Skip to main content

Advertisement

Log in

Functional mechanisms of the cellular prion protein (PrPC) associated anti-HIV-1 properties

  • Research article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

The cellular prion protein PrPC/CD230 is a GPI-anchor protein highly expressed in cells from the nervous and immune systems and well conserved among vertebrates. In the last decade, several studies suggested that PrPC displays antiviral properties by restricting the replication of different viruses, and in particular retroviruses such as murine leukemia virus (MuLV) and the human immunodeficiency virus type 1 (HIV-1). In this context, we previously showed that PrPC displays important similarities with the HIV-1 nucleocapsid protein and found that PrPC expression in a human cell line strongly reduced HIV-1 expression and virus production. Using different PrPC mutants, we report here that the anti-HIV-1 properties are mostly associated with the amino-terminal 24-KRPKP-28 basic domain. In agreement with its reported RNA chaperone activity, we found that PrPC binds to the viral genomic RNA of HIV-1 and negatively affects its translation. Using a combination of biochemical and cell imaging strategies, we found that PrPC colocalizes with the virus assembly machinery at the plasma membrane and at the virological synapse in infected T cells. Depletion of PrPC in infected T cells and microglial cells favors HIV-1 replication, confirming its negative impact on the HIV-1 life cycle.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

HIV:

Human immunodeficiency virus

GPI:

Glycosyl phosphatidyl inositol

DRMs:

Detergent-resistant microdomains

TEMs:

Tetraspanin-enriched microdomains

TNTs:

Tuneling nanotubes

UTR:

Untranslated region

GFP:

Green fluorescent protein

OR:

Octa repeat

HC:

Hydrophobic core

TM:

Transmembrane

PLAP:

Placental alkaline phosphatase

VSVg:

Vesicular stomatitis virus glycoprotein

LVs:

Lentivectors

ELISA:

Enzyme-linked immunosorbent assay

KD:

Knock down

FACS:

Fluorescent activated cell sorter

WT:

Wild type

RT:

Reverse transcriptase

FL:

Full length

References

  1. Linden R, Martins VR, Prado MA, Cammarota M, Izquierdo I, Brentani RR (2008) Physiology of the prion protein. Physiol Rev 88(2):673–728. doi:10.1152/physrev.00007.2007

    Article  PubMed  CAS  Google Scholar 

  2. Griffiths RE, Heesom KJ, Anstee DJ (2007) Normal prion protein trafficking in cultured human erythroblasts. Blood 110(13):4518–4525. doi:10.1182/blood-2007-04-085183

    Article  PubMed  CAS  Google Scholar 

  3. Guo M, Huang T, Cui Y, Pan B, Shen A, Sun Y, Yi Y, Wang Y, Xiao G, Sun G (2008) PrPC interacts with tetraspanin-7 through bovine PrP154-182 containing alpha-helix 1. Biochem Biophys Res Commun 365(1):154–157. doi:10.1016/j.bbrc.2007.10.160

    Article  PubMed  CAS  Google Scholar 

  4. Prusiner SB (1998) Prions. Proc Natl Acad Sci USA 95(23):13363–13383

    Article  PubMed  CAS  Google Scholar 

  5. Isaacs JD, Jackson GS, Altmann DM (2006) The role of the cellular prion protein in the immune system. Clin Exp Immunol 146(1):1–8. doi:10.1111/j.1365-2249.2006.03194.x

    Article  PubMed  CAS  Google Scholar 

  6. Mehrpour M, Codogno P (2010) Prion protein: from physiology to cancer biology. Cancer Lett 290(1):1–23. doi:10.1016/j.canlet.2009.07.009

    Article  PubMed  CAS  Google Scholar 

  7. Miyazawa K, Emmerling K, Manuelidis L (2010) Proliferative arrest of neural cells induces prion protein synthesis, nanotube formation, and cell-to-cell contacts. J Cell Biochem 111(1):239–247. doi:10.1002/jcb.22723

    Article  PubMed  CAS  Google Scholar 

  8. Schrock Y, Solis GP, Stuermer CA (2009) Regulation of focal adhesion formation and filopodia extension by the cellular prion protein (PrPC). FEBS Lett 583(2):389–393. doi:10.1016/j.febslet.2008.12.038

