Skip to main content
Log in

Yeast prions and human prion-like proteins: sequence features and prediction methods

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Prions are self-propagating infectious protein isoforms. A growing number of prions have been identified in yeast, each resulting from the conversion of soluble proteins into an insoluble amyloid form. These yeast prions have served as a powerful model system for studying the causes and consequences of prion aggregation. Remarkably, a number of human proteins containing prion-like domains, defined as domains with compositional similarity to yeast prion domains, have recently been linked to various human degenerative diseases, including amyotrophic lateral sclerosis. This suggests that the lessons learned from yeast prions may help in understanding these human diseases. In this review, we examine what has been learned about the amino acid sequence basis for prion aggregation in yeast, and how this information has been used to develop methods to predict aggregation propensity. We then discuss how this information is being applied to understand human disease, and the challenges involved in applying yeast prediction methods to higher organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Chiti F, Dobson CM (2006) Protein misfolding, functional amyloid, and human disease. Annu Rev Biochem 75:333–366

    Article  CAS  PubMed  Google Scholar 

  2. Alberti S, Halfmann R, King O, Kapila A, Lindquist S (2009) A systematic survey identifies prions and illuminates sequence features of prionogenic proteins. Cell 137(1):146–158

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  3. Derkatch IL, Bradley ME, Hong JY, Liebman SW (2001) Prions affect the appearance of other prions: the story of [PIN(+)]. Cell 106(2):171–182

    Article  CAS  PubMed  Google Scholar 

  4. Du Z, Park KW, Yu H, Fan Q, Li L (2008) Newly identified prion linked to the chromatin-remodeling factor Swi1 in Saccharomyces cerevisiae. Nat Genet 40(4):460–465

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. Patel BK, Gavin-Smyth J, Liebman SW (2009) The yeast global transcriptional co-repressor protein Cyc8 can propagate as a prion. Nat Cell Biol 11(3):344–349

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Rogoza T, Goginashvili A, Rodionova S, Ivanov M, Viktorovskaya O, Rubel A, Volkov K, Mironova L (2010) Non-Mendelian determinant [ISP+] in yeast is a nuclear-residing prion form of the global transcriptional regulator Sfp1. Proc Natl Acad Sci USA 107(23):10573–10577

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. Sondheimer N, Lindquist S (2000) Rnq1: an epigenetic modifier of protein function in yeast. Mol Cell 5(1):163–172

    Article  CAS  PubMed  Google Scholar 

  8. Suzuki G, Shimazu N, Tanaka M (2012) A yeast prion, Mod5, promotes acquired drug resistance and cell survival under environmental stress. Science 336(6079):355–359. doi:10.1126/science.1219491

    Article  CAS  PubMed  Google Scholar 

  9. Wickner RB (1994) [URE3] as an altered URE2 protein: evidence for a prion analog in Saccharomyces cerevisiae. Science 264(5158):566–569

    Article  CAS  PubMed  Google Scholar 

  10. Halfmann R, Wright J, Alberti S, Lindquist S, Rexach M (2012) Prion formation by a yeast GLFG nucleoporin. Prion 6(4):391–399

    Google Scholar 

  11. Fowler DM, Koulov AV, Balch WE, Kelly JW (2007) Functional amyloid–from bacteria to humans. Trends Biochem Sci 32(5):217–224

    Article  CAS  PubMed  Google Scholar 

  12. Eaglestone SS, Cox BS, Tuite MF (1999) Translation termination efficiency can be regulated in Saccharomyces cerevisiae by environmental stress through a prion-mediated mechanism. EMBO J 18(7):1974–1981

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  13. True HL, Lindquist SL (2000) A yeast prion provides a mechanism for genetic variation and phenotypic diversity. Nature 407(6803):477–483

    Article  CAS  PubMed  Google Scholar 

  14. Tyedmers J, Madariaga ML, Lindquist S (2008) Prion switching in response to environmental stress. PLoS Biol 6(11):e294

