Skip to main content

Advertisement

Log in

Molecular dialogue between the human gut microbiota and the host: a Lactobacillus and Bifidobacterium perspective

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

The human gut represents a highly complex ecosystem, which is densely colonized by a myriad of microorganisms that influence the physiology, immune function and health status of the host. Among the many members of the human gut microbiota, there are microorganisms that have co-evolved with their host and that are believed to exert health-promoting or probiotic effects. Probiotic bacteria isolated from the gut and other environments are commercially exploited, and although there is a growing list of health benefits provided by the consumption of such probiotics, their precise mechanisms of action have essentially remained elusive. Genomics approaches have provided exciting new opportunities for the identification of probiotic effector molecules that elicit specific responses to influence the physiology and immune function of their human host. In this review, we describe the current understanding of the intriguing relationships that exist between the human gut and key members of the gut microbiota such as bifidobacteria and lactobacilli, discussed here as prototypical groups of probiotic microorganisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Eckburg PB, Bik EM, Bernstein CN, Purdom E, Dethlefsen L, Sargent M, Gill SR, Nelson KE, Relman DA (2005) Diversity of the human intestinal microbial flora. Science 308(5728):1635–1638

    PubMed Central  PubMed  Google Scholar 

  2. Gao Z, Tseng CH, Pei Z, Blaser MJ (2007) Molecular analysis of human forearm superficial skin bacterial biota. Proc Natl Acad Sci USA 104(8):2927–2932

    CAS  PubMed  Google Scholar 

  3. Gill SR, Pop M, Deboy RT, Eckburg PB, Turnbaugh PJ, Samuel BS, Gordon JI, Relman DA, Fraser-Liggett CM, Nelson KE (2006) Metagenomic analysis of the human distal gut microbiome. Science 312(5778):1355–1359

    CAS  PubMed Central  PubMed  Google Scholar 

  4. Marco ML, Pavan S, Kleerebezem M (2006) Towards understanding molecular modes of probiotic action. Curr Opin Biotechnol 17(2):204–210

    CAS  PubMed  Google Scholar 

  5. Tamboli CP, Neut C, Desreumaux P, Colombel JF (2004) Dysbiosis as a prerequisite for IBD. Gut 53(7):1057

    CAS  PubMed  Google Scholar 

  6. Organization FaAOotUNaWH (2001) Health and nutritional properties of probiotics in food including powder milk with live lactic acid bacteria. FAO/WHO, Cordoba

    Google Scholar 

  7. FAO/WHO (2002) Guidelines for the evaluation of probiotics in food. Ontario, Canada

    Google Scholar 

  8. Ventura M, O’Flaherty S, Claesson MJ, Turroni F, Klaenhammer TR, van Sinderen D, O’Toole PW (2009) Genome-scale analyses of health-promoting bacteria: probiogenomics. Nat Rev Microbiol 7(1):61–71

    CAS  PubMed  Google Scholar 

  9. Ventura M, Turroni F, van Sinderen D (2012) Probiogenomics as a tool to obtain genetic insights into adaptation of probiotic bacteria to the human gut. Bioeng Bugs 3(2):73–79

    PubMed Central  PubMed  Google Scholar 

  10. Joyce AR, Palsson BO (2006) The model organism as a system: integrating ‘omics’ data sets. Nat Rev Mol Cell Biol 7(3):198–210

    CAS  PubMed  Google Scholar 

  11. Rajilic-Stojanovic M, Smidt H, de Vos WM (2007) Diversity of the human gastrointestinal tract microbiota revisited. Environ Microbiol 9(9):2125–2136

    PubMed  Google Scholar 

  12. Turroni F, Peano C, Pass DA, Foroni E, Severgnini M, Claesson MJ, Kerr C, Hourihane J, Murray D, Fuligni F, Gueimonde M, Margolles A, De Bellis G, O’Toole PW, van Sinderen D, Marchesi JR, Ventura M (2012) Diversity of bifidobacteria within the infant gut microbiota. PLoS One 7(5):e36957

    CAS  PubMed Central  PubMed  Google Scholar 

  13. Claesson MJ, Cusack S, O’Sullivan O, Greene-Diniz R, de Weerd H, Flannery E, Marchesi JR, Falush D, Dinan T, Fitzgerald G, Stanton C, van Sinderen D, O’Connor M, Harnedy N, O’Connor K, Henry C, O’Mahony D, Fitzgerald AP, Shanahan F, Twomey C, Hill C, Ross RP, O’Toole PW (2011) Composition, variability, and temporal stability of the intestinal microbiota of the elderly. Proc Natl Acad Sci USA 108(Suppl 1):4586–4591

    CAS  PubMed  Google Scholar 

  14. Prakash S, Rodes L, Coussa-Charley M, Tomaro-Duchesneau C (2011) Gut microbiota: next frontier in understanding human health and development of biotherapeutics. Biologics 5:71–86

    PubMed Central  PubMed  Google Scholar 

  15. Ventura M, Sozzi T, Turroni F, Matteuzzi D, van Sinderen D (2011) The impact of bacteriophages on probiotic bacteria and gut microbiota diversity. Genes Nutr 6(3):205–207

    PubMed Central  PubMed  Google Scholar 

  16. Reyes A, Haynes M, Hanson N, Angly FE, Heath AC, Rohwer F, Gordon JI (2010) Viruses in the faecal microbiota of monozygotic twins and their mothers. Nature 466(7304):334–338

    CAS  PubMed Central  PubMed  Google Scholar 

  17. Vaishampayan PA, Kuehl JV, Froula JL, Morgan JL, Ochman H, Francino MP (2010) Comparative metagenomics and population dynamics of the gut microbiota in mother and infant. Genome Biol Evol 2:53–66

    Google Scholar 

  18. Penders J, Stobberingh EE, Thijs C, Adams H, Vink C, van Ree R, van den Brandt PA (2006) Molecular fingerprinting of the intestinal microbiota of infants in whom atopic eczema was or was not developing. Clin Exp Allergy 36(12):1602–1608

    CAS  PubMed  Google Scholar 

  19. Westerbeek EA, van den Berg A, Lafeber HN, Knol J, Fetter WP, van Elburg RM (2006) The intestinal bacterial colonisation in preterm infants: a review of the literature. Clin Nutr 25(3):361–368

    PubMed  Google Scholar 

  20. Dominguez-Bello MG, Costello EK, Contreras M, Magris M, Hidalgo G, Fierer N, Knight R (2010) Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc Natl Acad Sci USA 107(26):11971–11975

    PubMed  Google Scholar 

  21. Arboleya S, Ruas-Madiedo P, Margolles A, Solis G, Salminen S, de Los Reyes-Gavilan CG, Gueimonde M (2011) Characterization and in vitro properties of potentially probiotic Bifidobacterium strains isolated from breast-milk. Int J Food Microbiol 149(1):28–36

    CAS  PubMed  Google Scholar 

  22. Hyman RW, Fukushima M, Diamond L, Kumm J, Giudice LC, Davis RW (2005) Microbes on the human vaginal epithelium. Proc Natl Acad Sci USA 102(22):7952–7957

    CAS  PubMed  Google Scholar 

  23. Costello EK, Lauber CL, Hamady M, Fierer N, Gordon JI, Knight R (2009) Bacterial community variation in human body habitats across space and time. Science 326(5960):1694–1697

    CAS  PubMed Central  PubMed  Google Scholar 

  24. Ahrne S, Lonnermark E, Wold AE, Aberg N, Hesselmar B, Saalman R, Strannegard IL, Molin G, Adlerberth I (2005) Lactobacilli in the intestinal microbiota of Swedish infants. Microbes Infect 7(11–12):1256–1262

    PubMed  Google Scholar 

  25. Yoshioka H, Iseki K, Fujita K (1983) Development and differences of intestinal flora in the neonatal period in breast-fed and bottle-fed infants. Pediatrics 72(3):317–321

    CAS  PubMed  Google Scholar 

  26. Gueimonde M, Laitinen K, Salminen S, Isolauri E (2007) Breast milk: a source of bifidobacteria for infant gut development and maturation? Neonatology 92(1):64–66

    PubMed  Google Scholar 

  27. Zivkovic AM, German JB, Lebrilla CB, Mills DA (2011) Human milk glycobiome and its impact on the infant gastrointestinal microbiota. Proc Natl Acad Sci USA 108(Suppl 1):4653–4658

    CAS  PubMed  Google Scholar 

  28. Sela DA, Chapman J, Adeuya A, Kim JH, Chen F, Whitehead TR, Lapidus A, Rokhsar DS, Lebrilla CB, German JB, Price NP, Richardson PM, Mills DA (2008) The genome sequence of Bifidobacterium longum subsp. infantis reveals adaptations for milk utilization within the infant microbiome. Proc Natl Acad Sci USA 105(48):18964–18969

    CAS  PubMed  Google Scholar 

  29. Yoshida E, Sakurama H, Kiyohara M, Nakajima M, Kitaoka M, Ashida H, Hirose J, Katayama T, Yamamoto K, Kumagai H (2012) Bifidobacterium longum subsp. infant is uses two different beta-galactosidases for selectively degrading type-1 and type-2 human milk oligosaccharides. Glycobiology 22(3):361–368