    Article  PubMed  CAS  Google Scholar 

  9. Zhang CC, Steele AD, Lindquist S, Lodish HF (2006) Prion protein is expressed on long-term repopulating hematopoietic stem cells and is important for their self-renewal. Proc Natl Acad Sci USA 103(7):2184–2189. doi:10.1073/pnas.0510577103

    Article  PubMed  CAS  Google Scholar 

  10. Mattei V, Garofalo T, Misasi R, Circella A, Manganelli V, Lucania G, Pavan A, Sorice M (2004) Prion protein is a component of the multimolecular signaling complex involved in T cell activation. FEBS Lett 560(1–3):14–18. doi:10.1016/S0014-5793(04)00029-8

    Article  PubMed  CAS  Google Scholar 

  11. Spielhaupter C, Schatzl HM (2001) PrPC directly interacts with proteins involved in signaling pathways. J Biol Chem 276(48):44604–44612. doi:10.1074/jbc.M103289200

    Article  PubMed  CAS  Google Scholar 

  12. Stuermer CA, Langhorst MF, Wiechers MF, Legler DF, Von Hanwehr SH, Guse AH, Plattner H (2004) PrPc capping in T cells promotes its association with the lipid raft proteins reggie-1 and reggie-2 and leads to signal transduction. FASEB J 18(14):1731–1733. doi:10.1096/fj.04-2150fje

    PubMed  CAS  Google Scholar 

  13. Mouillet-Richard S, Ermonval M, Chebassier C, Laplanche JL, Lehmann S, Launay JM, Kellermann O (2000) Signal transduction through prion protein. Science 289(5486):1925–1928

    Article  PubMed  CAS  Google Scholar 

  14. Neil S, Bieniasz P (2009) Human immunodeficiency virus, restriction factors, and interferon. J Interferon Cytokine Res 29(9):569–580. doi:10.1089/jir.2009.0077

    Article  PubMed  CAS  Google Scholar 

  15. Nakamura Y, Sakudo A, Saeki K, Kaneko T, Matsumoto Y, Toniolo A, Itohara S, Onodera T (2003) Transfection of prion protein gene suppresses coxsackievirus B3 replication in prion protein gene-deficient cells. J Gen Virol 84(Pt 12):3495–3502

    Article  PubMed  CAS  Google Scholar 

  16. Lotscher M, Recher M, Lang KS, Navarini A, Hunziker L, Santimaria R, Glatzel M, Schwarz P, Boni J, Zinkernagel RM (2007) Induced prion protein controls immune-activated retroviruses in the mouse spleen. PLoS One 2(11):e1158. doi:10.1371/journal.pone.0001158

    Article  PubMed  Google Scholar 

  17. Nikles D, Bach P, Boller K, Merten CA, Montrasio F, Heppner FL, Aguzzi A, Cichutek K, Kalinke U, Buchholz CJ (2005) Circumventing tolerance to the prion protein (PrP): vaccination with PrP-displaying retrovirus particles induces humoral immune responses against the native form of cellular PrP. J Virol 79(7):4033–4042. doi:10.1128/JVI.79.7.4033-4042.2005

    Article  PubMed  CAS  Google Scholar 

  18. Caruso P, Burla R, Piersanti S, Cherubini G, Remoli C, Martina Y, Saggio I (2009) Prion expression is activated by Adenovirus 5 infection and affects the adenoviral cycle in human cells. Virology 385(2):343–350. doi:10.1016/j.virol.2008.12.005

    Article  PubMed  CAS  Google Scholar 

  19. Muller WE, Pfeifer K, Forrest J, Rytik PG, Eremin VF, Popov SA, Schroder HC (1992) Accumulation of transcripts coding for prion protein in human astrocytes during infection with human immunodeficiency virus. Biochim Biophys Acta 1139(1–2):32–40 (0925-4439(92)90079-3)

    PubMed  CAS  Google Scholar 

  20. Walters KA, Joyce MA, Thompson JC, Smith MW, Yeh MM, Proll S, Zhu LF, Gao TJ, Kneteman NM, Tyrrell DL, Katze MG (2006) Host-specific response to HCV infection in the chimeric SCID-beige/Alb-uPA mouse model: role of the innate antiviral immune response. PLoS Pathog 2(6):59. doi:10.1371/journal.ppat.0020059

