wang Q, Singh M, Pukac L, Bell AC, Duan R, Coleman T, Duttaroy A, Cheng S, Hirsch J, Zhang L, Lazard Y, Fischer C, Barber MC, Ma ZD, Zhang YQ, Reavey P, Zhong L, Teng B, Sanyal I, Ruben SM, Blondel O, Birse CE (2003) An integrated functional genomics screening program reveals a role for BMP-9 in glucose homeostasis. Nat Biotechnol 21:294–301

    Article  PubMed  CAS  Google Scholar 

  9. Constam DB, Robertson EJ (1999) Regulation of bone morphogenetic protein activity by pro domains and proprotein convertases. J Cell Biol 144:139–149

    Article  PubMed  CAS  Google Scholar 

  10. Cui Y, Jean F, Thomas G, Christian JL (1998) BMP-4 is proteolytically activated by furin and/or PC6 during vertebrate embryonic development. EMBO J 17:4735–4743

    Article  PubMed  CAS  Google Scholar 

  11. Cunha SI, Pardali E, Thorikay M, Anderberg C, Hawinkels L, Goumans MJ, Seehra J, Heldin CH, ten Dijke P, Pietras K (2010) Genetic and pharmacological targeting of activin receptor-like kinase 1 impairs tumor growth and angiogenesis. J Exp Med 207(85–100):S101–S105

    Google Scholar 

  12. David L, Feige JJ, Bailly S (2009) Emerging role of bone morphogenetic proteins in angiogenesis. Cytokine Growth Factor Rev 20:203–212

    Article  PubMed  CAS  Google Scholar 

  13. David L, Mallet C, Keramidas M, Lamande N, Gasc JM, Dupuis-Girod S, Plauchu H, Feige JJ, Bailly S (2008) Bone morphogenetic protein-9 is a circulating vascular quiescence factor. Circ Res 102:914–922

    Article  PubMed  CAS  Google Scholar 

  14. David L, Mallet C, Mazerbourg S, Feige JJ, Bailly S (2007) Identification of BMP9 and BMP10 as functional activators of the orphan activin receptor-like kinase 1 (ALK1) in endothelial cells. Blood 109:1953–1961

    Article  PubMed  CAS  Google Scholar 

  15. Dupuis-Girod S, Bailly S, Plauchu H (2010) Hereditary hemorrhagic telangiectasia (HHT): from molecular biology to patient care. J Thromb Haemost 8:1447–1456

    Article  PubMed  CAS  Google Scholar 

  16. Gordon KJ, Blobe GC (2008) Role of transforming growth factor-beta superfamily signaling pathways in human disease. Biochim Biophys Acta 1782:197–228

    PubMed  CAS  Google Scholar 

  17. Gregory KE, Ono RN, Charbonneau NL, Kuo CL, Keene DR, Bachinger HP, Sakai LY (2005) The prodomain of BMP-7 targets the BMP-7 complex to the extracellular matrix. J Biol Chem 280:27970–27980

    Article  PubMed  CAS  Google Scholar 

  18. Herrera B, Inman GJ (2009) A rapid and sensitive bioassay for the simultaneous measurement of multiple bone morphogenetic proteins. Identification and quantification of BMP4, BMP6 and BMP9 in bovine and human serum. BMC Cell Biol 10:20

    Article  PubMed  Google Scholar 

  19. Kodaira K, Imada M, Goto M, Tomoyasu A, Fukuda T, Kamijo R, Suda T, Higashio K, Katagiri T (2006) Purification and identification of a BMP-like factor from bovine serum. Biochem Biophys Res Commun 345:1224–1231

    Article  PubMed  CAS  Google Scholar 

  20. Korchynskyi O, ten Dijke P (2002) Identification and functional characterization of distinct critically important bone morphogenetic protein-specific response elements in the Id1 promoter. J Biol Chem 277:4883–4891

    Article  PubMed  CAS  Google Scholar 

  21. Li JZ, Li H, Sasaki T, Holman D, Beres B, Dumont RJ, Pittman DD, Hankins GR, Helm GA (2003) Osteogenic potential of five different recombinant human bone morphogenetic protein adenoviral vectors in the rat. Gene Ther 10:1735–1743

    Article  PubMed  CAS  Google Scholar 

  22. Lopez-Coviella I, Berse B, Krauss R, Thies RS, Blusztajn JK (2000) Induction and maintenance of the neuronal cholinergic phenotype in the central nervous system by BMP-9. Science 289:313–316

    Article  PubMed  CAS  Google Scholar 

  23. Lowery JW, de Caestecker MP (2010) BMP signaling in vascular development and disease. Cytokine Growth Factor Rev 21:287–298

    Article  PubMed  CAS  Google Scholar 

  24. Miller AF, Harvey SA, Thies RS, Olson MS (2000) Bone morphogenetic protein-9. An autocrine/paracrine cytokine in the liver. J Biol Chem 275:17937–17945

    Article  PubMed  CAS  Google Scholar 

  25. Mitchell D, Pobre EG, Mulivor AW, Grinberg AV, Castonguay R, Monnell TE, Solban N, Ucran JA, Pearsall RS, Underwood KW, Seehra J, Kumar R (2010) ALK1-Fc inhibits multiple mediators of angiogenesis and suppresses tumor growth. Mol Cancer Ther 9:379–388

    Article  PubMed  CAS  Google Scholar 

  26. Miyazono K, Kamiya Y, Morikawa M (2010) Bone morphogenetic protein receptors and signal transduction. J Biochem 147:35–51

