Skip to main content

Advertisement

Log in

The multiple activities of BMPs during spinal cord development

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Bone morphogenetic proteins (BMPs) are one of the main classes of multi-faceted secreted factors that drive vertebrate development. A growing body of evidence indicates that BMPs contribute to the formation of the central nervous system throughout its development, from the initial shaping of the neural primordium to the generation and maturation of the different cell types that form the functional adult nervous tissue. In this review, we focus on the multiple activities of BMPs during spinal cord development, paying particular attention to recent results that highlight the complexity of BMP signaling during this process. These findings emphasize the unique capacity of these signals to mediate various functions in the same tissue throughout development, recruiting diverse effectors and strategies to instruct their target cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Mizutani CM, Bier E (2008) EvoD/Vo: the origins of BMP signalling in the neuroectoderm. Nat Rev Genet 9(9):663–677

    Article  PubMed  CAS  Google Scholar 

  2. Copp AJ, Greene ND, Murdoch JN (2003) The genetic basis of mammalian neurulation. Nat Rev Genet 4(10):784–793

    Article  PubMed  Google Scholar 

  3. Le Dréau G, Martí E (2012) Dorsal–ventral patterning of the neural tube: a tale of three signals. Dev Neurobiol 72(12):1471–1481

    Article  PubMed  Google Scholar 

  4. Lewis KE (2006) How do genes regulate simple behaviours? Understanding how different neurons in the vertebrate spinal cord are genetically specified. Philos Trans R Soc Lond B Biol Sci 361(1465):45–66

    Article  PubMed  Google Scholar 

  5. Rowitch DH, Kriegstein AR (2010) Developmental genetics of vertebrate glial-cell specification. Nature 468(7321):214–222

    Article  PubMed  CAS  Google Scholar 

  6. Miyazono K, Kamiya Y, Morikawa M (2010) Bone morphogenetic protein receptors and signal transduction. J Biochem 147(1):35–51

    Article  PubMed  CAS  Google Scholar 

  7. Moustakas A, Heldin CH (2009) The regulation of TGFbeta signal transduction. Development 136(22):3699–3714

    Article  PubMed  CAS  Google Scholar 

  8. Schmierer B, Hill CS (2007) TGFbeta–SMAD signal transduction: molecular specificity and functional flexibility. Nat Rev Mol Cell Biol 8(12):970–982

    Article  PubMed  CAS  Google Scholar 

  9. Schmierer B, Hill CS (2005) Kinetic analysis of Smad nucleocytoplasmic shuttling reveals a mechanism for transforming growth factor beta-dependent nuclear accumulation of Smads. Mol Cell Biol 25(22):9845–9858

    Article  PubMed  CAS  Google Scholar 

  10. Feng XH, Derynck R (2005) Specificity and versatility in tgf-beta signaling through Smads. Annu Rev Cell Dev Biol 21:659–693

    Article  PubMed  CAS  Google Scholar 

  11. Shi Y, Massague J (2003) Mechanisms of TGF-beta signaling from cell membrane to the nucleus. Cell 113(6):685–700

    Article  PubMed  CAS  Google Scholar 

  12. Dudley AT, Lyons KM, Robertson EJ (1995) A requirement for bone morphogenetic protein-7 during development of the mammalian kidney and eye. Genes Dev 9(22):2795–2807

    Article  PubMed  CAS  Google Scholar 

  13. Kingsley DM et al (1992) The mouse short ear skeletal morphogenesis locus is associated with defects in a bone morphogenetic member of the TGF beta superfamily. Cell 71(3):399–410

    Article  PubMed  CAS  Google Scholar 

  14. Winnier G et al (1995) Bone morphogenetic protein-4 is required for mesoderm formation and patterning in the mouse. Genes Dev 9(17):2105–2116

    Article  PubMed  CAS  Google Scholar 

  15. Zhang H, Bradley A (1996) Mice deficient for BMP2 are nonviable and have defects in amnion/chorion and cardiac development. Development 122(10):2977–2986

