Skip to main content
Log in

SUMOylation of Pax7 is essential for neural crest and muscle development

  • Research Article
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Regulatory transcription factors of the Pax family play fundamental roles in the function of multipotent cells during vertebrate development, post-natal regeneration, and cancer. Pax7 and its homologue Pax3 are important players in neural crest and muscle development. Both genes are coexpressed in various tissues and are thought to provide similar, but not identical, functions. The mechanisms that allow specific regulation of Pax7 remain largely unknown. Here, we report for the first time that Pax7 is regulated by SUMOylation. We identify the interaction of Pax7 with Ubc9, the SUMO conjugating enzyme, and reveal that SUMOylation machinery is enriched in neural crest precursors and plays a critical role in NC development. We demonstrate that Pax7 becomes SUMOylated and identify an essential role for lysine 85 (K85) in Pax7-SUMOylation. Despite high conservation surrounding K85 amongst Pax genes, we were unable to identify SUMOylation of other Pax proteins tested, including Pax3. Using a non-SUMOylatable Pax7 variant (K85 X R), we demonstrate that SUMOylation is essential for the function of Pax7 in neural crest development, C2C12 myogenic differentiation, and transcriptional transactivation. Our study provides new mechanistic insight into the molecular regulation of Pax7’s function by SUMOylation in neural crest and muscle development.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Nusslein-Volhard C, Wieschaus E (1980) Mutations affecting segment number and polarity in Drosophila. Nature 287:795–801

    Article  PubMed  CAS  Google Scholar 

  2. Chi N, Epstein JA (2002) Getting your Pax straight: Pax proteins in development and disease. Trends Genet 18:41–47

    Article  PubMed  CAS  Google Scholar 

  3. Robson EJ, He SJ, Eccles MR (2006) A PANorama of PAX genes in cancer and development. Nat Rev Cancer 6:52–62

    Article  PubMed  CAS  Google Scholar 

  4. Wang Q et al (2008) Pax genes in embryogenesis and oncogenesis. J Cell Mol Med 12:2281–2294

    Article  PubMed  CAS  Google Scholar 

  5. Bopp D, Burri M, Baumgartner S, Frigerio G, Noll M (1986) Conservation of a large protein domain in the segmentation gene paired and in functionally related genes of Drosophila. Cell 47:1033–1040

    Article  PubMed  CAS  Google Scholar 

  6. Treisman J, Harris E, Desplan C (1991) The paired box encodes a second DNA-binding domain in the paired homeo domain protein. Genes Dev 5:594–604

    Article  PubMed  CAS  Google Scholar 

  7. Czerny T, Schaffner G, Busslinger M (1993) DNA sequence recognition by Pax proteins: bipartite structure of the paired domain and its binding site. Genes Dev 7:2048–2061

    Article  PubMed  CAS  Google Scholar 

  8. Xu W, Rould MA, Jun S, Desplan C, Pabo CO (1995) Crystal structure of a paired domain-DNA complex at 2.5 A resolution reveals structural basis for Pax developmental mutations. Cell 80:639–650

    Article  PubMed  CAS  Google Scholar 

  9. Jun S, Desplan C (1996) Cooperative interactions between paired domain and homeodomain. Development 122:2639–2650

    PubMed  CAS  Google Scholar 

  10. Mansouri A, Goudreau G, Gruss P (1999) Pax genes and their role in organogenesis. Cancer Res 59:1707s–1710s

    PubMed  CAS  Google Scholar 

  11. Mansouri A, Stoykova A, Torres M, Gruss P (1996) Dysgenesis of cephalic neural crest derivatives in Pax7−/− mutant mice. Development 122:831–838

    PubMed  CAS  Google Scholar 

  12. Basch ML, Bronner-Fraser M, Garcia-Castro MI (2006) Specification of the neural crest occurs during gastrulation and requires Pax7. Nature 441:218–222

    Article  PubMed  CAS  Google Scholar 

  13. Seale P et al (2000) Pax7 is required for the specification of myogenic satellite cells. Cell 102:777–786

    Article  PubMed  CAS  Google Scholar 

  14. Seale P, Ishibashi J, Scime A, Rudnicki MA (2004) Pax7 is necessary and sufficient for the myogenic specification of CD45+: Sca1+ stem cells from injured muscle. PLoS Biol 2:E130

    Article  PubMed  Google Scholar 

  15. Relaix F et al (2006) Pax3 and Pax7 have distinct and overlapping functions in adult muscle progenitor cells. J Cell Biol 172:91–102

    Article  PubMed  CAS  Google Scholar 

  16. Kuang S, Charge SB, Seale P, Huh M, Rudnicki MA (2006) Distinct roles for Pax7 and Pax3 in adult regenerative myogenesis. J Cell Biol 172:103–113

    Article  PubMed  CAS  Google Scholar 

  17. Olguin HC, Yang Z, Tapscott SJ, Olwin BB (2007) Reciprocal inhibition between Pax7 and muscle regulatory factors modulates myogenic cell fate determination. J Cell Biol 177:769–779

