Skip to main content

Advertisement

Log in

Establishment of left–right asymmetry in vertebrate development: the node in mouse embryos

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Establishment of vertebrate left–right asymmetry is a critical process for normal embryonic development. After the discovery of genes expressed asymmetrically along the left–right axis in chick embryos in the mid 1990s, the molecular mechanisms responsible for left–right patterning in vertebrate embryos have been studied extensively. In this review article, we discuss the mechanisms by which the initial symmetry along the left–right axis is broken in the mouse embryo. We focus on the role of primary cilia and molecular mechanisms of ciliogenesis at the node when symmetry is broken and left–right asymmetry is established. The node is considered a signaling center for early mouse embryonic development, and the results we review here have led to a better understanding of how the node functions and establishes left–right asymmetry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Afzelius BA (1976) A human syndrome caused by immotile cilia. Science 193:317–319

    Article  PubMed  CAS  Google Scholar 

  2. Alten L, Schuster-Gossler K, Beckers A, Groos S, Ulmer B, Hegermann J, Ochs M, Gossler A (2012) Differential regulation of node formation, nodal ciliogenesis and cilia positioning by Noto and Foxj1. Development 139:1276–1284

    Article  PubMed  CAS  Google Scholar 

  3. Antic D, Stubbs JL, Suyama K, Kintner C, Scott MP, Axelrod JD (2010) Planar cell polarity enables posterior localization of nodal cilia and left–right axis determination during mouse and Xenopus embryogenesis. PLoS ONE 5:e8999

    Article  PubMed  Google Scholar 

  4. Bachiller D, Klingensmith J, Kemp C, Belo JA, Anderson RM, May SR, McMahon JA, McMahon AP, Harland RM, Rossant J et al (2000) The organizer factors Chordin and Noggin are required for mouse forebrain development. Nature 403:658–661

    Article  PubMed  CAS  Google Scholar 

  5. Beckers A, Alten L, Viebahn C, Andre P, Gossler A (2007) The mouse homeobox gene Noto regulates node morphogenesis, notochordal ciliogenesis, and left right patterning. Proc Natl Acad Sci USA 104:15765–15770

    Article  PubMed  CAS  Google Scholar 

  6. Bellomo D, Lander A, Harragan I, Brown NA (1996) Cell proliferation in mammalian gastrulation: the ventral node and notochord are relatively quiescent. Dev Dyn 205:471–485

    Article  PubMed  CAS  Google Scholar 

  7. Blum M, Andre P, Muders K, Schweickert A, Fischer A, Bitzer E, Bogusch S, Beyer T, van Straaten HW, Viebahn C (2007) Ciliation and gene expression distinguish between node and posterior notochord in the mammalian embryo. Differentiation 75:133–146

    Article  PubMed  CAS  Google Scholar 

  8. Blum M, Weber T, Beyer T, Vick P (2009) Evolution of leftward flow. Semin Cell Dev Biol 20:464–471

    Article  PubMed  Google Scholar 

  9. Bonnafe E, Touka M, AitLounis A, Baas D, Barras E, Ucla C, Moreau A, Flamant F, Dubruille R, Couble P et al (2004) The transcription factor RFX3 directs nodal cilium development and left–right asymmetry specification. Mol Cell Biol 24:4417–4427

    Article  PubMed  CAS  Google Scholar 

  10. Borovina A, Superina S, Voskas D, Ciruna B (2010) Vangl2 directs the posterior tilting and asymmetric localization of motile primary cilia. Nat Cell Biol 12:407–412

    Article  PubMed  CAS  Google Scholar 

  11. Brokaw CJ (2005) Computer simulation of flagellar movement IX. Oscillation and symmetry breaking in a model for short flagella and nodal cilia. Cell Motil Cytoskelet 60:35–47