    Article  PubMed  CAS  Google Scholar 

  27. Nelsen SM, Christian JL (2009) Site-specific cleavage of BMP4 by furin, PC6, and PC7. J Biol Chem 284:27157–27166

    Article  PubMed  CAS  Google Scholar 

  28. Niessen K, Zhang G, Ridgway JB, Chen H, Yan M (2010) ALK1 signaling regulates early postnatal lymphatic vessel development. Blood 115:1654–1661

    Article  PubMed  CAS  Google Scholar 

  29. Oh SP, Seki T, Goss KA, Imamura T, Yi Y, Donahoe PK, Li L, Miyazono K, ten Dijke P, Kim S, Li E (2000) Activin receptor-like kinase 1 modulates transforming growth factor-beta 1 signaling in the regulation of angiogenesis. Proc Natl Acad Sci USA 97:2626–2631

    Article  PubMed  CAS  Google Scholar 

  30. Ploemacher RE, Engels LJ, Mayer AE, Thies S, Neben S (1999) Bone morphogenetic protein 9 is a potent synergistic factor for murine hemopoietic progenitor cell generation and colony formation in serum-free cultures. Leukemia 13:428–437

    Article  PubMed  CAS  Google Scholar 

  31. Ricard N, Bidart M, Mallet C, Lesca G, Giraud S, Prudent R, Feige JJ, Bailly S (2010) Functional analysis of the BMP9 response of ALK1 mutants from HHT2 patients: a diagnostic tool for novel ACVRL1 mutations. Blood 116:1604–1612

    Article  PubMed  CAS  Google Scholar 

  32. Scharpfenecker M, van Dinther M, Liu Z, van Bezooijen RL, Zhao Q, Pukac L, Lowik CW, ten Dijke P (2007) BMP-9 signals via ALK1 and inhibits bFGF-induced endothelial cell proliferation and VEGF-stimulated angiogenesis. J Cell Sci 120:964–972

    Article  PubMed  CAS  Google Scholar 

  33. Sieber C, Kopf J, Hiepen C, Knaus P (2009) Recent advances in BMP receptor signaling. Cytokine Growth Factor Rev 20:343–355

    Article  PubMed  CAS  Google Scholar 

  34. Song JJ, Celeste AJ, Kong FM, Jirtle RL, Rosen V, Thies RS (1995) Bone morphogenetic protein-9 binds to liver cells and stimulates proliferation. Endocrinology 136:4293–4297

    Article  PubMed  CAS  Google Scholar 

  35. Souchelnitskiy S, Chambaz EM, Feige JJ (1995) Thrombospondins selectively activate one of the two latent forms of transforming growth factor-beta present in adrenocortical cell-conditioned medium. Endocrinology 136:5118–5126

    Article  PubMed  CAS  Google Scholar 

  36. Star GP, Giovinazzo M, Langleben D (2010) Bone morphogenic protein-9 stimulates endothelin-1 release from human pulmonary microvascular endothelial cells A potential mechanism for elevated ET-1 levels in pulmonary arterial hypertension. Microvasc Res 80:349–354

    Article  PubMed  CAS  Google Scholar 

  37. Tsuji A, Sakurai K, Kiyokage E, Yamazaki T, Koide S, Toida K, Ishimura K, Matsuda Y (2003) Secretory proprotein convertases PACE4 and PC6A are heparin-binding proteins which are localized in the extracellular matrix. Potential role of PACE4 in the activation of proproteins in the extracellular matrix. Biochim Biophys Acta 1645:95–104

    PubMed  CAS  Google Scholar 

  38. Urness LD, Sorensen LK, Li DY (2000) Arteriovenous malformations in mice lacking activin receptor-like kinase-1 [In Process Citation]. Nat Genet 26:328–331

    Article  PubMed  CAS  Google Scholar 

  39. Valdimarsdottir G, Goumans MJ, Rosendahl A, Brugman M, Itoh S, Lebrin F, Sideras P, ten Dijke P (2002) Stimulation of Id1 expression by bone morphogenetic protein is sufficient and necessary for bone morphogenetic protein-induced activation of endothelial cells. Circulation 106:2263–2270

    Article  PubMed  CAS  Google Scholar 

  40. Wagner DO, Sieber C, Bhushan R, Börgermann JH, Graf D, Knaus P (2010) BMPs: from bone to body morphogenetic proteins. Sci Signal 3

  41. Wolfman NM, McPherron AC, Pappano WN, Davies MV, Song K, Tomkinson KN, Wright JF, Zhao L, Sebald SM, Greenspan DS, Lee SJ (2003) Activation of latent myostatin by the BMP-1/tolloid family of metalloproteinases. Proc Natl Acad Sci USA 100:15842–15843

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr T. Jaffredo (CNRS and UPMC, UMR7622, Laboratoire de Biologie du Développement, Paris, France) who provided us with mouse embryonic plasma at E9.5.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabine Bailly.

Additional information

An erratum to this article can be found at http://dx.doi.org/10.1007/s00018-011-0776-5

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bidart, M., Ricard, N., Levet, S. et al. BMP9 is produced by hepatocytes and circulates mainly in an active mature form complexed to its prodomain. Cell. Mol. Life Sci. 69, 313–324 (2012). https://doi.org/10.1007/s00018-011-0751-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-011-0751-1

Keywords

Navigation