    Article  PubMed  CAS  Google Scholar 

  18. Lepper C, Conway SJ, Fan CM (2009) Adult satellite cells and embryonic muscle progenitors have distinct genetic requirements. Nature 460:627–631

    Article  PubMed  CAS  Google Scholar 

  19. Buckingham M, Relaix F (2007) The role of Pax genes in the development of tissues and organs: Pax3 and Pax7 regulate muscle progenitor cell functions. Annu Rev Cell Dev Biol 23:645–673

    Article  PubMed  CAS  Google Scholar 

  20. Boutet SC, Disatnik MH, Chan LS, Iori K, Rando TA (2007) Regulation of Pax3 by proteasomal degradation of monoubiquitinated protein in skeletal muscle progenitors. Cell 130:349–362

    Article  PubMed  CAS  Google Scholar 

  21. Hollenbach AD, Sublett JE, McPherson CJ, Grosveld G (1999) The Pax3-FKHR oncoprotein is unresponsive to the Pax3-associated repressor hDaxx. EMBO J 18:3702–3711

    Article  PubMed  CAS  Google Scholar 

  22. Muramatsu T, Mizutani Y, Ohmori Y, Okumura J (1997) Comparison of three nonviral transfection methods for foreign gene expression in early chicken embryos in ovo. Biochem Biophys Res Commun 230:376–380

    Article  PubMed  CAS  Google Scholar 

  23. Chapman SC, Collignon J, Schoenwolf GC, Lumsden A (2001) Improved method for chick whole-embryo culture using a filter paper carrier. Dev Dyn 220:284–289

    Article  PubMed  CAS  Google Scholar 

  24. Henrique D et al (1995) Expression of a Delta homologue in prospective neurons in the chick. Nature 375:787–790

    Article  PubMed  CAS  Google Scholar 

  25. Betters E, Liu Y, Kjaeldgaard A, Sundstrom E, Garcia-Castro MI (2010) Analysis of early human neural crest development. Dev Biol 344:578–592

    Article  PubMed  CAS  Google Scholar 

  26. Johnson ES, Blobel G (1997) Ubc9p is the conjugating enzyme for the ubiquitin-like protein Smt3p. J Biol Chem 272:26799–26802

    Article  PubMed  CAS  Google Scholar 

  27. Kerscher O, Felberbaum R, Hochstrasser M (2006) Modification of proteins by ubiquitin and ubiquitin-like proteins. Annu Rev Cell Dev Biol 22:159–180

    Article  PubMed  CAS  Google Scholar 

  28. Gareau JR, Lima CD (2010) The SUMO pathway: emerging mechanisms that shape specificity, conjugation and recognition. Nat Rev Mol Cell Biol 11:861–871

    Article  PubMed  CAS  Google Scholar 

  29. Suzuki T et al (1999) A new 30-kDa ubiquitin-related SUMO-1 hydrolase from bovine brain. J Biol Chem 274:31131–31134

    Article  PubMed  CAS  Google Scholar 

  30. Otto A, Schmidt C, Patel K (2006) Pax3 and Pax7 expression and regulation in the avian embryo. Anat Embryol (Berl) 211:293–310

    Article  CAS  Google Scholar 

  31. Hamburger V, Hamilton HL (1951) A series of normal stages in the development of the chick embryo. J Morphol 88:49–92

    Article  Google Scholar 

  32. Nowak M, Hammerschmidt M (2006) Ubc9 regulates mitosis and cell survival during zebrafish development. Mol Biol Cell 17:5324–5336

    Article  PubMed  CAS  Google Scholar 

  33. Alkuraya FS et al (2006) SUMO1 haploinsufficiency leads to cleft lip and palate. Science 313:1751

    Article  PubMed  Google Scholar 

  34. Song T et al (2008) SUMO1 polymorphisms are associated with non-syndromic cleft lip with or without cleft palate. Biochem Biophys Res Commun 377:1265–1268

    Article  PubMed  CAS  Google Scholar 

  35. Carter TC et al (2010) Testing reported associations of genetic risk factors for oral clefts in a large Irish study population. Birth Defects Res A Clin Mol Teratol 88:84–93

    PubMed  CAS  Google Scholar 

  36. Jia ZL, Shi B, Xu X, Kong XL (2011) Interactions between small ubiquitin-like modifier 1 and nonsyndromic orofacial clefts. DNA Cell Biol 30:235–240

    Article  PubMed  CAS  Google Scholar 

  37. Evdokimov E, Sharma P, Lockett SJ, Lualdi M, Kuehn MR (2008) Loss of SUMO1 in mice affects RanGAP1 localization and formation of PML nuclear bodies, but is not lethal as it can be compensated by SUMO2 or SUMO3. J Cell Sci 121:4106–4113

    Article  PubMed  CAS  Google Scholar 

  38. Zhang FP et al (2008) Sumo-1 function is dispensable in normal mouse development. Mol Cell Biol 28:5381–5390

    Article  PubMed  CAS  Google Scholar 

  39. Wang J et al (2011) Defective sumoylation pathway directs congenital heart disease. Birth Defects Res A Clin Mol Teratol 91:468–476