    Article  Google Scholar 

  21. Roberts TK, Eugenin EA, Morgello S, Clements JE, Zink MC, Berman JW (2010) PrPC, the cellular isoform of the human prion protein, is a novel biomarker of HIV-associated neurocognitive impairment and mediates neuroinflammation. Am J Pathol 177(4):1848–1860. doi:10.2353/ajpath.2010.091006

    Article  PubMed  CAS  Google Scholar 

  22. Gabus C, Auxilien S, Pechoux C, Dormont D, Swietnicki W, Morillas M, Surewicz W, Nandi P, Darlix JL (2001) The prion protein has DNA strand transfer properties similar to retroviral nucleocapsid protein. J Mol Biol 307(4):1011–1021. doi:10.1006/jmbi.2001.4544

    Article  PubMed  CAS  Google Scholar 

  23. Gabus C, Derrington E, Leblanc P, Chnaiderman J, Dormont D, Swietnicki W, Morillas M, Surewicz WK, Marc D, Nandi P, Darlix JL (2001) The prion protein has RNA binding and chaperoning properties characteristic of nucleocapsid protein NCP7 of HIV-1. J Biol Chem 276(22):19301–19309. doi:10.1074/jbc.M009754200

    Article  PubMed  CAS  Google Scholar 

  24. Moscardini M, Pistello M, Bendinelli M, Ficheux D, Miller JT, Gabus C, Le Grice SF, Surewicz WK, Darlix JL (2002) Functional interactions of nucleocapsid protein of feline immunodeficiency virus and cellular prion protein with the viral RNA. J Mol Biol 318(1):149–159. doi:10.1016/S0022-2836(02)00092-X

    Article  PubMed  CAS  Google Scholar 

  25. Leblanc P, Baas D, Darlix JL (2004) Analysis of the interactions between HIV-1 and the cellular prion protein in a human cell line. J Mol Biol 337(4):1035–1051. doi:10.1016/j.jmb.2004.02.007

    Article  PubMed  CAS  Google Scholar 

  26. Leblanc P, Alais S, Porto-Carreiro I, Lehmann S, Grassi J, Raposo G, Darlix JL (2006) Retrovirus infection strongly enhances scrapie infectivity release in cell culture. EMBO J 25(12):2674–2685. doi:10.1038/sj.emboj.7601162

    Article  PubMed  CAS  Google Scholar 

  27. Adachi A, Gendelman HE, Koenig S, Folks T, Willey R, Rabson A, Martin MA (1986) Production of acquired immunodeficiency syndrome-associated retrovirus in human and nonhuman cells transfected with an infectious molecular clone. J Virol 59(2):284–291

    PubMed  CAS  Google Scholar 

  28. Watts JC, Huo H, Bai Y, Ehsani S, Jeon AH, Shi T, Daude N, Lau A, Young R, Xu L, Carlson GA, Williams D, Westaway D, Schmitt-Ulms G (2009) Interactome analyses identify ties of PrP and its mammalian paralogs to oligomannosidic N-glycans and endoplasmic reticulum-derived chaperones. PLoS Pathog 5(10):1000608. doi:10.1371/journal.ppat.1000608

    Article  Google Scholar 

  29. Chakrabarti O, Hegde RS (2009) Functional depletion of mahogunin by cytosolically exposed prion protein contributes to neurodegeneration. Cell 137(6):1136–1147. doi:10.1016/j.cell.2009.03.042

    Article  PubMed  CAS  Google Scholar 

  30. Rane NS, Chakrabarti O, Feigenbaum L, Hegde RS (2010) Signal sequence insufficiency contributes to neurodegeneration caused by transmembrane prion protein. J Cell Biol 188(4):515–526. doi:10.1083/jcb.200911115

    Article  PubMed  CAS  Google Scholar 

  31. Neil SJ, Zang T, Bieniasz PD (2008) Tetherin inhibits retrovirus release and is antagonized by HIV-1 Vpu. Nature 451(7177):425–430. doi:10.1038/nature06553

