Skip to main content
Log in

Left–right asymmetry in zebrafish

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

In vertebrates, internal organs are positioned asymmetrically across the left–right (LR) axis, placing them in a defined area within the body. This LR asymmetric placement is a conserved feature of the vertebrate body plan. Events determining LR asymmetry occur during embryonic development, and are regulated by the coordinated action of genetic mechanisms that are evolutionarily conserved among vertebrates. Recent studies using zebrafish have provided new insights into how the Kupffer’s vesicle organizer region is generated, and how it relays LR asymmetry information to the lateral plate mesoderm. In this review, we summarize recent advances in zebrafish and describe our current understanding of the mechanisms underlying these processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Ablooglu AJ, Tkachenko E, Kang J, Shattil SJ (2010) Integrin alphaV is necessary for gastrulation movements that regulate vertebrate body asymmetry. Development 137:3449–3458

    Article  PubMed  CAS  Google Scholar 

  2. Aizawa H, Goto M, Sato T, Okamoto H (2007) Temporally regulated asymmetric neurogenesis causes left-right difference in the zebrafish habenular structures. Dev Cell 12:87–98

    Article  PubMed  CAS  Google Scholar 

  3. Albertson RC, Yelick PC (2005) Roles for fgf8 signaling in left-right patterning of the visceral organs and craniofacial skeleton. Dev Biol 283:310–321

    Article  PubMed  CAS  Google Scholar 

  4. Amack JD, Wang X, Yost HJ (2007) Two T-box genes play independent and cooperative roles to regulate morphogenesis of ciliated Kupffer’s vesicle in zebrafish. Dev Biol 310:196–210

    Article  PubMed  CAS  Google Scholar 

  5. Amack JD, Yost HJ (2004) The T box transcription factor no tail in ciliated cells controls zebrafish left-right asymmetry. Curr Biol 14:685–690

    Article  PubMed  CAS  Google Scholar 

  6. Baker K, Holtzman NG, Burdine RD (2008) Direct and indirect roles for Nodal signaling in two axis conversions during asymmetric morphogenesis of the zebrafish heart. Proc Natl Acad Sci USA 105:13924–13929

    Article  PubMed  CAS  Google Scholar 

  7. Borovina A, Superina S, Voskas D, Ciruna B (2010) Vangl2 directs the posterior tilting and asymmetric localization of motile primary cilia. Nat Cell Biol 12:407–412

    Article  PubMed  CAS  Google Scholar 

  8. Chen Y, Schier AF (2002) Lefty proteins are long-range inhibitors of squint-mediated nodal signaling. Curr Biol 12:2124–2128

    Article  PubMed  CAS  Google Scholar 

  9. Cheng SK, Olale F, Brivanlou AH, Schier AF (2004) Lefty blocks a subset of TGFbeta signals by antagonizing EGF-CFC coreceptors. PLoS Biol 2:E30

    Article  PubMed  Google Scholar 

  10. Chocron S, Verhoeven MC, Rentzsch F, Hammerschmidt M, Bakkers J (2007) Zebrafish Bmp4 regulates left-right asymmetry at two distinct developmental time points. Dev Biol 305:577–588

    Article  PubMed  CAS  Google Scholar 

  11. Cooper MS, D’Amico LA (1996) A cluster of noninvoluting endocytic cells at the margin of the zebrafish blastoderm marks the site of embryonic shield formation. Dev Biol 180:184–198

    Article  PubMed  CAS  Google Scholar 

  12. de Campos-Baptista MI, Holtzman NG, Yelon D, Schier AF (2008) Nodal signaling promotes the speed and directional movement of cardiomyocytes in zebrafish. Dev Dyn 237:3624–3633

    Article  PubMed  Google Scholar 

  13. Esguerra CV, Nelles L, Vermeire L, Ibrahimi A, Crawford AD, Derua R, Janssens E, Waelkens E, Carmeliet P, Collen D, Huylebroeck D (2007) Ttrap is an essential modulator of Smad3-dependent Nodal signaling during zebrafish gastrulation and left-right axis determination. Development 134:4381–4393

    Article  PubMed  CAS  Google Scholar 

  14. Essner JJ, Amack JD, Nyholm MK, Harris EB, Yost HJ (2005) Kupffer’s vesicle is a ciliated organ of asymmetry in the zebrafish embryo that initiates left-right development of the brain, heart and gut. Development 132:1247–1260

    Article  PubMed  CAS  Google Scholar 

  15. Essner JJ, Vogan KJ, Wagner MK, Tabin CJ, Yost HJ, Brueckner M (2002) Conserved function for embryonic nodal cilia. Nature 418:37–38

    Article  PubMed  CAS  Google Scholar 

  16. Francescatto L, Rothschild SC, Myers AL, Tombes RM (2010) The activation of membrane targeted CaMK-II in the zebrafish Kupffer’s vesicle is required for left-right asymmetry. Development 137:2753–2762