    CAS  PubMed  Google Scholar 

  30. Kaplan JL, Shi HN, Walker WA (2011) The role of microbes in developmental immunologic programming. Pediatr Res 69(6):465–472

    PubMed  Google Scholar 

  31. Klaasen HLBM, Vanderheijden PJ, Stok W, Poelma FGJ, Koopman JP, Vandenbrink ME, Bakker MH, Eling WMC, Beynen AC (1993) Apathogenic, intestinal, segmented, filamentous bacteria stimulate the mucosal immune-system of mice. Infect Immun 61(1):303–306

    CAS  PubMed Central  PubMed  Google Scholar 

  32. Talham GL, Jiang HQ, Bos NA, Cebra JJ (1999) Segmented filamentous bacteria are potent stimuli of a physiologically normal state of the murine gut mucosal immune system. Infect Immun 67(4):1992–2000

    CAS  PubMed Central  PubMed  Google Scholar 

  33. Gaboriau-Routhiau V, Rakotobe S, Lecuyer E, Mulder I, Lan A, Bridonneau C, Rochet V, Pisi A, De Paepe M, Brandi G, Eberl G, Snel J, Kelly D, Cerf-Bensussan N (2009) The key role of segmented filamentous bacteria in the coordinated maturation of gut helper T cell responses. Immunity 31(4):677–689

    CAS  PubMed  Google Scholar 

  34. Smith JM (2005) Atopy and asthma: an epidemic of unknown cause. J Allergy Clin Immunol 116(1):231–232 (author reply 232)

    PubMed  Google Scholar 

  35. Khazaie K, Zadeh M, Khan MW, Bere P, Gounari F, Dennis K, Blatner NR, Owen JL, Klaenhammer TR, Mohamadzadeh M (2012) Abating colon cancer polyposis by Lactobacillus acidophilus deficient in lipoteichoic acid. Proc Natl Acad Sci USA 109(26):10462–10467

    CAS  PubMed  Google Scholar 

  36. Mazmanian SK, Round JL, Kasper DL (2008) A microbial symbiosis factor prevents intestinal inflammatory disease. Nature 453(7195):620–625

    CAS  PubMed  Google Scholar 

  37. Leblanc JG, Milani C, de Giori GS, Sesma F, van Sinderen D, Ventura M (2012) Bacteria as vitamin suppliers to their host: a gut microbiota perspective. Curr Opin Biotechnol (in press)

  38. Yatsunenko T, Rey FE, Manary MJ, Trehan I, Dominguez-Bello MG, Contreras M, Magris M, Hidalgo G, Baldassano RN, Anokhin AP, Heath AC, Warner B, Reeder J, Kuczynski J, Caporaso JG, Lozupone CA, Lauber C, Clemente JC, Knights D, Knight R, Gordon JI (2012) Human gut microbiome viewed across age and geography. Nature 486(7402):222–227

    CAS  PubMed Central  PubMed  Google Scholar 

  39. Claesson MJ, Jeffery IB, Conde S, Power SE, O’Connor EM, Cusack S, Harris HM, Coakley M, Lakshminarayanan B, O’Sullivan O, Fitzgerald GF, Deane J, O’Connor M, Harnedy N, O’Connor K, O’Mahony D, van Sinderen D, Wallace M, Brennan L, Stanton C, Marchesi JR, Fitzgerald AP, Shanahan F, Hill C, Ross RP, O’Toole PW (2012) Gut microbiota composition correlates with diet and health in the elderly. Nature 488(7410):178–184

    CAS  PubMed  Google Scholar 

  40. Wong JM, de Souza R, Kendall CW, Emam A, Jenkins DJ (2006) Colonic health: fermentation and short chain fatty acids. J Clin Gastroenterol 40(3):235–243

    CAS  PubMed  Google Scholar 

  41. Bergman EN (1990) Energy contributions of volatile fatty acids from the gastrointestinal tract in various species. Physiol Rev 70(2):567–590

    CAS  PubMed  Google Scholar 

  42. Cryan JF, Dinan TG (2012) Mind-altering microorganisms: the impact of the gut microbiota on brain and behaviour. Nat Rev Neurosci 13(10):701–712

    CAS  PubMed  Google Scholar 

  43. Bravo JA, Forsythe P, Chew MV, Escaravage E, Savignac HM, Dinan TG, Bienenstock J, Cryan JF (2011) Ingestion of Lactobacillus strain regulates emotional behavior and central GABA receptor expression in a mouse via the vagus nerve. Proc Natl Acad Sci USA 108(38):16050–16055

    CAS  PubMed  Google Scholar 

  44. Mai V, Young CM, Ukhanova M, Wang X, Sun Y, Casella G, Theriaque D, Li N, Sharma R, Hudak M, Neu J (2011) Fecal microbiota in premature infants prior to necrotizing enterocolitis. PLoS One 6(6):e20647

    CAS  PubMed Central  PubMed  Google Scholar 

  45. Giongo A, Gano KA, Crabb DB, Mukherjee N, Novelo LL, Casella G, Drew JC, Ilonen J, Knip M, Hyoty H, Veijola R, Simell T, Simell O, Neu J, Wasserfall CH, Schatz D, Atkinson MA, Triplett EW (2011) Toward defining the autoimmune microbiome for type 1 diabetes. ISME J 5(1):82–91

    CAS  PubMed  Google Scholar 

  46. Larsen N, Vogensen FK, van den Berg FW, Nielsen DS, Andreasen AS, Pedersen BK, Al-Soud WA, Sorensen SJ, Hansen LH, Jakobsen M (2010) Gut microbiota in human adults with type 2 diabetes differs from non-diabetic adults. PLoS One 5(2):e9085

    PubMed Central  PubMed  Google Scholar 

  47. Carroll IM, Ringel-Kulka T, Keku TO, Chang YH, Packey CD, Sartor RB, Ringel Y (2011) Molecular analysis of the luminal- and mucosal-associated intestinal microbiota in diarrhea-predominant irritable bowel syndrome. Am J Physiol Gastrointest Liver Physiol 301(5):G799–G807

    CAS  PubMed  Google Scholar 

  48. Saulnier DM, Riehle K, Mistretta TA, Diaz MA, Mandal D, Raza S, Weidler EM, Qin X, Coarfa C, Milosavljevic A, Petrosino JF, Highlander S, Gibbs R, Lynch SV, Shulman RJ, Versalovic J (2011) Gastrointestinal microbiome signatures of pediatric patients with irritable bowel syndrome. Gastroenterology 141(5):1782–1791

    CAS  PubMed Central  PubMed  Google Scholar 

  49. Watanabe J, Fujiwara R, Sasajima N, Ito S, Sonoyama K (2010) Administration of antibiotics during infancy promoted the development of atopic dermatitis-like skin lesions in NC/Nga mice. Biosci Biotechnol Biochem 74(2):358–363

    CAS  PubMed  Google Scholar 

  50. Sobhani I, Tap J, Roudot-Thoraval F, Roperch JP, Letulle S, Langella P, Corthier G, Tran Van Nhieu J, Furet JP (2011) Microbial dysbiosis in colorectal cancer (CRC) patients. PLoS One 6(1):e16393

    CAS  PubMed Central  PubMed  Google Scholar 

  51. Hawrelak JA, Myers SP (2004) The causes of intestinal dysbiosis: a review. Altern Med Rev 9(2):180–197

    PubMed  Google Scholar 

  52. De Palma G, Nadal I, Medina M, Donat E, Ribes-Koninckx C, Calabuig M, Sanz Y (2010) Intestinal dysbiosis and reduced immunoglobulin-coated bacteria associated with coeliac disease in children. BMC Microbiol 10:63

    PubMed Central  PubMed  Google Scholar 

  53. Nadal I, Donat E, Ribes-Koninckx C, Calabuig M, Sanz Y (2007) Imbalance in the composition of the duodenal microbiota of children with coeliac disease. J Med Microbiol 56(Pt 12):1669–1674

    CAS  PubMed  Google Scholar 

  54. Roesch LF, Lorca GL, Casella G, Giongo A, Naranjo A, Pionzio AM, Li N, Mai V, Wasserfall CH, Schatz D, Atkinson MA, Neu J, Triplett EW (2009) Culture-independent identification of gut bacteria correlated with the onset of diabetes in a rat model. ISME J 3(5):536–548

    CAS  PubMed Central  PubMed  Google Scholar 

  55. Matsuzaki T, Nagata Y, Kado S, Uchida K, Kato I, Hashimoto S, Yokokura T (1997) Prevention of onset in an insulin-dependent diabetes mellitus model, NOD mice, by oral feeding of Lactobacillus casei. Acta Pathol Microbiol Immunol Scand 105(8):643–649

    CAS  Google Scholar 

  56. Mike A, Nagaoka N, Tagami Y, Miyashita M, Shimada S, Uchida K, Nanno M, Ohwaki M (1999) Prevention of B220+ T cell expansion and prolongation of lifespan induced by Lactobacillus casei in MRL/lpr mice. Clin Exp Immunol 117(2):368–375