    Article  PubMed  CAS  Google Scholar 

  32. Naldini L, Blomer U, Gallay P, Ory D, Mulligan R, Gage FH, Verma IM, Trono D (1996) In vivo gene delivery and stable transduction of nondividing cells by a lentiviral vector. Science 272(5259):263–267

    Article  PubMed  CAS  Google Scholar 

  33. Goujon C, Arfi V, Pertel T, Luban J, Lienard J, Rigal D, Darlix JL, Cimarelli A (2008) Characterization of simian immunodeficiency virus SIVSM/human immunodeficiency virus type 2 Vpx function in human myeloid cells. J Virol 82(24):12335–12345. doi:10.1128/JVI.01181-08

    Article  PubMed  CAS  Google Scholar 

  34. Hamard-Peron E, Juillard F, Saad JS, Roy C, Roingeard P, Summers MF, Darlix JL, Picart C, Muriaux D (2010) Targeting of murine leukemia virus gag to the plasma membrane is mediated by PI(4, 5)P2/PS and a polybasic region in the matrix. J Virol 84(1):503–515. doi:10.1128/JVI.01134-09

    Article  PubMed  CAS  Google Scholar 

  35. Ricci EP, Herbreteau CH, Decimo D, Schaupp A, Datta SA, Rein A, Darlix JL, Ohlmann T (2008) In vitro expression of the HIV-2 genomic RNA is controlled by three distinct internal ribosome entry segments that are regulated by the HIV protease and the Gag polyprotein. RNA 14(7):1443–1455. doi:10.1261/rna.813608

    Article  PubMed  CAS  Google Scholar 

  36. Watts JC, Westaway D (2007) The prion protein family: diversity, rivalry, and dysfunction. Biochim Biophys Acta 1772(6):654–672. doi:10.1016/j.bbadis.2007.05.001

    PubMed  CAS  Google Scholar 

  37. Young R, Passet B, Vilotte M, Cribiu EP, Beringue V, Le Provost F, Laude H, Vilotte JL (2009) The prion or the related Shadoo protein is required for early mouse embryogenesis. FEBS Lett 583(19):3296–3300. doi:10.1016/j.febslet.2009.09.027

    Article  PubMed  CAS  Google Scholar 

  38. Van Damme N, Goff D, Katsura C, Jorgenson RL, Mitchell R, Johnson MC, Stephens EB, Guatelli J (2008) The interferon-induced protein BST-2 restricts HIV-1 release and is downregulated from the cell surface by the viral Vpu protein. Cell Host Microbe 3(4):245–252. doi:10.1016/j.chom.2008.03.001

    Article  PubMed  Google Scholar 

  39. Chakrabarti O, Ashok A, Hegde RS (2009) Prion protein biosynthesis and its emerging role in neurodegeneration. Trends Biochem Sci 34(6):287–295. doi:10.1016/j.tibs.2009.03.001

    Article  PubMed  CAS  Google Scholar 

  40. Kupzig S, Korolchuk V, Rollason R, Sugden A, Wilde A, Banting G (2003) Bst-2/HM1.24 is a raft-associated apical membrane protein with an unusual topology. Traffic 4(10):694–709 (129)

    Article  PubMed  CAS  Google Scholar 

  41. Perez-Caballero D, Zang T, Ebrahimi A, McNatt MW, Gregory DA, Johnson MC, Bieniasz PD (2009) Tetherin inhibits HIV-1 release by directly tethering virions to cells. Cell 139(3):499–511. doi:10.1016/j.cell.2009.08.039

    Article  PubMed  CAS  Google Scholar 

  42. Gousset K, Schiff E, Langevin C, Marijanovic Z, Caputo A, Browman DT, Chenouard N, de Chaumont F, Martino A, Enninga J, Olivo-Marin JC, Mannel D, Zurzolo C (2009) Prions hijack tunnelling nanotubes for intercellular spread. Nat Cell Biol 11(3):328–336. doi:10.1038/ncb1841