    Article  Google Scholar 

  12. Brown NA, Wolpert L (1990) The development of handedness in left/right asymmetry. Development 109:1–9

    PubMed  CAS  Google Scholar 

  13. Campione M, Steinbeisser H, Schweickert A, Deissler K, van Bebber F, Lowe LA, Nowotschin S, Viebahn C, Haffter P, Kuehn MR et al (1999) The homeobox gene Pitx2: mediator of asymmetric left–right signaling in vertebrate heart and gut looping. Development 126:1225–1234

    PubMed  CAS  Google Scholar 

  14. Capdevila J, Vogan KJ, Tabin CJ, Izpisua Belmonte JC (2000) Mechanisms of left–right determination in vertebrates. Cell 101:9–21

    Article  PubMed  CAS  Google Scholar 

  15. Cartwright JH, Piro N, Piro O, Tuval I (2007) Embryonic nodal flow and the dynamics of nodal vesicular parcels. J R Soc Interface/R Soc 4:49–55

    Article  Google Scholar 

  16. Cartwright JH, Piro O, Tuval I (2004) Fluid-dynamical basis of the embryonic development of left–right asymmetry in vertebrates. Proc Natl Acad Sci USA 101:7234–7239

    Article  PubMed  CAS  Google Scholar 

  17. Caspary T, Larkins CE, Anderson KV (2007) The graded response to Sonic Hedgehog depends on cilia architecture. Dev Cell 12:767–778

    Article  PubMed  CAS  Google Scholar 

  18. Chang H, Zwijsen A, Vogel H, Huylebroeck D, Matzuk MM (2000) Smad5 is essential for left–right asymmetry in mice. Dev Biol 219:71–78

    Article  PubMed  CAS  Google Scholar 

  19. Chen J, Knowles HJ, Hebert JL, Hackett BP (1998) Mutation of the mouse hepatocyte nuclear factor/forkhead homologue 4 gene results in an absence of cilia and random left–right asymmetry. J Clin Invest 102:1077–1082

    Article  PubMed  CAS  Google Scholar 

  20. Collignon J, Varlet I, Robertson EJ (1996) Relationship between asymmetric nodal expression and the direction of embryonic turning. Nature 381:155–158

    Article  PubMed  CAS  Google Scholar 

  21. Essner JJ, Amack JD, Nyholm MK, Harris EB, Yost HJ (2005) Kupffer’s vesicle is a ciliated organ of asymmetry in the zebrafish embryo that initiates left–right development of the brain, heart and gut. Development 132:1247–1260

    Article  PubMed  CAS  Google Scholar 

  22. Field S, Riley KL, Grimes DT, Hilton H, Simon M, Powles-Glover N, Siggers P, Bogani D, Greenfield A, Norris DP (2011) Pkd1l1 establishes left–right asymmetry and physically interacts with Pkd2. Development 138:1131–1142

    Article  PubMed  CAS  Google Scholar 

  23. Fujinaga M (1997) Development of sidedness of asymmetric body structures in vertebrates. Int J Dev Biol 41:153–186

    PubMed  CAS  Google Scholar 

  24. Fujiwara T, Dehart DB, Sulik KK, Hogan BL (2002) Distinct requirements for extra-embryonic and embryonic bone morphogenetic protein 4 in the formation of the node and primitive streak and coordination of left–right asymmetry in the mouse. Development 129:4685–4696

    PubMed  CAS  Google Scholar 

  25. Hamada H, Meno C, Watanabe D, Saijoh Y (2002) Establishment of vertebrate left–right asymmetry. Nat Rev Genet 3:103–113

    Article  PubMed  CAS  Google Scholar 

  26. Harris PC, Torres VE (2009) Polycystic kidney disease. Annu Rev Med 60:321–337

    Article  PubMed  CAS  Google Scholar 

  27. Hashimoto M, Shinohara K, Wang J, Ikeuchi S, Yoshiba S, Meno C, Nonaka S, Takada S, Hatta K, Wynshaw-Boris A et al (2010) Planar polarization of node cells determines the rotational axis of node cilia. Nat Cell Biol 12:170–176