    Article  PubMed  CAS  Google Scholar 

  17. Hashimoto H, Rebagliati M, Ahmad N, Muraoka O, Kurokawa T, Hibi M, Suzuki T (2004) The Cerberus/Dan-family protein Charon is a negative regulator of Nodal signaling during left-right patterning in zebrafish. Development 131:1741–1753

    Article  PubMed  CAS  Google Scholar 

  18. Hatler JM, Essner JJ, Johnson RG (2009) A gap junction connexin is required in the vertebrate left-right organizer. Dev Biol 336:183–191

    Article  PubMed  CAS  Google Scholar 

  19. Hirokawa N, Tanaka Y, Okada Y, Takeda S (2006) Nodal flow and the generation of left-right asymmetry. Cell 125:33–45

    Article  PubMed  CAS  Google Scholar 

  20. Hong SK, Dawid IB (2009) FGF-dependent left-right asymmetry patterning in zebrafish is mediated by Ier2 and Fibp1. Proc Natl Acad Sci USA 106:2230–2235

    Article  PubMed  CAS  Google Scholar 

  21. Horne-Badovinac S, Rebagliati M, Stainier DY (2003) A cellular framework for gut-looping morphogenesis in zebrafish. Science 302:662–665

    Article  PubMed  CAS  Google Scholar 

  22. Jurynec MJ, Xia R, Mackrill JJ, Gunther D, Crawford T, Flanigan KM, Abramson JJ, Howard MT, Grunwald DJ (2008) Selenoprotein N is required for ryanodine receptor calcium release channel activity in human and zebrafish muscle. Proc Natl Acad Sci USA 105:12485–12490

    Article  PubMed  CAS  Google Scholar 

  23. Kawakami Y, Raya A, Raya RM, Rodriguez-Esteban C, Izpisua Belmonte JC (2005) Retinoic acid signalling links left-right asymmetric patterning and bilaterally symmetric somitogenesis in the zebrafish embryo. Nature 435:165–171

    Article  PubMed  CAS  Google Scholar 

  24. Kim S, Zaghloul NA, Bubenshchikova E, Oh EC, Rankin S, Katsanis N, Obara T, Tsiokas L (2011) Nde1-mediated inhibition of ciliogenesis affects cell cycle re-entry. Nat Cell Biol 13:351–360

    Article  PubMed  CAS  Google Scholar 

  25. Kramer-Zucker AG, Olale F, Haycraft CJ, Yoder BK, Schier AF, Drummond IA (2005) Cilia-driven fluid flow in the zebrafish pronephros, brain and Kupffer’s vesicle is required for normal organogenesis. Development 132:1907–1921

    Article  PubMed  CAS  Google Scholar 

  26. Kupffer C (1868) Beobachtungen über die Entwicklung der Knochenfische. Arch Mikrob Anat 4:209–272

    Article  Google Scholar 

  27. Levin M, Thorlin T, Robinson KR, Nogi T, Mercola M (2002) Asymmetries in H+/K+-ATPase and cell membrane potentials comprise a very early step in left-right patterning. Cell 111:77–89

    Article  PubMed  CAS  Google Scholar 

  28. Li N, Wei C, Olena AF, Patton JG (2011) Regulation of endoderm formation and left-right asymmetry by miR-92 during early zebrafish development. Development 138:1817–1826

    Article  PubMed  CAS  Google Scholar 

  29. Long S, Ahmad N, Rebagliati M (2003) The zebrafish nodal-related gene southpaw is required for visceral and diencephalic left-right asymmetry. Development 130:2303–2316

    Article  PubMed  CAS  Google Scholar 

  30. Lopes SS, Lourenco R, Pacheco L, Moreno N, Kreiling J, Saude L (2010) Notch signalling regulates left-right asymmetry through ciliary length control. Development 137:3625–3632

    Article  PubMed  CAS  Google Scholar 

  31. Matsui T, Thitamadee S, Murata T, Kakinuma H, Nabetani T, Hirabayashi Y, Hirate Y, Okamoto H, Bessho Y (2011) Canopy1, a positive feedback regulator of FGF signaling, controls progenitor cell clustering during Kupffer’s vesicle organogenesis. Proc Natl Acad Sci USA 108:9881–9886

    Article  PubMed  CAS  Google Scholar 

  32. Melby AE, Warga RM, Kimmel CB (1996) Specification of cell fates at the dorsal margin of the zebrafish gastrula. Development 122:2225–2237

    PubMed  CAS  Google Scholar 

  33. Meno C, Gritsman K, Ohishi S, Ohfuji Y, Heckscher E, Mochida K, Shimono A, Kondoh H, Talbot WS, Robertson EJ, Schier AF, Hamada H (1999) Mouse Lefty2 and zebrafish antivin are feedback inhibitors of nodal signaling during vertebrate gastrulation. Mol Cell 4:287–298