    PubMed  CAS  Google Scholar 

  16. Basler K et al (1993) Control of cell pattern in the neural tube: regulation of cell differentiation by dorsalin-1, a novel TGF beta family member. Cell 73(4):687–702

    Article  PubMed  CAS  Google Scholar 

  17. Lee KJ, Mendelsohn M, Jessell TM (1998) Neuronal patterning by BMPs: a requirement for GDF7 in the generation of a discrete class of commissural interneurons in the mouse spinal cord. Genes Dev 12(21):3394–3407

    Article  PubMed  CAS  Google Scholar 

  18. Solloway MJ et al (1998) Mice lacking Bmp6 function. Dev Genet 22(4):321–339

    Article  PubMed  CAS  Google Scholar 

  19. Le Dreau G et al (2012) Canonical BMP7 activity is required for the generation of discrete neuronal populations in the dorsal spinal cord. Development 139(2):259–268

    Article  PubMed  Google Scholar 

  20. Nishitoh H et al (1996) Identification of type I and type II serine/threonine kinase receptors for growth/differentiation factor-5. J Biol Chem 271(35):21345–21352

    Article  PubMed  CAS  Google Scholar 

  21. Oh SP et al (2000) Activin receptor-like kinase 1 modulates transforming growth factor-beta 1 signaling in the regulation of angiogenesis. Proc Natl Acad Sci USA 97(6):2626–2631

    Article  PubMed  CAS  Google Scholar 

  22. Bragdon B et al (2011) Bone morphogenetic proteins: a critical review. Cell Signal 23(4):609–620

    Article  PubMed  CAS  Google Scholar 

  23. Beppu H et al (2000) BMP type II receptor is required for gastrulation and early development of mouse embryos. Dev Biol 221(1):249–258

    Article  PubMed  CAS  Google Scholar 

  24. Matzuk MM, Kumar TR, Bradley A (1995) Different phenotypes for mice deficient in either activins or activin receptor type II. Nature 374(6520):356–360

    Article  PubMed  CAS  Google Scholar 

  25. Oh SP, Li E (1997) The signaling pathway mediated by the type IIB activin receptor controls axial patterning and lateral asymmetry in the mouse. Genes Dev 11(14):1812–1826

    Article  PubMed  CAS  Google Scholar 

  26. Song J et al (1999) The type II activin receptors are essential for egg cylinder growth, gastrulation, and rostral head development in mice. Dev Biol 213(1):157–169

    Article  PubMed  CAS  Google Scholar 

  27. Wine-Lee L et al (2004) Signalling through BMP type 1 receptors is required for development of interneuron cell types in the dorsal spinal cord. Development 131(21):5393–5403

    Article  PubMed  CAS  Google Scholar 

  28. Little SC, Mullins MC (2009) Bone morphogenetic protein heterodimers assemble heteromeric type I receptor complexes to pattern the dorsoventral axis. Nat Cell Biol 11(5):637–643

    Article  PubMed  CAS  Google Scholar 

  29. Hester M et al (2005) Smad1 and Smad8 function similarly in mammalian central nervous system development. Mol Cell Biol 25(11):4683–4692

    Article  PubMed  CAS  Google Scholar 

  30. Tremblay KD, Dunn NR, Robertson EJ (2001) Mouse embryos lacking Smad1 signals display defects in extra-embryonic tissues and germ cell formation. Development 128(18):3609–3621

    PubMed  CAS  Google Scholar 

  31. Yang X et al (1999) Angiogenesis defects and mesenchymal apoptosis in mice lacking SMAD5. Development 126(8):1571–1580

    PubMed  CAS  Google Scholar 

  32. Hazen VM et al (2012) BMP receptor-activated Smads confer diverse functions during the development of the dorsal spinal cord. Dev Biol 367(2):216–227