    Article  PubMed  CAS  Google Scholar 

  43. Ballerini C, Gourdain P, Bachy V, Blanchard N, Levavasseur E, Gregoire S, Fontes P, Aucouturier P, Hivroz C, Carnaud C (2006) Functional implication of cellular prion protein in antigen-driven interactions between T cells and dendritic cells. J Immunol 176(12):7254–7262 (176/12/7254)

    PubMed  CAS  Google Scholar 

  44. Rudnicka D, Feldmann J, Porrot F, Wietgrefe S, Guadagnini S, Prevost MC, Estaquier J, Haase AT, Sol-Foulon N, Schwartz O (2009) Simultaneous cell-to-cell transmission of human immunodeficiency virus to multiple targets through polysynapses. J Virol 83(12):6234–6246. doi:10.1128/JVI.00282-09

    Article  PubMed  CAS  Google Scholar 

  45. Sourisseau M, Sol-Foulon N, Porrot F, Blanchet F, Schwartz O (2007) Inefficient human immunodeficiency virus replication in mobile lymphocytes. J Virol 81(2):1000–1012. doi:10.1128/JVI.01629-06

    Article  PubMed  CAS  Google Scholar 

  46. Campana V, Caputo A, Sarnataro D, Paladino S, Tivodar S, Zurzolo C (2007) Characterization of the properties and trafficking of an anchorless form of the prion protein. J Biol Chem 282(31):22747–22756. doi:10.1074/jbc.M701468200

    Article  PubMed  CAS  Google Scholar 

  47. Sunyach C, Jen A, Deng J, Fitzgerald KT, Frobert Y, Grassi J, McCaffrey MW, Morris R (2003) The mechanism of internalization of glycosylphosphatidylinositol-anchored prion protein. EMBO J 22(14):3591–3601. doi:10.1093/emboj/cdg344

    Article  PubMed  CAS  Google Scholar 

  48. Pasupuleti M, Roupe M, Rydengard V, Surewicz K, Surewicz WK, Chalupka A, Malmsten M, Sorensen OE, Schmidtchen A (2009) Antimicrobial activity of human prion protein is mediated by its N-terminal region. PLoS One 4(10):e7358. doi:10.1371/journal.pone.0007358

    Article  PubMed  Google Scholar 

  49. Zanata SM, Lopes MH, Mercadante AF, Hajj GN, Chiarini LB, Nomizo R, Freitas AR, Cabral AL, Lee KS, Juliano MA, de Oliveira E, Jachieri SG, Burlingame A, Huang L, Linden R, Brentani RR, Martins VR (2002) Stress-inducible protein 1 is a cell surface ligand for cellular prion that triggers neuroprotection. EMBO J 21(13):3307–3316. doi:10.1093/emboj/cdf325

    Article  PubMed  CAS  Google Scholar 

  50. Roffe M, Beraldo FH, Bester R, Nunziante M, Bach C, Mancini G, Gilch S, Vorberg I, Castilho BA, Martins VR, Hajj GN (2010) Prion protein interaction with stress-inducible protein 1 enhances neuronal protein synthesis via mTOR. Proc Natl Acad Sci USA 107(29):13147–13152. doi:10.1073/pnas.1000784107

    Article  PubMed  CAS  Google Scholar 

  51. Sakudo A, Lee DC, Nishimura T, Li S, Tsuji S, Nakamura T, Matsumoto Y, Saeki K, Itohara S, Ikuta K, Onodera T (2005) Octapeptide repeat region and N-terminal half of hydrophobic region of prion protein (PrP) mediate PrP-dependent activation of superoxide dismutase. Biochem Biophys Res Commun 326(3):600–606. doi:10.1016/j.bbrc.2004.11.092

    Article  PubMed  CAS  Google Scholar 

  52. Deshmane SL, Mukerjee R, Fan S, Del Valle L, Michiels C, Sweet T, Rom I, Khalili K, Rappaport J, Amini S, Sawaya BE (2009) Activation of the oxidative stress pathway by HIV-1 Vpr leads to induction of hypoxia-inducible factor 1alpha expression. J Biol Chem 284(17):11364–11373. doi:10.1074/jbc.M809266200