    Article  PubMed  CAS  Google Scholar 

  28. Hirokawa N, Tanaka Y, Okada Y, Takeda S (2006) Nodal flow and the generation of left–right asymmetry. Cell 125:33–45

    Article  PubMed  CAS  Google Scholar 

  29. Iomini C, Tejada K, Mo W, Vaananen H, Piperno G (2004) Primary cilia of human endothelial cells disassemble under laminar shear stress. J Cell Biol 164:811–817

    Article  PubMed  CAS  Google Scholar 

  30. Kamura K, Kobayashi D, Uehara Y, Koshida S, Iijima N, Kudo A, Yokoyama T, Takeda H (2011) Pkd1l1 complexes with Pkd2 on motile cilia and functions to establish the left–right axis. Development 138:1121–1129

    Article  PubMed  CAS  Google Scholar 

  31. Kishigami S, Yoshikawa S, Castranio T, Okazaki K, Furuta Y, Mishina Y (2004) BMP signaling through ACVRI is required for left–right patterning in the early mouse embryo. Dev Biol 276:185–193

    Article  PubMed  CAS  Google Scholar 

  32. Kitamura K, Miura H, Miyagawa-Tomita S, Yanazawa M, Katoh-Fukui Y, Suzuki R, Ohuchi H, Suehiro A, Motegi Y, Nakahara Y et al (1999) Mouse Pitx2 deficiency leads to anomalies of the ventral body wall, heart, extra- and periocular mesoderm and right pulmonary isomerism. Development 126:5749–5758

    PubMed  CAS  Google Scholar 

  33. Klein TJ, Mlodzik M (2005) Planar cell polarization: an emerging model points in the right direction. Annu Rev Cell Dev Biol 21:155–176

    Article  PubMed  CAS  Google Scholar 

  34. Komatsu Y, Kaartinen V, Mishina Y (2011) Cell cycle arrest in node cells governs ciliogenesis at the node to break left–right symmetry. Development 138:3915–3920

    Article  PubMed  CAS  Google Scholar 

  35. Kramer-Zucker AG, Olale F, Haycraft CJ, Yoder BK, Schier AF, Drummond IA (2005) Cilia-driven fluid flow in the zebrafish pronephros, brain and Kupffer’s vesicle is required for normal organogenesis. Development 132:1907–1921

    Article  PubMed  CAS  Google Scholar 

  36. Krebs LT, Iwai N, Nonaka S, Welsh IC, Lan Y, Jiang R, Saijoh Y, O’Brien TP, Hamada H, Gridley T (2003) Notch signaling regulates left–right asymmetry determination by inducing Nodal expression. Genes Dev 17:1207–1212

    Article  PubMed  CAS  Google Scholar 

  37. Lancaster MA, Gleeson JG (2009) The primary cilium as a cellular signaling center: lessons from disease. Curr Opin Genet Dev 19:220–229

    Article  PubMed  CAS  Google Scholar 

  38. Lee JD, Anderson KV (2008) Morphogenesis of the node and notochord: the cellular basis for the establishment and maintenance of left–right asymmetry in the mouse. Dev Dyn 237:3464–3476

    Article  PubMed  CAS  Google Scholar 

  39. Levin M, Johnson RL, Stern CD, Kuehn M, Tabin C (1995) A molecular pathway determining left–right asymmetry in chick embryogenesis. Cell 82:803–814

    Article  PubMed  CAS  Google Scholar 

  40. Lin CR, Kioussi C, O’Connell S, Briata P, Szeto D, Liu F, Izpisua-Belmonte JC, Rosenfeld MG (1999) Pitx2 regulates lung asymmetry, cardiac positioning and pituitary and tooth morphogenesis. Nature 401:279–282

    Article  PubMed  CAS  Google Scholar 

  41. Lowe LA, Supp DM, Sampath K, Yokoyama T, Wright CV, Potter SS, Overbeek P, Kuehn MR (1996) Conserved left–right asymmetry of nodal expression and alterations in murine situs inversus. Nature 381:158–161