    Article  PubMed  CAS  Google Scholar 

  33. Zhang YE (2009) Non-Smad pathways in TGF-beta signaling. Cell Res 19(1):128–139

    Article  PubMed  CAS  Google Scholar 

  34. Perron JC, Dodd J (2011) Inductive specification and axonal orientation of spinal neurons mediated by divergent bone morphogenetic protein signalling pathways. Neural Dev 6:36

    Article  PubMed  CAS  Google Scholar 

  35. Lee-Hoeflich ST et al (2004) Activation of LIMK1 by binding to the BMP receptor, BMPRII, regulates BMP-dependent dendritogenesis. EMBO J 23(24):4792–4801

    Article  PubMed  CAS  Google Scholar 

  36. Ybot-Gonzalez P et al (2007) Neural plate morphogenesis during mouse neurulation is regulated by antagonism of Bmp signalling. Development 134(17):3203–3211

    Article  PubMed  CAS  Google Scholar 

  37. Eom DS et al (2011) Bone morphogenetic proteins regulate neural tube closure by interacting with the apicobasal polarity pathway. Development 138(15):3179–3188

    Article  PubMed  CAS  Google Scholar 

  38. Luo G et al (1995) BMP-7 is an inducer of nephrogenesis, and is also required for eye development and skeletal patterning. Genes Dev 9(22):2808–2820

    Article  PubMed  CAS  Google Scholar 

  39. Solloway MJ, Robertson EJ (1999) Early embryonic lethality in Bmp5;Bmp7 double mutant mice suggests functional redundancy within the 60A subgroup. Development 126(8):1753–1768

    PubMed  CAS  Google Scholar 

  40. McMahon JA et al (1998) Noggin-mediated antagonism of BMP signalling is required for growth and patterning of the neural tube and somite. Genes Dev 12(10):1438–1452

    Article  PubMed  CAS  Google Scholar 

  41. Misra K, Matise MP (2010) A critical role for sFRP proteins in maintaining caudal neural tube closure in mice via inhibition of BMP signaling. Dev Biol 337(1):74–83

    Article  PubMed  CAS  Google Scholar 

  42. Liem KF Jr, Tremml G, Jessell TM (1997) A role for the roof plate and its resident TGFbeta-related proteins in neuronal patterning in the dorsal spinal cord. Cell 91(1):127–138

    Article  PubMed  CAS  Google Scholar 

  43. Liem KF Jr et al (1995) Dorsal differentiation of neural plate cells induced by BMP-mediated signals from epidermal ectoderm. Cell 82(6):969–979

    Article  PubMed  CAS  Google Scholar 

  44. Chesnutt C et al (2004) Coordinate regulation of neural tube patterning and proliferation by TGFbeta and WNT activity. Dev Biol 274(2):334–347

    Article  PubMed  CAS  Google Scholar 

  45. Liem KF Jr, Jessell TM, Briscoe J (2000) Regulation of the neural patterning activity of sonic hedgehog by secreted BMP inhibitors expressed by notochord and somites. Development 127(22):4855–4866

    PubMed  CAS  Google Scholar 

  46. Ruppert R, Hoffmann E, Sebald W (1996) Human bone morphogenetic protein 2 contains a heparin-binding site which modifies its biological activity. Eur J Biochem 237(1):295–302

    Article  PubMed  CAS  Google Scholar 

  47. Hu Q, Ueno N, Behringer RR (2004) Restriction of BMP4 activity domains in the developing neural tube of the mouse embryo. EMBO Rep 5(7):734–739

    Article  PubMed  CAS  Google Scholar 

  48. Ohkawara B et al (2002) Action range of BMP is defined by its N-terminal basic amino acid core. Curr Biol 12(3):205–209

    Article  PubMed  CAS  Google Scholar 

  49. Nguyen VH et al (2000) Dorsal and intermediate neuronal cell types of the spinal cord are established by a BMP signaling pathway. Development 127(6):1209–1220