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  15. Bateman DA, Wickner RB (2012) [PSI+] Prion transmission barriers protect Saccharomyces cerevisiae from infection: intraspecies ‘species barriers’. Genetics 190(2):569–579. doi:10.1534/genetics.111.136655

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  16. Kelly AC, Wickner RB (2013) Saccharomyces cerevisiae: a sexy yeast with a prion problem. Prion 7(3):215–220. doi:10.4161/pri.24845

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  17. Nakayashiki T, Kurtzman CP, Edskes HK, Wickner RB (2005) Yeast prions [URE3] and [PSI+] are diseases. Proc Natl Acad Sci USA 102(30):10575–10580

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Wickner RB, Edskes HK, Bateman D, Kelly AC, Gorkovskiy A (2011) The yeast prions [PSI+] and [URE3] are molecular degenerative diseases. Prion 5(4):258–262. doi:10.4161/pri.17748

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Prusiner SB (1998) Prions. Proc Natl Acad Sci USA 95:13363–13383

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  20. Couthouis J, Hart MP, Shorter J, Dejesus-Hernandez M, Erion R, Oristano R, Liu AX, Ramos D, Jethava N, Hosangadi D, Epstein J, Chiang A, Diaz Z, Nakaya T, Ibrahim F, Kim HJ, Solski JA, Williams KL, Mojsilovic-Petrovic J, Ingre C, Boylan K, Graff-Radford NR, Dickson DW, Clay-Falcone D, Elman L, McCluskey L, Greene R, Kalb RG, Lee VM, Trojanowski JQ, Ludolph A, Robberecht W, Andersen PM, Nicholson GA, Blair IP, King OD, Bonini NM, Van Deerlin V, Rademakers R, Mourelatos Z, Gitler AD (2011) A yeast functional screen predicts new candidate ALS disease genes. Proc Natl Acad Sci USA 108:20881–20890. doi:10.1073/pnas.1109434108

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  21. King OD, Gitler AD, Shorter J (2012) The tip of the iceberg: RNA-binding proteins with prion-like domains in neurodegenerative disease. Brain Res 1462:61–80. doi:10.1016/j.brainres.2012.01.016

    Google Scholar 

  22. Harrison PM, Gerstein M (2003) A method to assess compositional bias in biological sequences and its application to prion-like glutamine/asparagine-rich domains in eukaryotic proteomes. Genome Biol 4(6):R40

    Article  PubMed Central  PubMed  Google Scholar 

  23. Michelitsch MD, Weissman JS (2000) A census of glutamine/asparagine-rich regions: implications for their conserved function and the prediction of novel prions. Proc Natl Acad Sci USA 97(22):11910–11915

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  24. Cox BS (1965) PSI, a cytoplasmic suppressor of super-suppressor in yeast. Heredity 26:211–232

    Article  Google Scholar 

  25. Lacroute F (1971) Non-Mendelian mutation allowing ureidosuccinic acid uptake in yeast. J Bacteriol 106(2):519–522

    CAS  PubMed Central  PubMed  Google Scholar 

  26. Doel SM, McCready SJ, Nierras CR, Cox BS (1994) The dominant PNM2- mutation which eliminates the psi factor of Saccharomyces cerevisiae is the result of a missense mutation in the SUP35 gene. Genetics 137(3):659–670

    CAS  PubMed Central  PubMed  Google Scholar 

  27. Kushnirov VV, Ter-Avanesyan MD, Telckov MV, Surguchov AP, Smirnov VN, Inge-Vechtomov SG (1988) Nucleotide sequence of the SUP2 (SUP35) gene of Saccharomyces cerevisiae. Gene 66(1):45–54

    Article  CAS  PubMed  Google Scholar 

  28. Masison DC, Wickner RB (1995) Prion-inducing domain of yeast Ure2p and protease resistance of Ure2p in prion-containing cells. Science 270(5233):93–95