    Article  PubMed  CAS  Google Scholar 

  34. Nakamura T, Mine N, Nakaguchi E, Mochizuki A, Yamamoto M, Yashiro K, Meno C, Hamada H (2006) Generation of robust left-right asymmetry in the mouse embryo requires a self-enhancement and lateral-inhibition system. Dev Cell 11:495–504

    Article  PubMed  CAS  Google Scholar 

  35. Neugebauer JM, Amack JD, Peterson AG, Bisgrove BW, Yost HJ (2009) FGF signalling during embryo development regulates cilia length in diverse epithelia. Nature 458:651–654

    Article  PubMed  CAS  Google Scholar 

  36. Oishi I, Kawakami Y, Raya A, Callol-Massot C, Izpisua Belmonte JC (2006) Regulation of primary cilia formation and left-right patterning in zebrafish by a noncanonical Wnt signaling mediator, duboraya. Nat Genet 38:1316–1322

    Article  PubMed  CAS  Google Scholar 

  37. Oteiza P, Koppen M, Concha ML, Heisenberg CP (2008) Origin and shaping of the laterality organ in zebrafish. Development 135:2807–2813

    Article  PubMed  CAS  Google Scholar 

  38. Oteiza P, Koppen M, Krieg M, Pulgar E, Farias C, Melo C, Preibisch S, Muller D, Tada M, Hartel S, Heisenberg CP, Concha ML (2010) Planar cell polarity signalling regulates cell adhesion properties in progenitors of the zebrafish laterality organ. Development 137:3459–3468

    Article  PubMed  CAS  Google Scholar 

  39. Rohr S, Otten C, Abdelilah-Seyfried S (2008) Asymmetric involution of the myocardial field drives heart tube formation in zebrafish. Circ Res 102:e12–e19

    Article  PubMed  CAS  Google Scholar 

  40. Sarmah B, Latimer AJ, Appel B, Wente SR (2005) Inositol polyphosphates regulate zebrafish left-right asymmetry. Dev Cell 9:133–145

    Article  PubMed  CAS  Google Scholar 

  41. Schier AF (2009) Nodal morphogens. Cold Spring Harb Perspect Biol 1:a003459

    Article  PubMed  Google Scholar 

  42. Shiratori H, Hamada H (2006) The left-right axis in the mouse: from origin to morphology. Development 133:2095–2104

    Article  PubMed  CAS  Google Scholar 

  43. Smith KA, Chocron S, von der Hardt S, de Pater E, Soufan A, Bussmann J, Schulte-Merker S, Hammerschmidt M, Bakkers J (2008) Rotation and asymmetric development of the zebrafish heart requires directed migration of cardiac progenitor cells. Dev Cell 14:287–297

    Article  PubMed  CAS  Google Scholar 

  44. Smith KA, Noel E, Thurlings I, Rehmann H, Chocron S, Bakkers J (2011) Bmp and nodal independently regulate lefty1 expression to maintain unilateral nodal activity during left-right axis specification in zebrafish. PLoS Genet 7:e1002289

    Article  PubMed  CAS  Google Scholar 

  45. Stubbs JL, Oishi I, Izpisua Belmonte JC, Kintner C (2008) The forkhead protein Foxj1 specifies node-like cilia in Xenopus and zebrafish embryos. Nat Genet 40:1454–1460

    Article  PubMed  CAS  Google Scholar 

  46. Turing AM (1953) The chemical basis of morphogenesis. Bull Math Biol 52(153–97):119–152

    Google Scholar 

  47. Wang G, Cadwallader AB, Jang DS, Tsang M, Yost HJ, Amack JD (2011) The Rho kinase Rock2b establishes anteroposterior asymmetry of the ciliated Kupffer’s vesicle in zebrafish. Development 138:45–54

    Article  PubMed  CAS  Google Scholar 

  48. Wang X, Yost HJ (2008) Initiation and propagation of posterior to anterior (PA) waves in zebrafish left-right development. Dev Dyn 237:3640–3647

    Article  PubMed  CAS  Google Scholar 

  49. Yu X, Ng CP, Habacher H, Roy S (2008) Foxj1 transcription factors are master regulators of the motile ciliogenic program. Nat Genet 40:1445–1453

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Ian Smith for advice, helpful discussions and critical reading of the manuscript. We also thank the Ministry of Education, Culture, Sports, Science and Technology (MEXT), the Uehara Memorial Foundation, the Nakajima Foundation and the Mochida Memorial Foundation for past and current support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takaaki Matsui.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matsui, T., Bessho, Y. Left–right asymmetry in zebrafish. Cell. Mol. Life Sci. 69, 3069–3077 (2012). https://doi.org/10.1007/s00018-012-0985-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-012-0985-6

Keywords

Navigation