    Article  PubMed  CAS  Google Scholar 

  42. Maisonneuve C, Guilleret I, Vick P, Weber T, Andre P, Beyer T, Blum M, Constam DB (2009) Bicaudal C, a novel regulator of Dvl signaling abutting RNA-processing bodies, controls cilia orientation and leftward flow. Development 136:3019–3030

    Article  PubMed  CAS  Google Scholar 

  43. Marszalek JR, Ruiz-Lozano P, Roberts E, Chien KR, Goldstein LS (1999) Situs inversus and embryonic ciliary morphogenesis defects in mouse mutants lacking the KIF3A subunit of kinesin-II. Proc Natl Acad Sci USA 96:5043–5048

    Article  PubMed  CAS  Google Scholar 

  44. McGrath J, Somlo S, Makova S, Tian X, Brueckner M (2003) Two populations of node monocilia initiate left–right asymmetry in the mouse. Cell 114:61–73

    Article  PubMed  CAS  Google Scholar 

  45. Meno C, Saijoh Y, Fujii H, Ikeda M, Yokoyama T, Yokoyama M, Toyoda Y, Hamada H (1996) Left–right asymmetric expression of the TGF beta-family member lefty in mouse embryos. Nature 381:151–155

    Article  PubMed  CAS  Google Scholar 

  46. Meno C, Shimono A, Saijoh Y, Yashiro K, Mochida K, Ohishi S, Noji S, Kondoh H, Hamada H (1998) lefty-1 is required for left–right determination as a regulator of lefty-2 and nodal. Cell 94:287–297

    Article  PubMed  CAS  Google Scholar 

  47. Meyers EN, Martin GR (1999) Differences in left–right axis pathways in mouse and chick: functions of FGF8 and SHH. Science 285:403–406

    Article  PubMed  CAS  Google Scholar 

  48. Mine N, Anderson RM, Klingensmith J (2008) BMP antagonism is required in both the node and lateral plate mesoderm for mammalian left–right axis establishment. Development 135:2425–2434

    Article  PubMed  CAS  Google Scholar 

  49. Monteiro R, van Dinther M, Bakkers J, Wilkinson R, Patient R, Ten Dijke, P, Mummery C (2007) Two novel type II receptors mediate BMP signalling and are required to establish left–right asymmetry in zebrafish. Dev Biol 315:55–71

    Article  PubMed  Google Scholar 

  50. Montenegro-Johnson TD, Smith AA, Smith DJ, Loghin D, Blake JR (2012) Modelling the fluid mechanics of cilia and flagella in reproduction and development. Eur Phys J E Soft Matter 35:111

    Article  PubMed  Google Scholar 

  51. Nakaya MA, Biris K, Tsukiyama T, Jaime S, Rawls JA, Yamaguchi TP (2005) Wnt3a links left–right determination with segmentation and anteroposterior axis elongation. Development 132:5425–5436

    Article  PubMed  CAS  Google Scholar 

  52. Neugebauer JM, Amack JD, Peterson AG, Bisgrove BW, Yost HJ (2009) FGF signalling during embryo development regulates cilia length in diverse epithelia. Nature 458:651–654

    Article  PubMed  CAS  Google Scholar 

  53. Nonaka S, Shiratori H, Saijoh Y, Hamada H (2002) Determination of left–right patterning of the mouse embryo by artificial nodal flow. Nature 418:96–99

    Article  PubMed  CAS  Google Scholar 

  54. Nonaka S, Tanaka Y, Okada Y, Takeda S, Harada A, Kanai Y, Kido M, Hirokawa N (1998) Randomization of left–right asymmetry due to loss of nodal cilia generating leftward flow of extraembryonic fluid in mice lacking KIF3B motor protein. Cell 95:829–837

    Article  PubMed  CAS  Google Scholar 

  55. Nonaka S, Yoshiba S, Watanabe D, Ikeuchi S, Goto T, Marshall WF, Hamada H (2005) De novo formation of left–right asymmetry by posterior tilt of nodal cilia. PLoS Biol 3:e268