    Article  CAS  PubMed  Google Scholar 

  29. Ter-Avanesyan MD, Dagkesamanskaya AR, Kushnirov VV, Smirnov VN (1994) The SUP35 omnipotent suppressor gene is involved in the maintenance of the non-Mendelian determinant [psi+] in the yeast Saccharomyces cerevisiae. Genetics 137(3):671–676

    CAS  PubMed Central  PubMed  Google Scholar 

  30. Ter-Avanesyan MD, Kushnirov VV, Dagkesamanskaya AR, Didichenko SA, Chernoff YO, Inge-Vechtomov SG, Smirnov VN (1993) Deletion analysis of the SUP35 gene of the yeast Saccharomyces cerevisiae reveals two non-overlapping functional regions in the encoded protein. Mol Microbiol 7(5):683–692

    Article  CAS  PubMed  Google Scholar 

  31. Liu JJ, Sondheimer N, Lindquist SL (2002) Changes in the middle region of Sup35 profoundly alter the nature of epigenetic inheritance for the yeast prion [PSI+]. Proc Natl Acad Sci USA 99(Suppl 4):16446–16453

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  32. Baxa U, Speransky V, Steven AC, Wickner RB (2002) Mechanism of inactivation on prion conversion of the Saccharomyces cerevisiae Ure2 protein. Proc Natl Acad Sci USA 99(8):5253–5260

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  33. Li L, Lindquist S (2000) Creating a protein-based element of inheritance. Science 287(5453):661–664

    Article  CAS  PubMed  Google Scholar 

  34. Pierce MM, Baxa U, Steven AC, Bax A, Wickner RB (2005) Is the prion domain of soluble Ure2p unstructured? Biochemistry 44(1):321–328

    Article  CAS  PubMed  Google Scholar 

  35. Serio TR, Cashikar AG, Kowal AS, Sawicki GJ, Moslehi JJ, Serpell L, Arnsdorf MF, Lindquist SL (2000) Nucleated conformational conversion and the replication of conformational information by a prion determinant. Science 289(5483):1317–1321

    Article  CAS  PubMed  Google Scholar 

  36. Ross ED, Baxa U, Wickner RB (2004) Scrambled prion domains form prions and amyloid. Mol Cell Biol 24(16):7206–7213

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  37. Ross ED, Edskes HK, Terry MJ, Wickner RB (2005) Primary sequence independence for prion formation. Proc Natl Acad Sci USA 102(36):12825–12830

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  38. Du Z (2011) The complexity and implications of yeast prion domains. Prion 5(4):311–316. doi:10.4161/pri.18304

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  39. Maclea KS, Ross ED (2011) Strategies for identifying new prions in yeast. Prion 5(4):263–268

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  40. DePace AH, Santoso A, Hillner P, Weissman JS (1998) A critical role for amino-terminal glutamine/asparagine repeats in the formation and propagation of a yeast prion. Cell 93(7):1241–1252

    Article  CAS  PubMed  Google Scholar 

  41. Santoso A, Chien P, Osherovich LZ, Weissman JS (2000) Molecular basis of a yeast prion species barrier. Cell 100(2):277–288

    Article  CAS  PubMed  Google Scholar 

  42. Chen B, Bruce KL, Newnam GP, Gyoneva S, Romanyuk AV, Chernoff YO (2010) Genetic and epigenetic control of the efficiency and fidelity of cross-species prion transmission. Mol Microbiol 76(6):1483–1499

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  43. Osherovich LZ, Cox BS, Tuite MF, Weissman JS (2004) Dissection and design of yeast prions. PLoS Biol 2(4):E86

    Article  PubMed Central  PubMed  Google Scholar 

  44. Parham SN, Resende CG, Tuite MF (2001) Oligopeptide repeats in the yeast protein Sup35p stabilize intermolecular prion interactions. EMBO J 20(9):2111–2119

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  45. Shkundina IS, Kushnirov VV, Tuite MF, Ter-Avanesyan MD (2006) The role of the N-terminal oligopeptide repeats of the yeast sup35 prion protein in propagation and transmission of prion variants. Genetics 172(2):827–835