    CAS  PubMed Central  PubMed  Google Scholar 

  57. Matsumoto S, Hara T, Hori T, Mitsuyama K, Nagaoka M, Tomiyasu N, Suzuki A, Sata M (2005) Probiotic Lactobacillus-induced improvement in murine chronic inflammatory bowel disease is associated with the down-regulation of pro-inflammatory cytokines in lamina propria mononuclear cells. Clin Exp Immunol 140(3):417–426

    CAS  PubMed Central  PubMed  Google Scholar 

  58. Gaya DR, Russell RK, Nimmo ER, Satsangi J (2006) New genes in inflammatory bowel disease: lessons for complex diseases? Lancet 367(9518):1271–1284

    CAS  PubMed  Google Scholar 

  59. Bouma G, Strober W (2003) The immunological and genetic basis of inflammatory bowel disease. Nat Rev Immunol 3(7):521–533

    CAS  PubMed  Google Scholar 

  60. Uronis JM, Muhlbauer M, Herfarth HH, Rubinas TC, Jones GS, Jobin C (2009) Modulation of the intestinal microbiota alters colitis-associated colorectal cancer susceptibility. PLoS One 4(6):e6026

    PubMed Central  PubMed  Google Scholar 

  61. Willing B, Halfvarson J, Dicksved J, Rosenquist M, Jarnerot G, Engstrand L, Tysk C, Jansson JK (2009) Twin studies reveal specific imbalances in the mucosa-associated microbiota of patients with ileal Crohn’s disease. Inflamm Bowel Dis 15(5):653–660

    PubMed  Google Scholar 

  62. Meyer AM, Ramzan NN, Loftus EV Jr, Heigh RI, Leighton JA (2004) The diagnostic yield of stool pathogen studies during relapses of inflammatory bowel disease. J Clin Gastroenterol 38(9):772–775

    PubMed  Google Scholar 

  63. Manichanh C, Rigottier-Gois L, Bonnaud E, Gloux K, Pelletier E, Frangeul L, Nalin R, Jarrin C, Chardon P, Marteau P, Roca J, Dore J (2006) Reduced diversity of faecal microbiota in Crohn’s disease revealed by a metagenomic approach. Gut 55(2):205–211

    CAS  PubMed  Google Scholar 

  64. Favier C, Neut C, Mizon C, Cortot A, Colombel JF, Mizon J (1997) Fecal beta-D-galactosidase production and Bifidobacteria are decreased in Crohn’s disease. Dig Dis Sci 42(4):817–822

    CAS  PubMed  Google Scholar 

  65. Mangin I, Bonnet R, Seksik P, Rigottier-Gois L, Sutren M, Bouhnik Y, Neut C, Collins MD, Colombel JF, Marteau P, Dore J (2004) Molecular inventory of faecal microflora in patients with Crohn’s disease. FEMS Microbiol Ecol 50(1):25–36

    CAS  PubMed  Google Scholar 

  66. Sokol H, Pigneur B, Watterlot L, Lakhdari O, Bermudez-Humaran LG, Gratadoux JJ, Blugeon S, Bridonneau C, Furet JP, Corthier G, Grangette C, Vasquez N, Pochart P, Trugnan G, Thomas G, Blottiere HM, Dore J, Marteau P, Seksik P, Langella P (2008) Faecalibacterium prausnitzii is an anti-inflammatory commensal bacterium identified by gut microbiota analysis of Crohn disease patients. Proc Natl Acad Sci USA 105(43):16731–16736

    CAS  PubMed  Google Scholar 

  67. Segain JP, Raingeard de la Bletiere D, Bourreille A, Leray V, Gervois N, Rosales C, Ferrier L, Bonnet C, Blottiere HM, Galmiche JP (2000) Butyrate inhibits inflammatory responses through NFkappaB inhibition: implications for Crohn’s disease. Gut 47(3):397–403

    CAS  PubMed  Google Scholar 

  68. Sanderson IR (2004) Short chain fatty acid regulation of signaling genes expressed by the intestinal epithelium. J Nutr 134(9):2450S–2454S

    CAS  PubMed  Google Scholar 

  69. Toki S, Kagaya S, Shinohara M, Wakiguchi H, Matsumoto T, Takahata Y, Morimatsu F, Saito H, Matsumoto K (2009) Lactobacillus rhamnosus GG and Lactobacillus casei suppress Escherichia coli-induced chemokine expression in intestinal epithelial cells. Int Arch Allergy Immunol 148(1):45–58

    CAS  PubMed  Google Scholar 

  70. Madsen K, Cornish A, Soper P, McKaigney C, Jijon H, Yachimec C, Doyle J, Jewell L, De Simone C (2001) Probiotic bacteria enhance murine and human intestinal epithelial barrier function. Gastroenterology 121(3):580–591

    CAS  PubMed  Google Scholar 

  71. Pagnini C, Saeed R, Bamias G, Arseneau KO, Pizarro TT, Cominelli F (2010) Probiotics promote gut health through stimulation of epithelial innate immunity. Proc Natl Acad Sci USA 107(1):454–459

    CAS  PubMed  Google Scholar 

  72. Uronis JM, Arthur JC, Keku T, Fodor A, Carroll IM, Cruz ML, Appleyard CB, Jobin C (2011) Gut microbial diversity is reduced by the probiotic VSL#3 and correlates with decreased TNBS-induced colitis. Inflamm Bowel Dis 17(1):289–297

    PubMed Central  PubMed  Google Scholar 

  73. Bassaganya-Riera J, Viladomiu M, Pedragosa M, De Simone C, Hontecillas R (2012) Immunoregulatory mechanisms underlying prevention of colitis-associated colorectal cancer by probiotic bacteria. PLoS One 7(4):e34676

    CAS  PubMed Central  PubMed  Google Scholar 

  74. Loguercio C, Federico A, Tuccillo C, Terracciano F, D’Auria MV, De Simone C, Del Vecchio Blanco C (2005) Beneficial effects of a probiotic VSL#3 on parameters of liver dysfunction in chronic liver diseases. J Clin Gastroenterol 39(6):540–543

    PubMed  Google Scholar 

  75. Isolauri E (2004) Dietary modification of atopic disease: use of probiotics in the prevention of atopic dermatitis. Curr Allergy Asthma Rep 4(4):270–275

    PubMed  Google Scholar 

  76. Rautava S, Ruuskanen O, Ouwehand A, Salminen S, Isolauri E (2004) The hygiene hypothesis of atopic disease–an extended version. J Pediatr Gastroenterol Nutr 38(4):378–388

    PubMed  Google Scholar 

  77. Okada H, Kuhn C, Feillet H, Bach JF (2010) The ‘hygiene hypothesis’ for autoimmune and allergic diseases: an update. Clin Exp Immunol 160(1):1–9

    CAS  PubMed Central  PubMed  Google Scholar 

  78. Noverr MC, Huffnagle GB (2005) The ‘microflora hypothesis’ of allergic diseases. Clin Exp Allergy 35(12):1511–1520

    CAS  PubMed  Google Scholar 

  79. Kalliomaki M, Salminen S, Arvilommi H, Kero P, Koskinen P, Isolauri E (2001) Probiotics in primary prevention of atopic disease: a randomised placebo-controlled trial. Lancet 357(9262):1076–1079

    CAS  PubMed  Google Scholar 

  80. Bjorksten B, Sepp E, Julge K, Voor T, Mikelsaar M (2001) Allergy development and the intestinal microflora during the first year of life. J Allergy Clin Immunol 108(4):516–520

    CAS  PubMed  Google Scholar 

  81. Penders J, Thijs C, van den Brandt PA, Kummeling I, Snijders B, Stelma F, Adams H, van Ree R, Stobberingh EE (2007) Gut microbiota composition and development of atopic manifestations in infancy: the KOALA birth cohort study. Gut 56(5):661–667

    CAS  PubMed  Google Scholar 

  82. Ventura M, Canchaya C, Fitzgerald GF, Gupta RS, van Sinderen D (2007) Genomics as a means to understand bacterial phylogeny and ecological adaptation: the case of bifidobacteria. Antonie Van Leeuwenhoek 91(4):351–372

    PubMed  Google Scholar 

  83. Reid G, Younes JA, Van der Mei HC, Gloor GB, Knight R, Busscher HJ (2011) Microbiota restoration: natural and supplemented recovery of human microbial communities. Nat Rev Microbiol 9(1):27–38

    CAS  PubMed  Google Scholar 

  84. Velraeds MM, van de Belt-Gritter B, van der Mei HC, Reid G, Busscher HJ (1998) Interference in initial adhesion of uropathogenic bacteria and yeasts to silicone rubber by a Lactobacillus acidophilus biosurfactant. J Med Microbiol 47(12):1081–1085

    CAS  PubMed  Google Scholar 

  85. Reid G, Kang YS, Lacerte M, Tieszer C, Hayes KC (1993) Bacterial biofilm formation on the bladder epithelium of spinal cord injured patients. II. Toxic outcome on cell viability. Paraplegia 31(8):494–499

    CAS  PubMed  Google Scholar 

  86. Asaduzzaman SM, Sonomoto K (2009) Lantibiotics: diverse activities and unique modes of action. J Biosci Bioeng 107(5):475–487