    Article  PubMed  Google Scholar 

  56. Okada Y, Nonaka S, Tanaka Y, Saijoh Y, Hamada H, Hirokawa N (1999) Abnormal nodal flow precedes situs inversus in iv and in v mice. Mol Cell 4:459–468

    Article  PubMed  CAS  Google Scholar 

  57. Okada Y, Takeda S, Tanaka Y, Belmonte JC, Hirokawa N (2005) Mechanism of nodal flow: a conserved symmetry breaking event in left–right axis determination. Cell 121:633–644

    Article  PubMed  CAS  Google Scholar 

  58. Ramsdell AF, Yost HJ (1999) Cardiac looping and the vertebrate left–right axis: antagonism of left–sided Vg1 activity by a right-sided ALK2-dependent BMP pathway. Development 126:5195–5205

    PubMed  CAS  Google Scholar 

  59. Raya A, Kawakami Y, Rodriguez-Esteban C, Ibanes M, Rasskin-Gutman D, Rodriguez-Leon J, Buscher D, Feijo JA, Izpisua Belmonte JC (2004) Notch activity acts as a sensor for extracellular calcium during vertebrate left–right determination. Nature 427:121–128

    Article  PubMed  CAS  Google Scholar 

  60. Rodriguez Esteban C, Capdevila J, Economides AN, Pascual J, Ortiz A, Izpisua Belmonte JC (1999) The novel Cer-like protein Caronte mediates the establishment of embryonic left–right asymmetry. Nature 401:243–251

    Article  PubMed  CAS  Google Scholar 

  61. Schweickert A, Weber T, Beyer T, Vick P, Bogusch S, Feistel K, Blum M (2007) Cilia-driven leftward flow determines laterality in Xenopus. Curr Biol 17:60–66

    Article  PubMed  CAS  Google Scholar 

  62. Sharma N, Berbari NF, Yoder BK (2008) Ciliary dysfunction in developmental abnormalities and diseases. Curr Top Dev Biol 85:371–427

    Article  PubMed  CAS  Google Scholar 

  63. Shinohara K, Kawasumi A, Takamatsu A, Yoshiba S, Botilde Y, Motoyama N, Reith W, Durand B, Shiratori H, Hamada H (2012) Two rotating cilia in the node cavity are sufficient to break left–right symmetry in the mouse embryo. Nat Commun 3:622

    Article  PubMed  Google Scholar 

  64. Shiratori H, Hamada H (2006) The left–right axis in the mouse: from origin to morphology. Development 133:2095–2104

    Article  PubMed  CAS  Google Scholar 

  65. Smith DJ, Blake JR, Gaffney EA (2008) Fluid mechanics of nodal flow due to embryonic primary cilia. J R Soc Interface/R Soc 5:567–573

    Article  CAS  Google Scholar 

  66. Smith DJ, Gaffney EA, Blake JR (2007) Discrete cilia modelling with singularity distributions: application to the embryonic node and the airway surface liquid. Bull Math Biol 69:1477–1510

    Article  PubMed  CAS  Google Scholar 

  67. Song H, Hu J, Chen W, Elliott G, Andre P, Gao B, Yang Y (2010) Planar cell polarity breaks bilateral symmetry by controlling ciliary positioning. Nature 466:378–382

    Article  PubMed  CAS  Google Scholar 

  68. Sulik K, Dehart DB, Iangaki T, Carson JL, Vrablic T, Gesteland K, Schoenwolf GC (1994) Morphogenesis of the murine node and notochordal plate. Dev Dyn 201:260–278