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  46. Nelson R, Sawaya MR, Balbirnie M, Madsen AO, Riekel C, Grothe R, Eisenberg D (2005) Structure of the cross-beta spine of amyloid-like fibrils. Nature 435(7043):773–778

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  47. Fei L, Perrett S (2009) Disulfide bond formation significantly accelerates the assembly of Ure2p fibrils because of the proximity of a potential amyloid stretch. J Biol Chem 284(17):11134–11141. doi:10.1074/jbc.M809673200

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  48. Tessier PM, Lindquist S (2007) Prion recognition elements govern nucleation, strain specificity and species barriers. Nature 447(7144):556–561

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  49. Crow ET, Du Z, Li L (2011) A small, glutamine-free domain propagates the [SWI(+)] prion in budding yeast. Mol Cell Biol 31(16):3436–3444. doi:10.1128/MCB.05338-11

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Vitrenko YA, Pavon ME, Stone SI, Liebman SW (2007) Propagation of the [PIN+] prion by fragments of Rnq1 fused to GFP. Curr Genet 51(5):309–319

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  51. Kadnar ML, Articov G, Derkatch IL (2010) Distinct type of transmission barrier revealed by study of multiple prion determinants of Rnq1. PLoS 6(1):e1000824

    Article  CAS  Google Scholar 

  52. Osherovich LZ, Weissman JS (2001) Multiple Gln/Asn-rich prion domains confer susceptibility to induction of the yeast [PSI(+)] prion. Cell 106(2):183–194

    Article  CAS  PubMed  Google Scholar 

  53. Kabani M, Cosnier B, Bousset L, Rousset JP, Melki R, Fabret C (2011) A mutation within the C-terminal domain of Sup35p that affects [PSI(+)] prion propagation. Mol Microbiol 81(3):640–658

    Google Scholar 

  54. Kochneva-Pervukhova NV, Poznyakovski AI, Smirnov VN, Ter-Avanesyan MD (1998) C-terminal truncation of the Sup35 protein increases the frequency of de novo generation of a prion-based [PSI+] determinant in Saccharomyces cerevisiae. Curr Genet 34(2):146–151

    Article  CAS  PubMed  Google Scholar 

  55. Helsen CW, Glover JR (2012) Insight into molecular basis of curing of [PSI+] prion by overexpression of 104-kDa heat shock protein (Hsp104). J Biol Chem 287(1):542–556. doi:10.1074/jbc.M111.302869

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  56. Shewmaker F, Wickner RB, Tycko R (2006) Amyloid of the prion domain of Sup35p has an in-register parallel beta-sheet structure. Proc Natl Acad Sci USA 103(52):19754–19759

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  57. Paushkin SV, Kushnirov VV, Smirnov VN, Ter-Avanesyan MD (1996) Propagation of the yeast prion-like [psi+] determinant is mediated by oligomerization of the SUP35-encoded polypeptide chain release factor. EMBO J 15(12):3127–3134

    CAS  PubMed Central  PubMed  Google Scholar 

  58. Chernoff YO, Lindquist SL, Ono B, Inge-Vechtomov SG, Liebman SW (1995) Role of the chaperone protein Hsp104 in propagation of the yeast prion-like factor [psi+]. Science 268(5212):880–884

    Article  CAS  PubMed  Google Scholar 

  59. Glover JR, Lindquist S (1998) Hsp104, Hsp70, and Hsp40: a novel chaperone system that rescues previously aggregated proteins. Cell 94(1):73–82

    Article  CAS  PubMed  Google Scholar 

  60. Schirmer EC, Lindquist S (1997) Interactions of the chaperone Hsp104 with yeast Sup35 and mammalian PrP. Proc Natl Acad Sci USA 94(25):13932–13937

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  61. Shorter J, Lindquist S (2008) Hsp104, Hsp70 and Hsp40 interplay regulates formation, growth and elimination of Sup35 prions. EMBO J 27(20):2712–2724