    CAS  PubMed  Google Scholar 

  87. Cotter PD, Hill C, Ross RP (2005) Bacteriocins: developing innate immunity for food. Nat Rev Microbiol 3(10):777–788

    CAS  PubMed  Google Scholar 

  88. Hillman JD (2002) Genetically modified Streptococcus mutans for the prevention of dental caries. Antonie Van Leeuwenhoek 82(1–4):361–366

    CAS  PubMed  Google Scholar 

  89. Flynn S, van Sinderen D, Thornton GM, Holo H, Nes IF, Collins JK (2002) Characterization of the genetic locus responsible for the production of ABP-118, a novel bacteriocin produced by the probiotic bacterium Lactobacillus salivarius subsp. salivarius UCC118. Microbiology 148((Pt 4)):973–984

    CAS  PubMed  Google Scholar 

  90. Corr SC, Li Y, Riedel CU, O’Toole PW, Hill C, Gahan CG (2007) Bacteriocin production as a mechanism for the antiinfective activity of Lactobacillus salivarius UCC118. Proc Natl Acad Sci USA 104(18):7617–7621

    CAS  PubMed  Google Scholar 

  91. Murphy EF, Clarke SF, Marques TM, Hill C, Stanton C, Ross RP, O’Doherty RM, Shanahan F, Cotter PD (2013) Antimicrobials: strategies for targeting obesity and metabolic health? Gut microbes 4(1):48–53

    PubMed  Google Scholar 

  92. Liu CH, Lee SM, Vanlare JM, Kasper DL, Mazmanian SK (2008) Regulation of surface architecture by symbiotic bacteria mediates host colonization. Proc Natl Acad Sci USA 105(10):3951–3956

    CAS  PubMed  Google Scholar 

  93. Aas J, Gessert CE, Bakken JS (2003) Recurrent Clostridium difficile colitis: case series involving 18 patients treated with donor stool administered via a nasogastric tube. Clin Infect Dis 36(5):580–585

    PubMed  Google Scholar 

  94. Bakken JS, Borody T, Brandt LJ, Brill JV, Demarco DC, Franzos MA, Kelly C, Khoruts A, Louie T, Martinelli LP, Moore TA, Russell G, Surawicz C, Fecal Microbiota Transplantation Workgroup (2011) Treating Clostridium difficile infection with fecal microbiota transplantation. Clin Gastroenterol Hepatol 9(12):1044–1049

    PubMed Central  PubMed  Google Scholar 

  95. Gough E, Shaikh H, Manges AR (2011) Systematic review of intestinal microbiota transplantation (fecal bacteriotherapy) for recurrent Clostridium difficile infection. Clin Infect Dis 53(10):994–1002

    PubMed  Google Scholar 

  96. van Nood E, Vrieze A, Nieuwdorp M, Fuentes S, Zoetendal EG, de Vos WM, Visser CE, Kuijper EJ, Bartelsman JF, Tijssen JG, Speelman P, Dijkgraaf MG, Keller JJ (2013) Duodenal infusion of donor feces for recurrent Clostridium difficile. N Engl J Med 368(5):407–415

    PubMed  Google Scholar 

  97. Hickson M, D’Souza AL, Muthu N, Rogers TR, Want S, Rajkumar C, Bulpitt CJ (2007) Use of probiotic Lactobacillus preparation to prevent diarrhoea associated with antibiotics: randomised double blind placebo controlled trial. BMJ 335(7610):80

    PubMed  Google Scholar 

  98. Guglielmetti S, Mora D, Gschwender M, Popp K (2011) Randomised clinical trial: Bifidobacterium bifidum MIMBb75 significantly alleviates irritable bowel syndrome and improves quality of life–a double-blind, placebo-controlled study. Aliment Pharmacol Ther 33(10):1123–1132. x

    CAS  PubMed  Google Scholar 

  99. O’Mahony L, McCarthy J, Kelly P, Hurley G, Luo F, Chen K, O’Sullivan GC, Kiely B, Collins JK, Shanahan F, Quigley EM (2005) Lactobacillus and bifidobacterium in irritable bowel syndrome: symptom responses and relationship to cytokine profiles. Gastroenterology 128(3):541–551

    PubMed  Google Scholar 

  100. Turroni F, van Sinderen D, Ventura M (2011) Genomics and ecological overview of the genus Bifidobacterium. Int J Food Microbiol 149(1):37–44

    CAS  PubMed  Google Scholar 

  101. Schell MA, Karmirantzou M, Snel B, Vilanova D, Berger B, Pessi G, Zwahlen MC, Desiere F, Bork P, Delley M, Pridmore RD, Arigoni F (2002) The genome sequence of Bifidobacterium longum reflects its adaptation to the human gastrointestinal tract. Proc Natl Acad Sci USA 99(22):14422–14427

    CAS  PubMed  Google Scholar 

  102. Lee JH, Karamychev VN, Kozyavkin SA, Mills D, Pavlov AR, Pavlova NV, Polouchine NN, Richardson PM, Shakhova VV, Slesarev AI, Weimer B, O’Sullivan DJ (2008) Comparative genomic analysis of the gut bacterium Bifidobacterium longum reveals loci susceptible to deletion during pure culture growth. BMC Genomics 9:247

    PubMed Central  PubMed  Google Scholar 

  103. Turroni F, Bottacini F, Foroni E, Mulder I, Kim JH, Zomer A, Sanchez B, Bidossi A, Ferrarini A, Giubellini V, Delledonne M, Henrissat B, Coutinho P, Oggioni M, Fitzgerald GF, Mills D, Margolles A, Kelly D, van Sinderen D, Ventura M (2010) Genome analysis of Bifidobacterium bifidum PRL2010 reveals metabolic pathways for host-derived glycan foraging. Proc Natl Acad Sci USA 107(45):19514–19519

    CAS  PubMed  Google Scholar 

  104. O’Connell Motherway M, Zomer A, Leahy SC, Reunanen J, Bottacini F, Claesson MJ, O’Brien F, Flynn K, Casey PG, Munoz JA, Kearney B, Houston AM, O’Mahony C, Higgins DG, Shanahan F, Palva A, de Vos WM, Fitzgerald GF, Ventura M, O’Toole PW, van Sinderen D (2011) Functional genome analysis of Bifidobacterium breve UCC2003 reveals type IVb tight adherence (Tad) pili as an essential and conserved host-colonization factor. Proc Natl Acad Sci USA 108(27):11217–11222

    PubMed  Google Scholar 

  105. Pokusaeva K, Fitzgerald GF, van Sinderen D (2011) Carbohydrate metabolism in Bifidobacteria. Genes Nutr 6(3):285–306

    CAS  PubMed Central  PubMed  Google Scholar 

  106. Hansson GC (2012) Role of mucus layers in gut infection and inflammation. Curr Opin Microbiol 15(1):57–62

    CAS  PubMed Central  PubMed  Google Scholar 

  107. Forstner JO, Oliver MG, Sylvester FA (1995) Production, structure and biologic relevance of gastrointestinal mucins. Raven, New York

    Google Scholar 

  108. Nagae M, Tsuchiya A, Katayama T, Yamamoto K, Wakatsuki S, Kato R (2007) Structural basis of the catalytic reaction mechanism of novel 1,2-alpha-L-fucosidase from Bifidobacterium bifidum. J Biol Chem 282(25):18497–18509

    CAS  PubMed  Google Scholar 

  109. Ashida H, Maki R, Ozawa H, Tani Y, Kiyohara M, Fujita M, Imamura A, Ishida H, Kiso M, Yamamoto K (2008) Characterization of two different endo-alpha-N-acetylgalactosaminidases from probiotic and pathogenic enterobacteria, Bifidobacterium longum and Clostridium perfringens. Glycobiology 18(9):727–734

    CAS  PubMed  Google Scholar 

  110. Katayama T, Fujita K, Yamamoto K (2005) Novel bifidobacterial glycosidases acting on sugar chains of mucin glycoproteins. J Biosci Bioeng 99(5):457–465

    CAS  PubMed  Google Scholar 

  111. Miwa M, Horimoto T, Kiyohara M, Katayama T, Kitaoka M, Ashida H, Yamamoto K (2010) Cooperation of beta-galactosidase and beta-N-acetylhexosaminidase from bifidobacteria in assimilation of human milk oligosaccharides with type 2 structure. Glycobiology 20(11):1402–1409

    CAS  PubMed  Google Scholar 

  112. Kiyohara M, Nakatomi T, Kurihara S, Fushinobu S, Suzuki H, Tanaka T, Shoda S, Kitaoka M, Katayama T, Yamamoto K, Ashida H (2012) alpha-N-acetylgalactosaminidase from infant-associated bifidobacteria belonging to novel glycoside hydrolase family 129 is implicated in alternative mucin degradation pathway. J Biol Chem 287(1):693–700

    CAS  PubMed  Google Scholar 

  113. Derrien M, Collado MC, Ben-Amor K, Salminen S, de Vos WM (2008) The Mucin degrader Akkermansia muciniphila is an abundant resident of the human intestinal tract. Appl Environ Microbiol 74(5):1646–1648