    Article  PubMed  CAS  Google Scholar 

  40. Rodriguez MS, Dargemont C, Hay RT (2001) SUMO-1 conjugation in vivo requires both a consensus modification motif and nuclear targeting. J Biol Chem 276:12654–12659

    Article  PubMed  CAS  Google Scholar 

  41. Ren J et al (2009) Systematic study of protein SUMOylation: development of a site-specific predictor of SUMOsp 2.0. Proteomics 9:3409–3412

    Article  PubMed  CAS  Google Scholar 

  42. Halevy O et al (2004) Pattern of Pax7 expression during myogenesis in the posthatch chicken establishes a model for satellite cell differentiation and renewal. Dev Dyn 231:489–502

    Article  PubMed  CAS  Google Scholar 

  43. Oustanina S, Hause G, Braun T (2004) Pax7 directs postnatal renewal and propagation of myogenic satellite cells but not their specification. EMBO J 23:3430–3439

    Article  PubMed  CAS  Google Scholar 

  44. Olguin HC, Olwin BB (2004) Pax-7 up-regulation inhibits myogenesis and cell cycle progression in satellite cells: a potential mechanism for self-renewal. Dev Biol 275:375–388

    Article  PubMed  CAS  Google Scholar 

  45. Zammit PS et al (2006) Pax7 and myogenic progression in skeletal muscle satellite cells. J Cell Sci 119:1824–1832

    Article  PubMed  CAS  Google Scholar 

  46. McKinnell IW et al (2008) Pax7 activates myogenic genes by recruitment of a histone methyltransferase complex. Nat Cell Biol 10:77–84

    Article  PubMed  CAS  Google Scholar 

  47. McFarlane C et al (2008) Myostatin signals through Pax7 to regulate satellite cell self-renewal. Exp Cell Res 314:317–329

    Article  PubMed  CAS  Google Scholar 

  48. Kumar D, Shadrach JL, Wagers AJ, Lassar AB (2009) Id3 is a direct transcriptional target of Pax7 in quiescent satellite cells. Mol Biol Cell 20:3170–3177

    Article  PubMed  CAS  Google Scholar 

  49. Collins CA et al (2009) Integrated functions of Pax3 and Pax7 in the regulation of proliferation, cell size and myogenic differentiation. PLoS ONE 4:e4475

    Article  PubMed  Google Scholar 

  50. Murdoch B, DelConte C, Garcia-Castro MI (2012) Pax7 lineage contributions to the mammalian neural crest. PLoS One 7(7):e41089. doi:10.1371/journal.phone.0041089

    Article  PubMed  CAS  Google Scholar 

  51. Murdoch B, DelConte C, Garcia-Castro MI (2010) Embryonic Pax7-expressing progenitors contribute multiple cell types to the postnatal olfactory epithelium. J Neurosci 30:9523–9532

    PubMed  CAS  Google Scholar 

  52. Olguin HC, Pisconti A (2011) Marking the tempo for myogenesis: Pax7 and the regulation of muscle stem cell fate decisions. J Cell Mol Med

  53. Liem KF Jr, Tremml G, Roelink H, Jessell TM (1995) Dorsal differentiation of neural plate cells induced by BMP-mediated signals from epidermal ectoderm. Cell 82:969–979

    Article  PubMed  CAS  Google Scholar 

  54. Linker C et al (2009) Cell communication with the neural plate is required for induction of neural markers by BMP inhibition: evidence for homeogenetic induction and implications for Xenopus animal cap and chick explant assays. Dev Biol 327:478–486

    Article  PubMed  CAS  Google Scholar 

  55. Maczkowiak F et al (2010) The Pax3 and Pax7 paralogs cooperate in neural and neural crest patterning using distinct molecular mechanisms, in Xenopus laevis embryos. Dev Biol 340:381–396

    Article  PubMed  CAS  Google Scholar 

  56. Stuhlmiller TJ, Garcia-Castro MI (2012) FGF/MAPK signaling is required in the gastrula epiblast for avian neural crest induction. Development 139:289–300

    Article  PubMed  CAS  Google Scholar 

  57. Taylor KM, Labonne C (2005) SoxE factors function equivalently during neural crest and inner ear development and their activity is regulated by SUMOylation. Dev Cell 9:593–603

    Article  PubMed  CAS  Google Scholar 

  58. de Cristofaro T et al (2009) Pax8 protein stability is controlled by sumoylation. J Mol Endocrinol 42:35–46

    Article  PubMed  Google Scholar 

  59. Yan Q et al (2010) Sumoylation activates the transcriptional activity of Pax-6, an important transcription factor for eye and brain development. Proc Natl Acad Sci USA 107:21034–21039

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was funded by NIH RO1DE017914. We thank members of the García-Castro laboratory for comments on this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martín I. García-Castro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Luan, Z., Liu, Y., Stuhlmiller, T.J. et al. SUMOylation of Pax7 is essential for neural crest and muscle development. Cell. Mol. Life Sci. 70, 1793–1806 (2013). https://doi.org/10.1007/s00018-012-1220-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-012-1220-1

Keywords

Navigation