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  62. Grimminger-Marquardt V, Lashuel HA (2010) Structure and function of the molecular chaperone Hsp104 from yeast. Biopolymers 93(3):252–276. doi:10.1002/bip.21301

    Article  CAS  PubMed  Google Scholar 

  63. Reidy M, Masison DC (2011) Modulation and elimination of yeast prions by protein chaperones and co-chaperones. Prion 5(4):245–249. doi:10.4161/pri.17749

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  64. Moriyama H, Edskes HK, Wickner RB (2000) [URE3] prion propagation in Saccharomyces cerevisiae: requirement for chaperone Hsp104 and curing by overexpressed chaperone Ydj1p. Mol Cell Biol 20(23):8916–8922

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  65. Volkov KV, Aksenova AY, Soom MJ, Osipov KV, Svitin AV, Kurischko C, Shkundina IS, Ter-Avanesyan MD, Inge-Vechtomov SG, Mironova LN (2002) Novel non-Mendelian determinant involved in the control of translation accuracy in Saccharomyces cerevisiae. Genetics 160(1):25–36

    CAS  PubMed Central  PubMed  Google Scholar 

  66. Lum R, Tkach JM, Vierling E, Glover JR (2004) Evidence for an unfolding/threading mechanism for protein disaggregation by Saccharomyces cerevisiae Hsp104. J Biol Chem 279(28):29139–29146. doi:10.1074/jbc.M403777200

    Article  CAS  PubMed  Google Scholar 

  67. DeSantis ME, Shorter J (2012) Hsp104 drives “protein-only” positive selection of Sup35 prion strains encoding strong [PSI(+)]. Chem Biol 19(11):1400–1410. doi:10.1016/j.chembiol.2012.09.013

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  68. Helsen CW, Glover JR (2012) A new perspective on Hsp104-mediated propagation and curing of the yeast prion [PSI (+)]. Prion 6(3):234–239. doi:10.4161/pri.19913

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  69. Toombs JA, Liss NM, Cobble KR, Ben-Musa Z, Ross ED (2011) [PSI+] maintenance is dependent on the composition, not primary sequence, of the oligopeptide repeat domain. PLoS ONE 6(7):e21953

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  70. Bryan AW Jr, Menke M, Cowen LJ, Lindquist SL, Berger B (2009) BETASCAN: probable beta-amyloids identified by pairwise probabilistic analysis. PLoS Comput Biol 5(3):e1000333

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  71. Bryan AW Jr, O’Donnell CW, Menke M, Cowen LJ, Lindquist S, Berger B (2011) STITCHER: dynamic assembly of likely amyloid and prion beta-structures from secondary structure predictions. Proteins. doi:10.1002/prot.23203

    PubMed Central  PubMed  Google Scholar 

  72. Tartaglia GG, Pawar AP, Campioni S, Dobson CM, Chiti F, Vendruscolo M (2008) Prediction of aggregation-prone regions in structured proteins. J Mol Biol 380(2):425–436

    Article  CAS  PubMed  Google Scholar 

  73. Goldschmidt L, Teng PK, Riek R, Eisenberg D (2010) Identifying the amylome, proteins capable of forming amyloid-like fibrils. Proc Natl Acad Sci USA 107(8):3487–3492

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  74. Fernandez-Escamilla AM, Rousseau F, Schymkowitz J, Serrano L (2004) Prediction of sequence-dependent and mutational effects on the aggregation of peptides and proteins. Nat Biotechnol 22(10):1302–1306

    Article  CAS  PubMed  Google Scholar 

  75. Zibaee S, Makin OS, Goedert M, Serpell LC (2007) A simple algorithm locates beta-strands in the amyloid fibril core of alpha-synuclein, Abeta, and tau using the amino acid sequence alone. Protein Sci 16(5):906–918

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  76. Trovato A, Seno F, Tosatto SC (2007) The PASTA server for protein aggregation prediction. Protein Eng Des Sel 20(10):521–523