    CAS  PubMed Central  PubMed  Google Scholar 

  114. Collado MC, Derrien M, Isolauri E, de Vos WM, Salminen S (2007) Intestinal integrity and Akkermansia muciniphila, a mucin-degrading member of the intestinal microbiota present in infants, adults, and the elderly. Appl Environ Microbiol 73(23):7767–7770

    CAS  PubMed Central  PubMed  Google Scholar 

  115. Derrien M, van Passel MW, van de Bovenkamp JH, Schipper RG, de Vos WM, Dekker J (2010) Mucin-bacterial interactions in the human oral cavity and digestive tract. Gut microbes 1(4):254–268

    PubMed  Google Scholar 

  116. van Passel MW, Kant R, Zoetendal EG, Plugge CM, Derrien M, Malfatti SA, Chain PS, Woyke T, Palva A, de Vos WM, Smidt H (2011) The genome of Akkermansia muciniphila, a dedicated intestinal mucin degrader, and its use in exploring intestinal metagenomes. PLoS One 6(3):e16876

    PubMed Central  PubMed  Google Scholar 

  117. Turroni F, Milani C, van Sinderen D, Ventura M (2011) Genetic strategies for mucin metabolism in Bifidobacterium bifidum PRL2010: an example of possible human-microbe co-evolution. Gut Microbes 2(3):183–189

    PubMed  Google Scholar 

  118. van den Broek LA, Hinz SW, Beldman G, Vincken JP, Voragen AG (2008) Bifidobacterium carbohydrases-their role in breakdown and synthesis of (potential) prebiotics. Mol Nutr Food Res 52(1):146–163

    PubMed  Google Scholar 

  119. Turroni F, Strati F, Foroni E, Serafini F, Duranti S, van Sinderen D, Ventura M (2012) Analysis of predicted carbohydrate transport systems encoded by Bifidobacterium bifidum PRL2010. Appl Environ Microbiol 78(14):5002–5012

    CAS  PubMed Central  PubMed  Google Scholar 

  120. Parche S, Amon J, Jankovic I, Rezzonico E, Beleut M, Barutcu H, Schendel I, Eddy MP, Burkovski A, Arigoni F, Titgemeyer F (2007) Sugar transport systems of Bifidobacterium longum NCC2705. J Mol Microbiol Biotechnol 12(1–2):9–19

    CAS  PubMed  Google Scholar 

  121. Asakuma S, Hatakeyama E, Urashima T, Yoshida E, Katayama T, Yamamoto K, Kumagai H, Ashida H, Hirose J, Kitaoka M (2011) Physiology of consumption of human milk oligosaccharides by infant gut-associated bifidobacteria. J Biol Chem 286(40):34583–34592

    CAS  PubMed  Google Scholar 

  122. Sela DA (2011) Bifidobacterial utilization of human milk oligosaccharides. Int J Food Microbiol 149(1):58–64

    CAS  PubMed  Google Scholar 

  123. Ventura M, Canchaya C, Zhang Z, Bernini V, Fitzgerald GF, van Sinderen D (2006) How high G+ C Gram-positive bacteria and in particular bifidobacteria cope with heat stress: protein players and regulators. FEMS Microbiol Rev 30(5):734–759

    CAS  PubMed  Google Scholar 

  124. Zomer A, Fernandez M, Kearney B, Fitzgerald GF, Ventura M, van Sinderen D (2009) An interactive regulatory network controls stress response in Bifidobacterium breve UCC2003. J Bacteriol 191(22):7039–7049

    CAS  PubMed Central  PubMed  Google Scholar 

  125. Claesson MJ, van Sinderen D, O’Toole PW (2008) Lactobacillus phylogenomics–towards a reclassification of the genus. Int J Syst Evol Microbiol 58(Pt 12):2945–2954

    CAS  PubMed  Google Scholar 

  126. Stiles ME, Holzapfel WH (1997) Lactic acid bacteria of foods and their current taxonomy. Int J Food Microbiol 36(1):1–29

    CAS  PubMed  Google Scholar 

  127. Makarova KS, Koonin EV (2007) Evolutionary genomics of lactic acid bacteria. J Bacteriol 189(4):1199–1208

    CAS  PubMed Central  PubMed  Google Scholar 

  128. Heilig HG, Zoetendal EG, Vaughan EE, Marteau P, Akkermans AD, de Vos WM (2002) Molecular diversity of Lactobacillus spp. and other lactic acid bacteria in the human intestine as determined by specific amplification of 16S ribosomal DNA. Appl Environ Microbiol 68(1):114–123

    CAS  PubMed Central  PubMed  Google Scholar 

  129. Reuter G (2001) The Lactobacillus and Bifidobacterium microflora of the human intestine: composition and succession. Curr Issues Intest Microbiol 2(2):43–53

    CAS  PubMed  Google Scholar 

  130. Walter J, Hertel C, Tannock GW, Lis CM, Munro K, Hammes WP (2001) Detection of Lactobacillus, Pediococcus, Leuconostoc, and Weissella species in human feces by using group-specific PCR primers and denaturing gradient gel electrophoresis. Appl Environ Microbiol 67(6):2578–2585

    CAS  PubMed Central  PubMed  Google Scholar 

  131. Satokari RM, Vaughan EE, Akkermans AD, Saarela M, de Vos WM (2001) Bifidobacterial diversity in human feces detected by genus-specific PCR and denaturing gradient gel electrophoresis. Appl Environ Microbiol 67(2):504–513

    CAS  PubMed Central  PubMed  Google Scholar 

  132. Zoetendal EG, Raes J, van den Bogert B, Arumugam M, Booijink CC, Troost FJ, Bork P, Wels M, de Vos WM, Kleerebezem M (2012) The human small intestinal microbiota is driven by rapid uptake and conversion of simple carbohydrates. ISME J 6(7):1415–1426

    CAS  PubMed  Google Scholar 

  133. Booijink CC, El-Aidy S, Rajilic-Stojanovic M, Heilig HG, Troost FJ, Smidt H, Kleerebezem M, De Vos WM, Zoetendal EG (2010) High temporal and inter-individual variation detected in the human ileal microbiota. Environ Microbiol 12(12):3213–3227

    CAS  PubMed  Google Scholar 

  134. Kleerebezem M, Vaughan EE (2009) Probiotic and gut lactobacilli and bifidobacteria: molecular approaches to study diversity and activity. Annu Rev Microbiol 63:269–290

    CAS  PubMed  Google Scholar 

  135. Makarova K, Slesarev A, Wolf Y, Sorokin A, Mirkin B, Koonin E, Pavlov A, Pavlova N, Karamychev V, Polouchine N, Shakhova V, Grigoriev I, Lou Y, Rohksar D, Lucas S, Huang K, Goodstein DM, Hawkins T, Plengvidhya V, Welker D, Hughes J, Goh Y, Benson A, Baldwin K, Lee JH, Diaz-Muniz I, Dosti B, Smeianov V, Wechter W, Barabote R, Lorca G, Altermann E, Barrangou R, Ganesan B, Xie Y, Rawsthorne H, Tamir D, Parker C, Breidt F, Broadbent J, Hutkins R, O’Sullivan D, Steele J, Unlu G, Saier M, Klaenhammer T, Richardson P, Kozyavkin S, Weimer B, Mills D (2006) Comparative genomics of the lactic acid bacteria. Proc Natl Acad Sci USA 103(42):15611–15616

    PubMed  Google Scholar 

  136. Kleerebezem M, Boekhorst J, van Kranenburg R, Molenaar D, Kuipers OP, Leer R, Tarchini R, Peters SA, Sandbrink HM, Fiers MW, Stiekema W, Lankhorst RM, Bron PA, Hoffer SM, Groot MN, Kerkhoven R, de Vries M, Ursing B, de Vos WM, Siezen RJ (2003) Complete genome sequence of Lactobacillus plantarum WCFS1. Proc Natl Acad Sci USA 100(4):1990–1995

    CAS  PubMed  Google Scholar 

  137. Siezen R, Boekhorst J, Muscariello L, Molenaar D, Renckens B, Kleerebezem M (2006) Lactobacillus plantarum gene clusters encoding putative cell-surface protein complexes for carbohydrate utilization are conserved in specific gram-positive bacteria. BMC Genomics 7:126

    PubMed Central  PubMed  Google Scholar 

  138. Lambert JM, Siezen RJ, de Vos WM, Kleerebezem M (2008) Improved annotation of conjugated bile acid hydrolase superfamily members in Gram-positive bacteria. Microbiology 154(Pt 8):2492–2500

    CAS  PubMed  Google Scholar 

  139. Claesson MJ, Li Y, Leahy S, Canchaya C, van Pijkeren JP, Cerdeno-Tarraga AM, Parkhill J, Flynn S, O’Sullivan GC, Collins JK, Higgins D, Shanahan F, Fitzgerald GF, van Sinderen D, O’Toole PW (2006) Multireplicon genome architecture of Lactobacillus salivarius. Proc Natl Acad Sci USA 103(17):6718–6723