    PubMed  CAS  Google Scholar 

  50. Tozer S et al (2013) Temporal control of BMP signalling determines neuronal subtype identity in the dorsal neural tube. Development 140(7):1467–1474

    Article  PubMed  CAS  Google Scholar 

  51. Timmer JR, Wang C, Niswander L (2002) BMP signaling patterns the dorsal and intermediate neural tube via regulation of homeobox and helix-loop-helix transcription factors. Development 129(10):2459–2472

    PubMed  CAS  Google Scholar 

  52. Hazen VM et al (2011) Inhibitory Smads differentially regulate cell fate specification and axon dynamics in the dorsal spinal cord. Dev Biol 356(2):566–575

    Article  PubMed  CAS  Google Scholar 

  53. Yamauchi K, Phan KD, Butler SJ (2008) BMP type I receptor complexes have distinct activities mediating cell fate and axon guidance decisions. Development 135(6):1119–1128

    Article  PubMed  CAS  Google Scholar 

  54. Desgrosellier JS et al (2005) Activin receptor-like kinase 2 and Smad6 regulate epithelial-mesenchymal transformation during cardiac valve formation. Dev Biol 280(1):201–210

    Article  PubMed  CAS  Google Scholar 

  55. Mishina Y et al (1999) Multiple roles for activin-like kinase-2 signaling during mouse embryogenesis. Dev Biol 213(2):314–326

    Article  PubMed  CAS  Google Scholar 

  56. Arkell R, Beddington RS (1997) BMP-7 influences pattern and growth of the developing hindbrain of mouse embryos. Development 124(1):1–12

    PubMed  CAS  Google Scholar 

  57. Panchision DM et al (2001) Sequential actions of BMP receptors control neural precursor cell production and fate. Genes Dev 15(16):2094–2110

    Article  PubMed  CAS  Google Scholar 

  58. Ille F et al (2007) Wnt/BMP signal integration regulates the balance between proliferation and differentiation of neuroepithelial cells in the dorsal spinal cord. Dev Biol 304(1):394–408

    Article  PubMed  CAS  Google Scholar 

  59. Xie Z et al (2011) Smad6 promotes neuronal differentiation in the intermediate zone of the dorsal neural tube by inhibition of the Wnt/beta-catenin pathway. Proc Natl Acad Sci USA 108(29):12119–12124

    Article  PubMed  CAS  Google Scholar 

  60. Augsburger A et al (1999) BMPs as mediators of roof plate repulsion of commissural neurons. Neuron 24(1):127–141

    Article  PubMed  CAS  Google Scholar 

  61. Butler SJ, Dodd J (2003) A role for BMP heterodimers in roof plate-mediated repulsion of commissural axons. Neuron 38(3):389–401

    Article  PubMed  CAS  Google Scholar 

  62. Perron JC, Dodd J (2012) Structural distinctions in BMPs underlie divergent signaling in spinal neurons. Neural Dev 7(1):16

    Article  PubMed  CAS  Google Scholar 

  63. Sanchez-Camacho C, Bovolenta P (2009) Emerging mechanisms in morphogen-mediated axon guidance. BioEssays 31(10):1013–1025

    Article  PubMed  CAS  Google Scholar 

  64. Perron JC, Dodd J (2009) ActRIIA and BMPRII Type II BMP receptor subunits selectively required for Smad4-independent BMP7-evoked chemotaxis. PLoS ONE 4(12):e8198

    Article  PubMed  Google Scholar 

  65. Foletta VC et al (2003) Direct signaling by the BMP type II receptor via the cytoskeletal regulator LIMK1. J Cell Biol 162(6):1089–1098

    Article  PubMed  CAS  Google Scholar 

  66. Sanchez-Camacho C et al (2005) Morphogens as growth cone signalling molecules. Brain Res Brain Res Rev 49(2):242–252

    Article  PubMed  CAS  Google Scholar 

  67. Phan KD et al (2010) The bone morphogenetic protein roof plate chemorepellent regulates the rate of commissural axonal growth. J Neurosci 30(46):15430–15440