    Article  CAS  PubMed  Google Scholar 

  77. Maurer-Stroh S, Debulpaep M, Kuemmerer N, Lopez de la Paz M, Martins IC, Reumers J, Morris KL, Copland A, Serpell L, Serrano L, Schymkowitz JW, Rousseau F (2010) Exploring the sequence determinants of amyloid structure using position-specific scoring matrices. Nat Methods 7(3):237–242

    Article  CAS  PubMed  Google Scholar 

  78. Toombs JA, Petri M, Paul KR, Kan GY, Ben-Hur A, Ross ED (2012) De novo design of synthetic prion domains. Proc Natl Acad Sci USA 109(17):6519–6524

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  79. Esteras-Chopo A, Serrano L, de la Paz ML (2005) The amyloid stretch hypothesis: recruiting proteins toward the dark side. Proc Natl Acad Sci USA 102(46):16672–16677

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  80. Toombs JA, McCarty BR, Ross ED (2010) Compositional determinants of prion formation in yeast. Mol Cell Biol 30(1):319–332

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  81. Thompson MJ, Sievers SA, Karanicolas J, Ivanova MI, Baker D, Eisenberg D (2006) The 3D profile method for identifying fibril-forming segments of proteins. Proc Natl Acad Sci USA 103(11):4074–4078. doi:10.1073/pnas.0511295103

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  82. Teng PK, Eisenberg D (2009) Short protein segments can drive a non-fibrillizing protein into the amyloid state. Protein Eng Des Sel 22(8):531–536. doi:10.1093/protein/gzp037

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  83. Tartaglia GG, Pechmann S, Dobson CM, Vendruscolo M (2007) Life on the edge: a link between gene expression levels and aggregation rates of human proteins. Trends Biochem Sci 32(5):204–206. doi:10.1016/j.tibs.2007.03.005

    Article  CAS  PubMed  Google Scholar 

  84. Prilusky J, Felder CE, Zeev-Ben-Mordehai T, Rydberg EH, Man O, Beckmann JS, Silman I, Sussman JL (2005) FoldIndex: a simple tool to predict whether a given protein sequence is intrinsically unfolded. Bioinformatics 21(16):3435–3438

    Article  CAS  PubMed  Google Scholar 

  85. Espinosa Angarica V, Ventura S, Sancho J (2013) Discovering putative prion sequences in complete proteomes using probabilistic representations of Q/N-rich domains. BMC Genom 14:316. doi:10.1186/1471-2164-14-316

    Article  CAS  Google Scholar 

  86. Li SC, Goto NK, Williams KA, Deber CM (1996) Alpha-helical, but not beta-sheet, propensity of proline is determined by peptide environment. Proc Natl Acad Sci USA 93(13):6676–6681

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  87. Halfmann R, Alberti S, Krishnan R, Lyle N, O’Donnell CW, King OD, Berger B, Pappu RV, Lindquist S (2011) Opposing effects of glutamine and asparagine govern prion formation by intrinsically disordered proteins. Mol Cell 43(1):72–84

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  88. Costanzo M, Zurzolo C (2013) The cell biology of prion-like spread of protein aggregates: mechanisms and implication in neurodegeneration. Biochem J 452(1):1–17. doi:10.1042/BJ20121898

    CAS  PubMed  Google Scholar 

  89. Cushman M, Johnson BS, King OD, Gitler AD, Shorter J (2010) Prion-like disorders: blurring the divide between transmissibility and infectivity. J Cell Sci 123(Pt 8):1191–1201

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  90. Hall GF, Patuto BA (2012) Is tau ready for admission to the prion club? Prion 6(3):223–233. doi:10.4161/pri.19912

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  91. Aguzzi A, Rajendran L (2009) The transcellular spread of cytosolic amyloids, prions, and prionoids. Neuron 64(6):783–790. doi:10.1016/j.neuron.2009.12.016