    CAS  PubMed  Google Scholar 

  140. Pridmore RD, Berger B, Desiere F, Vilanova D, Barretto C, Pittet AC, Zwahlen MC, Rouvet M, Altermann E, Barrangou R, Mollet B, Mercenier A, Klaenhammer T, Arigoni F, Schell MA (2004) The genome sequence of the probiotic intestinal bacterium Lactobacillus johnsonii NCC 533. Proc Natl Acad Sci USA 101(8):2512–2517

    CAS  PubMed  Google Scholar 

  141. Boekhorst J, Wels M, Kleerebezem M, Siezen RJ (2006) The predicted secretome of Lactobacillus plantarum WCFS1 sheds light on interactions with its environment. Microbiology 152(Pt 11):3175–3183

    CAS  PubMed  Google Scholar 

  142. Barrangou R, Altermann E, Hutkins R, Cano R, Klaenhammer TR (2003) Functional and comparative genomic analyses of an operon involved in fructooligosaccharide utilization by Lactobacillus acidophilus. Proc Natl Acad Sci USA 100(15):8957–8962

    CAS  PubMed  Google Scholar 

  143. Buck BL, Altermann E, Svingerud T, Klaenhammer TR (2005) Functional analysis of putative adhesion factors in Lactobacillus acidophilus NCFM. Appl Environ Microbiol 71(12):8344–8351

    CAS  PubMed Central  PubMed  Google Scholar 

  144. Ventura M, Turroni F, Motherway MO, MacSharry J, van Sinderen D (2012) Host-microbe interactions that facilitate gut colonization by commensal bifidobacteria. Trends Microbiol 20(10):467–476

    CAS  PubMed  Google Scholar 

  145. McCracken VJ, Lorenz RG (2001) The gastrointestinal ecosystem: a precarious alliance among epithelium, immunity and microbiota. Cell Microbiol 3(1):1–11

    CAS  PubMed  Google Scholar 

  146. Bevins CL, Salzman NH (2011) Paneth cells, antimicrobial peptides and maintenance of intestinal homeostasis. Nat Rev Microbiol 9(5):356–368

    CAS  PubMed  Google Scholar 

  147. Salzman NH (2011) Microbiota-immune system interaction: an uneasy alliance. Curr Opin Microbiol 14(1):99–105

    PubMed Central  PubMed  Google Scholar 

  148. Wells JM, Rossi O, Meijerink M, van Baarlen P (2011) Epithelial crosstalk at the microbiota-mucosal interface. Proc Natl Acad Sci USA 108(Suppl 1):4607–4614

    CAS  PubMed  Google Scholar 

  149. Liew FY (2002) T(H)1 and T(H)2 cells: a historical perspective. Nat Rev Immunol 2(1):55–60

    CAS  PubMed  Google Scholar 

  150. Kelsall BL (2008) A focus on dendritic cells and macrophages as key regulators of mucosal immunity. Mucosal Immunol 1(6):423–424

    CAS  PubMed  Google Scholar 

  151. Rescigno M (2010) Intestinal dendritic cells. Adv Immunol 107:109–138

    CAS  PubMed  Google Scholar 

  152. Sansonetti PJ, Medzhitov R (2009) Learning tolerance while fighting ignorance. Cell 138(3):416–420

    CAS  PubMed  Google Scholar 

  153. Chung H, Kasper DL (2010) Microbiota-stimulated immune mechanisms to maintain gut homeostasis. Curr Opin Immunol 22(4):455–460

    CAS  PubMed  Google Scholar 

  154. Artis D (2008) Epithelial-cell recognition of commensal bacteria and maintenance of immune homeostasis in the gut. Nat Rev Immunol 8(6):411–420

    CAS  PubMed  Google Scholar 

  155. Asong J, Wolfert MA, Maiti KK, Miller D, Boons GJ (2009) Binding and cellular activation studies reveal that Toll-like receptor 2 can differentially recognize peptidoglycan from Gram-positive and Gram-negative bacteria. J Biol Chem 284(13):8643–8653

    CAS  PubMed  Google Scholar 

  156. Takeda K, Kaisho T, Akira S (2003) Toll-like receptors. Annu Rev Immunol 21:335–376

    CAS  PubMed  Google Scholar 

  157. Volz T, Nega M, Buschmann J, Kaesler S, Guenova E, Peschel A, Rocken M, Gotz F, Biedermann T (2010) Natural Staphylococcus aureus-derived peptidoglycan fragments activate NOD2 and act as potent costimulators of the innate immune system exclusively in the presence of TLR signals. FASEB J 24(10):4089–4102

    CAS  PubMed  Google Scholar 

  158. Zeuthen LH, Fink LN, Frokiaer H (2008) Epithelial cells prime the immune response to an array of gut-derived commensals towards a tolerogenic phenotype through distinct actions of thymic stromal lymphopoietin and transforming growth factor-beta. Immunology 123(2):197–208

    CAS  PubMed  Google Scholar 

  159. Chamaillard M, Hashimoto M, Horie Y, Masumoto J, Qiu S, Saab L, Ogura Y, Kawasaki A, Fukase K, Kusumoto S, Valvano MA, Foster SJ, Mak TW, Nunez G, Inohara N (2003) An essential role for NOD1 in host recognition of bacterial peptidoglycan containing diaminopimelic acid. Nat Immunol 4(7):702–707

    CAS  PubMed  Google Scholar 

  160. Macho Fernandez E, Valenti V, Rockel C, Hermann C, Pot B, Boneca IG, Grangette C (2011) Anti-inflammatory capacity of selected lactobacilli in experimental colitis is driven by NOD2-mediated recognition of a specific peptidoglycan-derived muropeptide. Gut 60(8):1050–1059

    PubMed  Google Scholar 

  161. Shida K, Kiyoshima-Shibata J, Kaji R, Nagaoka M, Nanno M (2009) Peptidoglycan from lactobacilli inhibits interleukin-12 production by macrophages induced by Lactobacillus casei through Toll-like receptor 2-dependent and independent mechanisms. Immunology 128(1 Suppl):e858–e869

    PubMed  Google Scholar 

  162. Matsumoto S, Hara T, Nagaoka M, Mike A, Mitsuyama K, Sako T, Yamamoto M, Kado S, Takada T (2009) A component of polysaccharide peptidoglycan complex on Lactobacillus induced an improvement of murine model of inflammatory bowel disease and colitis-associated cancer. Immunology 128(1 Suppl):e170–e180

    CAS  PubMed  Google Scholar 

  163. Xia G, Kohler T, Peschel A (2010) The wall teichoic acid and lipoteichoic acid polymers of Staphylococcus aureus. Intern J Med Microbiol 300(2–3):148–154

    CAS  Google Scholar 

  164. Grangette C, Nutten S, Palumbo E, Morath S, Hermann C, Dewulf J, Pot B, Hartung T, Hols P, Mercenier A (2005) Enhanced antiinflammatory capacity of a Lactobacillus plantarum mutant synthesizing modified teichoic acids. Proc Natl Acad Sci USA 102(29):10321–10326

    CAS  PubMed  Google Scholar 

  165. Mohamadzadeh M, Pfeiler EA, Brown JB, Zadeh M, Gramarossa M, Managlia E, Bere P, Sarraj B, Khan MW, Pakanati KC, Ansari MJ, O’Flaherty S, Barrett T, Klaenhammer TR (2011) Regulation of induced colonic inflammation by Lactobacillus acidophilus deficient in lipoteichoic acid. Proc Natl Acad Sci USA 108(Suppl 1):4623–4630

    CAS  PubMed  Google Scholar 

  166. Saber R, Zadeh M, Pakanati KC, Bere P, Klaenhammer T, Mohamadzadeh M (2011) Lipoteichoic acid-deficient Lactobacillus acidophilus regulates downstream signals. Immunotherapy 3(3):337–347

    CAS  PubMed  Google Scholar 

  167. Ryu YH, Baik JE, Yang JS, Kang SS, Im J, Yun CH, Kim DW, Lee K, Chung DK, Ju HR, Han SH (2009) Differential immunostimulatory effects of Gram-positive bacteria due to their lipoteichoic acids. Int Immunopharmacol 9(1):127–133

    CAS  PubMed  Google Scholar 

  168. Deininger S, Stadelmaier A, von Aulock S, Morath S, Schmidt RR, Hartung T (2003) Definition of structural prerequisites for lipoteichoic acid-inducible cytokine induction by synthetic derivatives. J Immunol 170(8):4134–4138

    CAS  PubMed  Google Scholar 

  169. Lebeer S, Verhoeven TL, Perea Velez M, Vanderleyden J, De Keersmaecker SC (2007) Impact of environmental and genetic factors on biofilm formation by the probiotic strain Lactobacillus rhamnosus GG. Appl Environ Microbiol 73(21):6768–6775

    CAS  PubMed Central  PubMed  Google Scholar 

  170. Walter J, Loach DM, Alqumber M, Rockel C, Hermann C, Pfitzenmaier M, Tannock GW (2007) D-alanyl ester depletion of teichoic acids in Lactobacillus reuteri 100–23 results in impaired colonization of the mouse gastrointestinal tract. Environ Microbiol 9(7):1750–1760