    Article  PubMed  CAS  Google Scholar 

  53. Nicolini A, Ajmone-Cat MA, Bernardo A, Levi G, Minghetti L (2001) Human immunodeficiency virus type-1 Tat protein induces nuclear factor (NF)-kappaB activation and oxidative stress in microglial cultures by independent mechanisms. J Neurochem 79(3):713–716

    Article  PubMed  CAS  Google Scholar 

  54. Pocernich CB, Sultana R, Mohmmad-Abdul H, Nath A, Butterfield DA (2005) HIV-dementia, Tat-induced oxidative stress, and antioxidant therapeutic considerations. Brain Res Brain Res Rev 50(1):14–26. doi:10.1016/j.brainresrev.2005.04.002

    Article  PubMed  CAS  Google Scholar 

  55. Price TO, Ercal N, Nakaoke R, Banks WA (2005) HIV-1 viral proteins gp120 and Tat induce oxidative stress in brain endothelial cells. Brain Res 1045(1–2):57–63. doi:10.1016/j.brainres.2005.03.031

    Article  PubMed  CAS  Google Scholar 

  56. Ronaldson PT, Bendayan R (2008) HIV-1 viral envelope glycoprotein gp120 produces oxidative stress and regulates the functional expression of multidrug resistance protein-1 (Mrp1) in glial cells. J Neurochem 106(3):1298–1313. doi:10.1111/j.1471-4159.2008.05479.x

    Article  PubMed  CAS  Google Scholar 

  57. Gendron K, Ferbeyre G, Heveker N, Brakier-Gingras L (2011) The activity of the HIV-1 IRES is stimulated by oxidative stress and controlled by a negative regulatory element. Nucleic Acids Res 39(3):902–912. doi:10.1093/nar/gkq885

    Article  PubMed  CAS  Google Scholar 

  58. Goggin K, Beaudoin S, Grenier C, Brown AA, Roucou X (2008) Prion protein aggresomes are poly(A)+ ribonucleoprotein complexes that induce a PKR-mediated deficient cell stress response. Biochim Biophys Acta 1783(3):479–491. doi:10.1016/j.bbamcr.2007.10.008

    Article  PubMed  CAS  Google Scholar 

  59. Grenier C, Bissonnette C, Volkov L, Roucou X (2006) Molecular morphology and toxicity of cytoplasmic prion protein aggregates in neuronal and non-neuronal cells. J Neurochem 97(5):1456–1466. doi:10.1111/j.1471-4159.2006.03837.x

    Article  PubMed  CAS  Google Scholar 

  60. Adler V, Zeiler B, Kryukov V, Kascsak R, Rubenstein R, Grossman A (2003) Small, highly structured RNAs participate in the conversion of human recombinant PrP(Sen) to PrP(Res) in vitro. J Mol Biol 332(1):47–57 (S0022283603009197)

    Article  PubMed  CAS  Google Scholar 

  61. Deleault NR, Lucassen RW, Supattapone S (2003) RNA molecules stimulate prion protein conversion. Nature 425(6959):717–720. doi:10.1038/nature01979

    Article  PubMed  CAS  Google Scholar 

  62. Gomes MP, Cordeiro Y, Silva JL (2008) The peculiar interaction between mammalian prion protein and RNA. Prion 2(2):64–66 (6988)

    Article  PubMed  Google Scholar 

  63. Weiss S, Proske D, Neumann M, Groschup MH, Kretzschmar HA, Famulok M, Winnacker EL (1997) RNA aptamers specifically interact with the prion protein PrP. J Virol 71(11):8790–8797

    PubMed  CAS  Google Scholar 

  64. Nandi PK, Leclerc E (1999) Polymerization of murine recombinant prion protein in nucleic acid solution. Arch Virol 144(9):1751–1763 (91441751.705)

    Article  PubMed  CAS  Google Scholar 

  65. Nandi PK, Nicole JC (2004) Nucleic acid and prion protein interaction produces spherical amyloids which can function in vivo as coats of spongiform encephalopathy agent. J Mol Biol 344(3):827–837. doi:10.1016/j.jmb.2004.09.080

    Article  PubMed  CAS  Google Scholar 

  66. Alais S, Simoes S, Baas D, Lehmann S, Raposo G, Darlix JL, Leblanc P (2008) Mouse neuroblastoma cells release prion infectivity associated with exosomal vesicles. Biol Cell 100(10):603–615. doi:10.1042/BC20080025