    Article  PubMed  CAS  Google Scholar 

  69. Tabin CJ (2006) The key to left–right asymmetry. Cell 127:27–32

    Article  PubMed  CAS  Google Scholar 

  70. Tabin CJ, Vogan KJ (2003) A two-cilia model for vertebrate left–right axis specification. Genes Dev 17:1–6

    Article  PubMed  CAS  Google Scholar 

  71. Takeda S, Yonekawa Y, Tanaka Y, Okada Y, Nonaka S, Hirokawa N (1999) Left–right asymmetry and kinesin superfamily protein KIF3A: new insights in determination of laterality and mesoderm induction by kif3A-/- mice analysis. J Cell Biol 145:825–836

    Article  PubMed  CAS  Google Scholar 

  72. Tanaka Y, Okada Y, Hirokawa N (2005) FGF-induced vesicular release of Sonic hedgehog and retinoic acid in leftward nodal flow is critical for left–right determination. Nature 435:172–177

    Article  PubMed  CAS  Google Scholar 

  73. ten Dijke P, Korchynskyi O, Valdimarsdottir G, Goumans MJ (2003) Controlling cell fate by bone morphogenetic protein receptors. Mol Cell Endocrinol 211:105–113

    Article  PubMed  Google Scholar 

  74. Tucker RW, Pardee AB, Fujiwara K (1979) Centriole ciliation is related to quiescence and DNA synthesis in 3T3 cells. Cell 17:527–535

    Article  PubMed  CAS  Google Scholar 

  75. Watanabe D, Saijoh Y, Nonaka S, Sasaki G, Ikawa Y, Yokoyama T, Hamada H (2003) The left–right determinant Inversin is a component of node monocilia and other 9 + 0 cilia. Development 130:1725–1734

    Article  PubMed  CAS  Google Scholar 

  76. Yokouchi Y, Vogan KJ, Pearse RV 2nd, Tabin CJ (1999) Antagonistic signaling by Caronte, a novel Cerberus-related gene, establishes left–right asymmetric gene expression. Cell 98:573–583

    Article  PubMed  CAS  Google Scholar 

  77. Yoshiba S, Shiratori H, Kuo IY, Kawasumi A, Shinohara K, Nonaka S, Asai Y, Sasaki G, Belo JA, Sasaki H et al (2012) Cilia at the node of mouse embryos sense fluid flow for left–right determination via Pkd2. Science 338:226–231

    Article  PubMed  CAS  Google Scholar 

  78. Yoshioka H, Meno C, Koshiba K, Sugihara M, Itoh H, Ishimaru Y, Inoue T, Ohuchi H, Semina EV, Murray JC et al (1998) Pitx2, a bicoid-type homeobox gene, is involved in a lefty-signaling pathway in determination of left–right asymmetry. Cell 94:299–305

    Article  PubMed  CAS  Google Scholar 

  79. Zaghloul NA, Katsanis N (2009) Mechanistic insights into Bardet-Biedl syndrome, a model ciliopathy. J Clin Invest 119:428–437

    Article  PubMed  CAS  Google Scholar 

  80. Zallen JA (2007) Planar polarity and tissue morphogenesis. Cell 129:1051–1063

    Article  PubMed  CAS  Google Scholar 

  81. Zhang M, Bolfing MF, Knowles HJ, Karnes H, Hackett BP (2004) Foxj1 regulates asymmetric gene expression during left–right axis patterning in mice. Biochem Biophys Res Commun 324:1413–1420

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We apologize to colleagues whose work we could not discuss due to the space limitations. We sincerely thank Drs. Lee Niswander, Jeremy Reiter, and Vesa Kaartinen for discussion; and Drs. William Shawlot, Artiom Gruzdev, Sudha Rajderkar, Gregory Scott, and Manas Ray for critical reading of this manuscript; and Drs. Judith Connett and Rachel Miller for editing. This study is supported by the National Institutes of Health (K99DE021054 to Y.K. and R01DE020843 to Y.M.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuji Mishina.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Komatsu, Y., Mishina, Y. Establishment of left–right asymmetry in vertebrate development: the node in mouse embryos. Cell. Mol. Life Sci. 70, 4659–4666 (2013). https://doi.org/10.1007/s00018-013-1399-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-013-1399-9

Keywords

Navigation