    CAS  PubMed  Google Scholar 

  171. Claes IJ, Lebeer S, Shen C, Verhoeven TL, Dilissen E, De Hertogh G, Bullens DM, Ceuppens JL, Van Assche G, Vermeire S, Rutgeerts P, Vanderleyden J, De Keersmaecker SC (2010) Impact of lipoteichoic acid modification on the performance of the probiotic Lactobacillus rhamnosus GG in experimental colitis. Clin Exp Immunol 162(2):306–314

    CAS  PubMed Central  PubMed  Google Scholar 

  172. Duncker SC, Wang L, Hols P, Bienenstock J (2008) The d-alanine content of lipoteichoic acid is crucial for Lactobacillus plantarum-mediated protection from visceral pain perception in a rat colorectal distension model. Neurogastroenterol Motil 20(7):843–850

    CAS  PubMed  Google Scholar 

  173. Kim HG, Kim NR, Gim MG, Lee JM, Lee SY, Ko MY, Kim JY, Han SH, Chung DK (2008) Lipoteichoic acid isolated from Lactobacillus plantarum inhibits lipopolysaccharide-induced TNF-alpha production in THP-1 cells and endotoxin shock in mice. J Immunol 180(4):2553–2561

    CAS  PubMed  Google Scholar 

  174. Kaji R, Kiyoshima-Shibata J, Nagaoka M, Nanno M, Shida K (2010) Bacterial teichoic acids reverse predominant IL-12 production induced by certain lactobacillus strains into predominant IL-10 production via TLR2-dependent ERK activation in macrophages. J Immunol 184(7):3505–3513

    CAS  PubMed  Google Scholar 

  175. Krinos CM, Coyne MJ, Weinacht KG, Tzianabos AO, Kasper DL, Comstock LE (2001) Extensive surface diversity of a commensal microorganism by multiple DNA inversions. Nature 414(6863):555–558

    CAS  PubMed  Google Scholar 

  176. Mazmanian SK, Liu CH, Tzianabos AO, Kasper DL (2005) An immunomodulatory molecule of symbiotic bacteria directs maturation of the host immune system. Cell 122(1):107–118

    CAS  PubMed  Google Scholar 

  177. Mazmanian SK, Kasper DL (2006) The love-hate relationship between bacterial polysaccharides and the host immune system. Nat Rev Immunol 6(11):849–858

    CAS  PubMed  Google Scholar 

  178. Kuwahara T, Yamashita A, Hirakawa H, Nakayama H, Toh H, Okada N, Kuhara S, Hattori M, Hayashi T, Ohnishi Y (2004) Genomic analysis of Bacteroides fragilis reveals extensive DNA inversions regulating cell surface adaptation. Proc Natl Acad Sci USA 101(41):14919–14924

    CAS  PubMed  Google Scholar 

  179. Cerdeno-Tarraga AM, Patrick S, Crossman LC, Blakely G, Abratt V, Lennard N, Poxton I, Duerden B, Harris B, Quail MA, Barron A, Clark L, Corton C, Doggett J, Holden MT, Larke N, Line A, Lord A, Norbertczak H, Ormond D, Price C, Rabbinowitsch E, Woodward J, Barrell B, Parkhill J (2005) Extensive DNA inversions in the B. fragilis genome control variable gene expression. Science 307((5714)):1463–1465

    CAS  PubMed  Google Scholar 

  180. Shen Y, Torchia ML, Lawson GW, Karp CL, Ashwell JD, Mazmanian SK (2012) Outer membrane vesicles of a human commensal mediate immune regulation and disease protection. Cell Host Microbe 12(4):509–520

    CAS  PubMed  Google Scholar 

  181. Round JL, Mazmanian SK (2010) Inducible Foxp3+ regulatory T-cell development by a commensal bacterium of the intestinal microbiota. Proc Natl Acad Sci USA 107(27):12204–12209

    CAS  PubMed  Google Scholar 

  182. Fanning S, Hall LJ, Cronin M, Zomer A, MacSharry J, Goulding D, Motherway MO, Shanahan F, Nally K, Dougan G, van Sinderen D (2012) Bifidobacterial surface-exopolysaccharide facilitates commensal-host interaction through immune modulation and pathogen protection. Proc Natl Acad Sci USA 109(6):2108–2113

    CAS  PubMed  Google Scholar 

  183. Lebeer S, Verhoeven TL, Francius G, Schoofs G, Lambrichts I, Dufrene Y, Vanderleyden J, De Keersmaecker SC (2009) Identification of a gene cluster for the biosynthesis of a long, Galactose-Rich Exopolysaccharide in Lactobacillus rhamnosus GG and functional analysis of the priming glycosyltransferase. Appl Environ Microbiol 75(11):3554–3563

    CAS  PubMed Central  PubMed  Google Scholar 

  184. Lebeer S, Claes IJ, Verhoeven TL, Vanderleyden J, De Keersmaecker SC (2011) Exopolysaccharides of Lactobacillus rhamnosus GG form a protective shield against innate immune factors in the intestine. Microb Biotechnol 4(3):368–374

    CAS  PubMed  Google Scholar 

  185. Hafez M, Hayes K, Goldrick M, Warhurst G, Grencis R, Roberts IS (2009) The K5 capsule of Escherichia coli strain Nissle 1917 is important in mediating interactions with intestinal epithelial cells and chemokine induction. Infect Immun 77(7):2995–3003

    CAS  PubMed Central  PubMed  Google Scholar 

  186. Lebeer S, Vanderleyden J, De Keersmaecker SC (2008) Genes and molecules of lactobacilli supporting probiotic action. Microbiol Mol Biol Rev 72(4):728–764

    CAS  PubMed Central  PubMed  Google Scholar 

  187. Sims IM, Frese SA, Walter J, Loach D, Wilson M, Appleyard K, Eason J, Livingston M, Baird M, Cook G, Tannock GW (2011) Structure and functions of exopolysaccharide produced by gut commensal Lactobacillus reuteri 100–23. ISME J 5(7):1115–1124

    CAS  PubMed  Google Scholar 

  188. Telford JL, Barocchi MA, Margarit I, Rappuoli R, Grandi G (2006) Pili in gram-positive pathogens. Nat Rev Microbiol 4(7):509–519

    CAS  PubMed  Google Scholar 

  189. Kankainen M, Paulin L, Tynkkynen S, von Ossowski I, Reunanen J, Partanen P, Satokari R, Vesterlund S, Hendrickx AP, Lebeer S, De Keersmaecker SC, Vanderleyden J, Hamalainen T, Laukkanen S, Salovuori N, Ritari J, Alatalo E, Korpela R, Mattila-Sandholm T, Lassig A, Hatakka K, Kinnunen KT, Karjalainen H, Saxelin M, Laakso K, Surakka A, Palva A, Salusjarvi T, Auvinen P, de Vos WM (2009) Comparative genomic analysis of Lactobacillus rhamnosus GG reveals pili containing a human- mucus binding protein. Proc Natl Acad Sci USA 106(40):17193–17198

    CAS  PubMed  Google Scholar 

  190. von Ossowski I, Reunanen J, Satokari R, Vesterlund S, Kankainen M, Huhtinen H, Tynkkynen S, Salminen S, de Vos WM, Palva A (2010) Mucosal adhesion properties of the probiotic Lactobacillus rhamnosus GG SpaCBA and SpaFED pilin subunits. Appl Environ Microbiol 76(7):2049–2057

    Google Scholar 

  191. Lebeer S, Claes I, Tytgat HL, Verhoeven TL, Marien E, von Ossowski I, Reunanen J, Palva A, Vos WM, Keersmaecker SC, Vanderleyden J (2012) Functional analysis of Lactobacillus rhamnosus GG pili in relation to adhesion and immunomodulatory interactions with intestinal epithelial cells. Appl Environ Microbiol 78(1):185–193

    CAS  PubMed Central  PubMed  Google Scholar 

  192. Foroni E, Serafini F, Amidani D, Turroni F, He F, Bottacini F, O’Connell Motherway M, Viappiani A, Zhang Z, Rivetti C, van Sinderen D, Ventura M (2011) Genetic analysis and morphological identification of pilus-like structures in members of the genus Bifidobacterium. Microb Cell Fact 10(Suppl 1):S16

    PubMed Central  PubMed  Google Scholar 

  193. Avall-Jaaskelainen S, Palva A (2005) Lactobacillus surface layers and their applications. FEMS Microbiol Rev 29(3):511–529

    PubMed  Google Scholar 

  194. Schneitz C, Nuotio L, Lounatma K (1993) Adhesion of Lactobacillus acidophilus to avian intestinal epithelial cells mediated by the crystalline bacterial cell surface layer (S-layer). J Appl Bact 74(3):290–294

    CAS  Google Scholar 

  195. Toba T, Virkola R, Westerlund B, Bjorkman Y, Sillanpaa J, Vartio T, Kalkkinen N, Korhonen TK (1995) A Collagen-Binding S-Layer Protein in Lactobacillus crispatus. Appl Environ Microbiol 61(7):2467–2471