    Article  PubMed  CAS  Google Scholar 

  68. Ball RW et al (2010) Retrograde BMP signaling controls synaptic growth at the NMJ by regulating trio expression in motor neurons. Neuron 66(4):536–549

    Article  PubMed  CAS  Google Scholar 

  69. Ji SJ, Jaffrey SR (2012) Intra-axonal translation of SMAD1/5/8 mediates retrograde regulation of trigeminal ganglia subtype specification. Neuron 74(1):95–107

    Article  PubMed  CAS  Google Scholar 

  70. Smith RB et al (2012) Relay of retrograde synaptogenic signals through axonal transport of BMP receptors. J Cell Sci 125:3752–3764

    Article  PubMed  CAS  Google Scholar 

  71. James RE, Broihier HT (2011) Crimpy inhibits the BMP homolog Gbb in motoneurons to enable proper growth control at the Drosophila neuromuscular junction. Development 138(15):3273–3286

    Article  PubMed  CAS  Google Scholar 

  72. McCabe BD et al (2003) The BMP homolog Gbb provides a retrograde signal that regulates synaptic growth at the Drosophila neuromuscular junction. Neuron 39(2):241–254

    Article  PubMed  CAS  Google Scholar 

  73. Shen K, Cowan CW (2010) Guidance molecules in synapse formation and plasticity. Cold Spring Harb Perspect Biol 2(4):a001842

    Article  PubMed  Google Scholar 

  74. Mekki-Dauriac S et al (2002) Bone morphogenetic proteins negatively control oligodendrocyte precursor specification in the chick spinal cord. Development 129(22):5117–5130

    PubMed  CAS  Google Scholar 

  75. Weng Q et al (2012) Dual-mode modulation of Smad signaling by Smad-interacting protein Sip1 is required for myelination in the central nervous system. Neuron 73(4):713–728

    Article  PubMed  CAS  Google Scholar 

  76. Franklin RJ, Ffrench-Constant C (2008) Remyelination in the CNS: from biology to therapy. Nat Rev Neurosci 9(11):839–855

    Article  PubMed  CAS  Google Scholar 

  77. Molofsky AV et al (2012) Astrocytes and disease: a neurodevelopmental perspective. Genes Dev 26(9):891–907

    Article  PubMed  CAS  Google Scholar 

  78. Bond AM, Bhalala OG, Kessler JA (2012) The dynamic role of bone morphogenetic proteins in neural stem cell fate and maturation. Dev Neurobiol 72(7):1068–1084

    Article  PubMed  CAS  Google Scholar 

  79. Nakashima K et al (1999) Synergistic signaling in fetal brain by STAT3–Smad1 complex bridged by p300. Science 284(5413):479–482

    Article  PubMed  CAS  Google Scholar 

  80. Agius E et al (2010) Role of BMPs in controlling the spatial and temporal origin of GFAP astrocytes in the embryonic spinal cord. Dev Biol 344(2):611–620

    Article  PubMed  CAS  Google Scholar 

  81. Sun Y et al (2001) Neurogenin promotes neurogenesis and inhibits glial differentiation by independent mechanisms. Cell 104(3):365–376

    Article  PubMed  CAS  Google Scholar 

  82. Dessaud E, McMahon AP, Briscoe J (2008) Pattern formation in the vertebrate neural tube: a sonic hedgehog morphogen-regulated transcriptional network. Development 135(15):2489–2503

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Work in EM’s laboratory was supported by Grants BFU2010-18959 and CSD2007-00008.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gwenvael Le Dréau or Elisa Martí.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Le Dréau, G., Martí, E. The multiple activities of BMPs during spinal cord development. Cell. Mol. Life Sci. 70, 4293–4305 (2013). https://doi.org/10.1007/s00018-013-1354-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-013-1354-9

Keywords

Navigation