    Article  PubMed  CAS  Google Scholar 

  67. Manuelidis L (2007) A 25 nm virion is the likely cause of transmissible spongiform encephalopathies. J Cell Biochem 100(4):897–915. doi:10.1002/jcb.21090

    Article  PubMed  CAS  Google Scholar 

  68. Zafar S, von Ahsen N, Oellerich M, Zerr I, Schulz-Schaeffer WJ, Armstrong VW, Asif AR (2011) Proteomics approach to identify the interacting partners of cellular prion protein and characterization of Rab7a interaction in neuronal cells. J Proteome Res 10(7):3123–3135. doi:10.1021/pr2001989

    Article  PubMed  CAS  Google Scholar 

  69. Sherer NM, Lehmann MJ, Jimenez-Soto LF, Horensavitz C, Pypaert M, Mothes W (2007) Retroviruses can establish filopodial bridges for efficient cell-to-cell transmission. Nat Cell Biol 9(3):310–315. doi:10.1038/ncb1544

    Article  PubMed  CAS  Google Scholar 

  70. Eugenin EA, Gaskill PJ, Berman JW (2009) Tunneling nanotubes (TNT) are induced by HIV-infection of macrophages: a potential mechanism for intercellular HIV trafficking. Cell Immunol 254(2):142–148. doi:10.1016/j.cellimm.2008.08.005

    Article  PubMed  CAS  Google Scholar 

  71. Corley SM, Gready JE (2008) Identification of the RGG box motif in Shadoo: RNA-binding and signaling roles? Bioinform Biol Insights 2:383–400

    PubMed  Google Scholar 

  72. Lindl KA, Akay C, Wang Y, White MG, Jordan-Sciutto KL (2007) Expression of the endoplasmic reticulum stress response marker, BiP, in the central nervous system of HIV-positive individuals. Neuropathol Appl Neurobiol 33(6):658–669. doi:10.1111/j.1365-2990.2007.00866.x

    Article  PubMed  CAS  Google Scholar 

  73. Kang SW, Rane NS, Kim SJ, Garrison JL, Taunton J, Hegde RS (2006) Substrate-specific translocational attenuation during ER stress defines a pre-emptive quality control pathway. Cell 127(5):999–1013. doi:10.1016/j.cell.2006.10.032

    Article  PubMed  CAS  Google Scholar 

  74. Orsi A, Fioriti L, Chiesa R, Sitia R (2006) Conditions of endoplasmic reticulum stress favor the accumulation of cytosolic prion protein. J Biol Chem 281(41):30431–30438. doi:10.1074/jbc.M605320200

    Article  PubMed  CAS  Google Scholar 

  75. Rane NS, Kang SW, Chakrabarti O, Feigenbaum L, Hegde RS (2008) Reduced translocation of nascent prion protein during ER stress contributes to neurodegeneration. Dev Cell 15(3):359–370. doi:10.1016/j.devcel.2008.06.015

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Ramanujan Hegde, David Harris, Paul Bieniasz, David Westaway, Jeremy Luban, Serge Bénichou, Didier Trono and Hybridolab for kindly providing biological materials. We thank Olivier Schwartz, Clarisse Berlioz-Torrent and Renaud Mahieux for materials, discussions and help. We thank Robin Buckland and Jenny T. Miller for carefully reading the manuscript. We acknowledge the PLATIM microscope platform at ENS Lyon (SFR Biosciences Gerland–Lyon Sud UMS34444/US8, France). This work was supported by the CNRS, INSERM and GIS-Prion. RSR and TO received grant support from ANRS and Conycit. We thank the ANR program EXOPRION (to PL and GR) for its essential contribution to the definitive version of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pascal Leblanc.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Alais, S., Soto-Rifo, R., Balter, V. et al. Functional mechanisms of the cellular prion protein (PrPC) associated anti-HIV-1 properties. Cell. Mol. Life Sci. 69, 1331–1352 (2012). https://doi.org/10.1007/s00018-011-0879-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-011-0879-z

Keywords

Navigation