    CAS  PubMed Central  PubMed  Google Scholar 

  196. Konstantinov SR, Smidt H, de Vos WM, Bruijns SC, Singh SK, Valence F, Molle D, Lortal S, Altermann E, Klaenhammer TR, van Kooyk Y (2008) S layer protein A of Lactobacillus acidophilus NCFM regulates immature dendritic cell and T cell functions. Proc Natl Acad Sci USA 105(49):19474–19479

    CAS  PubMed  Google Scholar 

  197. Johnson-Henry KC, Hagen KE, Gordonpour M, Tompkins TA, Sherman PM (2007) Surface-layer protein extracts from Lactobacillus helveticus inhibit enterohaemorrhagic Escherichia coli O157:h7 adhesion to epithelial cells. Cell Microbiol 9(2):356–367

    CAS  PubMed  Google Scholar 

  198. Taverniti VSM, Minuzzo M, Arioli S, De Noni I, Scabiosi C, Cordova ZM, Junttila I, Hämäläinen S, Turpeinen H, Mora D, Karp M, Pesu M, Guglielmetti S (2013) S-Layer Protein Mediates the Stimulatory Effect of Lactobacillus helveticus MIMLh5 on Innate Immunity. Appl Environ Microbiol 79(4):1221–1231

    CAS  PubMed Central  PubMed  Google Scholar 

  199. O’Callaghan J, Butto LF, MacSharry J, Nally K, O’Toole PW (2012) Influence of adhesion and bacteriocin production by Lactobacillus salivarius on the intestinal epithelial cell transcriptional response. Appl Environ Microbiol 78(15):5196–5203

    PubMed Central  PubMed  Google Scholar 

  200. Murphy EF, Cotter PD, Hogan A, O’Sullivan O, Joyce A, Fouhy F, Clarke SF, Marques TM, O’Toole PW, Stanton C, Quigley EM, Daly C, Ross PR, O’Doherty RM, Shanahan F (2012) Divergent metabolic outcomes arising from targeted manipulation of the gut microbiota in diet-induced obesity. Gut 62:220–226

    Google Scholar 

  201. Riboulet-Bisson E, Sturme MH, Jeffery IB, O’Donnell MM, Neville BA, Forde BM, Claesson MJ, Harris H, Gardiner GE, Casey PG, Lawlor PG, O’Toole PW, Ross RP (2012) Effect of Lactobacillus salivarius bacteriocin Abp118 on the mouse and pig intestinal microbiota. PLoS One 7(2):e31113

    CAS  PubMed Central  PubMed  Google Scholar 

  202. Meijerink M, van Hemert S, Taverne N, Wels M, de Vos P, Bron PA, Savelkoul HF, van Bilsen J, Kleerebezem M, Wells JM (2010) Identification of genetic loci in Lactobacillus plantarum that modulate the immune response of dendritic cells using comparative genome hybridization. PLoS One 5(5):e10632

    PubMed Central  PubMed  Google Scholar 

  203. Walsh MC, Gardiner GE, Hart OM, Lawlor PG, Daly M, Lynch B, Richert BT, Radcliffe S, Giblin L, Hill C, Fitzgerald GF, Stanton C, Ross P (2008) Predominance of a bacteriocin-producing Lactobacillus salivarius component of a five-strain probiotic in the porcine ileum and effects on host immune phenotype. FEMS Microbiol Ecol 64(2):317–327

    CAS  PubMed  Google Scholar 

  204. Marco ML, Bongers RS, de Vos WM, Kleerebezem M (2007) Spatial and temporal expression of Lactobacillus plantarum genes in the gastrointestinal tracts of mice. Appl Environ Microbiol 73(1):124–132

    CAS  PubMed Central  PubMed  Google Scholar 

  205. Miyauchi E, O’Callaghan J, Butto LF, Hurley G, Melgar S, Tanabe S, Shanahan F, Nally K, O’Toole PW (2012) Mechanism of protection of transepithelial barrier function by Lactobacillus salivarius: strain dependence and attenuation by bacteriocin production. Am J Physiol Gastrointest Liver Physiol 303(9):G1029–G1041

    CAS  PubMed  Google Scholar 

  206. van Pijkeren JP, Canchaya C, Ryan KA, Li Y, Claesson MJ, Sheil B, Steidler L, O’Mahony L, Fitzgerald GF, van Sinderen D, O’Toole PW (2006) Comparative and functional analysis of sortase-dependent proteins in the predicted secretome of Lactobacillus salivarius UCC118. Appl Environ Microbiol 72(6):4143–4153

    PubMed Central  PubMed  Google Scholar 

  207. Munoz-Provencio D, Rodriguez-Diaz J, Collado MC, Langella P, Bermudez-Humaran LG, Monedero V (2012) Functional analysis of the Lactobacillus casei BL23 sortases. Appl Environ Microbiol 78(24):8684–8693

    Google Scholar 

  208. Boekhorst J, de Been MW, Kleerebezem M, Siezen RJ (2005) Genome-wide detection and analysis of cell wall-bound proteins with LPxTG-like sorting motifs. J Bacteriol 187(14):4928–4934

    CAS  PubMed Central  PubMed  Google Scholar 

  209. Boekhorst J, Helmer Q, Kleerebezem M, Siezen RJ (2006) Comparative analysis of proteins with a mucus-binding domain found exclusively in lactic acid bacteria. Microbiology 152(Pt 1):273–280

    CAS  PubMed  Google Scholar 

  210. Juge N, Muroyama A, Hiasa M, Omote H, Moriyama Y (2009) Vesicular inhibitory amino acid transporter is a Cl-/gamma-aminobutyrate Co-transporter. J Biol Chem 284(50):35073–35078

    CAS  PubMed  Google Scholar 

  211. Troost FJ, van Baarlen P, Lindsey P, Kodde A, de Vos WM, Kleerebezem M, Brummer RJ (2008) Identification of the transcriptional response of human intestinal mucosa to Lactobacillus plantarum WCFS1 in vivo. BMC Genomics 9:374

    PubMed Central  PubMed  Google Scholar 

  212. van Baarlen P, Troost FJ, van Hemert S, van der Meer C, de Vos WM, de Groot PJ, Hooiveld GJ, Brummer RJ, Kleerebezem M (2009) Differential NF-kappaB pathways induction by Lactobacillus plantarum in the duodenum of healthy humans correlating with immune tolerance. Proc Natl Acad Sci USA 106(7):2371–2376

    PubMed  Google Scholar 

  213. Wang M, Ahrne S, Jeppsson B, Molin G (2005) Comparison of bacterial diversity along the human intestinal tract by direct cloning and sequencing of 16S rRNA genes. FEMS Microbiol Ecol 54(2):219–231

    CAS  PubMed  Google Scholar 

  214. Sonnenburg JL, Xu J, Leip DD, Chen CH, Westover BP, Weatherford J, Buhler JD, Gordon JI (2005) Glycan foraging in vivo by an intestine-adapted bacterial symbiont. Science 307(5717):1955–1959

    CAS  PubMed  Google Scholar 

  215. Tannock GW, Wilson CM, Loach D, Cook GM, Eason J, O’Toole PW, Holtrop G, Lawley B (2012) Resource partitioning in relation to cohabitation of Lactobacillus species in the mouse forestomach. ISME J 6(5):927–938

    CAS  PubMed  Google Scholar 

  216. Paton AW, Morona R, Paton JC (2006) Designer probiotics for prevention of enteric infections. Nat Rev Microbiol 4(3):193–200

    CAS  PubMed  Google Scholar 

  217. Sleator RD (2010) Probiotics—a viable therapeutic alternative for enteric infections especially in the developing world. Discov Med 10(51):119–124

    PubMed  Google Scholar 

  218. Chang TL, Chang CH, Simpson DA, Xu Q, Martin PK, Lagenaur LA, Schoolnik GK, Ho DD, Hillier SL, Holodniy M, Lewicki JA, Lee PP (2003) Inhibition of HIV infectivity by a natural human isolate of Lactobacillus jensenii engineered to express functional two-domain CD4. Proc Natl Acad Sci USA 100(20):11672–11677

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the Cariparma Bank Foundation to M.V., and by a FEMS Advanced Fellowship 2011 and an IRCSET Embark postdoctoral fellowship to F.T. This work was also financially supported by a PhD fellowship (Spinner 2013, Regione Emilia Romagna) to S.D. D.v.S., M.O.C.M., P.W.O.T., and L.F.B. are members of The Alimentary Pharmabiotic Centre; D.v.S. is also a member of the Alimentary Glycoscience Research Cluster, both funded by Science Foundation Ireland (SFI), through the Irish Government’s National Development Plan (Grant numbers 07/CE/B1368 and 08/SRC/B1393, respectively). M.O.C.M. is the recipient of a HRB postdoctoral fellowship (Grant No. PDTM/20011/9).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Douwe van Sinderen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Turroni, F., Ventura, M., Buttó, L.F. et al. Molecular dialogue between the human gut microbiota and the host: a Lactobacillus and Bifidobacterium perspective. Cell. Mol. Life Sci. 71, 183–203 (2014). https://doi.org/10.1007/s00018-013-1318-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-013-1318-0

Keywords

Navigation