    Article  CAS  PubMed  Google Scholar 

  92. Clavaguera F, Bolmont T, Crowther RA, Abramowski D, Frank S, Probst A, Fraser G, Stalder AK, Beibel M, Staufenbiel M, Jucker M, Goedert M, Tolnay M (2009) Transmission and spreading of tauopathy in transgenic mouse brain. Nat Cell Biol 11(7):909–913. doi:10.1038/ncb1901

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  93. Neumann M, Sampathu DM, Kwong LK, Truax AC, Micsenyi MC, Chou TT, Bruce J, Schuck T, Grossman M, Clark CM, McCluskey LF, Miller BL, Masliah E, Mackenzie IR, Feldman H, Feiden W, Kretzschmar HA, Trojanowski JQ, Lee VM (2006) Ubiquitinated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Science 314(5796):130–133. doi:10.1126/science.1134108

    Article  CAS  PubMed  Google Scholar 

  94. Lagier-Tourenne C, Polymenidou M, Cleveland DW (2010) TDP-43 and FUS/TLS: emerging roles in RNA processing and neurodegeneration. Hum Mol Genet 19(R1):R46–R64. doi:10.1093/hmg/ddq137

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  95. Ash PE, Zhang YJ, Roberts CM, Saldi T, Hutter H, Buratti E, Petrucelli L, Link CD (2010) Neurotoxic effects of TDP-43 overexpression in C. elegans. Hum Mol Genet 19(16):3206–3218. doi:10.1093/hmg/ddq230

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  96. Johnson BS, McCaffery JM, Lindquist S, Gitler AD (2008) A yeast TDP-43 proteinopathy model: exploring the molecular determinants of TDP-43 aggregation and cellular toxicity. Proc Natl Acad Sci USA 105(17):6439–6444. doi:10.1073/pnas.0802082105

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  97. Li Y, Ray P, Rao EJ, Shi C, Guo W, Chen X, Woodruff EA III, Fushimi K, Wu JY (2010) A Drosophila model for TDP-43 proteinopathy. Proc Natl Acad Sci USA 107(7):3169–3174. doi:10.1073/pnas.0913602107

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  98. Da Cruz S, Cleveland DW (2011) Understanding the role of TDP-43 and FUS/TLS in ALS and beyond. Curr Opin Neurobiol 21(6):904–919. doi:10.1016/j.conb.2011.05.029

    Article  PubMed Central  PubMed  CAS  Google Scholar 

  99. Johnson BS, Snead D, Lee JJ, McCaffery JM, Shorter J, Gitler AD (2009) TDP-43 is intrinsically aggregation-prone, and amyotrophic lateral sclerosis-linked mutations accelerate aggregation and increase toxicity. J Biol Chem 284(30):20329–20339. doi:10.1074/jbc.M109.010264

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  100. Sun Z, Diaz Z, Fang X, Hart MP, Chesi A, Shorter J, Gitler AD (2011) Molecular determinants and genetic modifiers of aggregation and toxicity for the ALS disease protein FUS/TLS. PLoS Biol 9(4):e1000614. doi:10.1371/journal.pbio.1000614

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  101. Kwiatkowski TJ Jr, Bosco DA, Leclerc AL, Tamrazian E, Vanderburg CR, Russ C, Davis A, Gilchrist J, Kasarskis EJ, Munsat T, Valdmanis P, Rouleau GA, Hosler BA, Cortelli P, de Jong PJ, Yoshinaga Y, Haines JL, Pericak-Vance MA, Yan J, Ticozzi N, Siddique T, McKenna-Yasek D, Sapp PC, Horvitz HR, Landers JE, Brown RH Jr (2009) Mutations in the FUS/TLS gene on chromosome 16 cause familial amyotrophic lateral sclerosis. Science 323(5918):1205–1208. doi:10.1126/science.1166066

    Article  CAS  PubMed  Google Scholar 

  102. Vance C, Rogelj B, Hortobagyi T, De Vos KJ, Nishimura AL, Sreedharan J, Hu X, Smith B, Ruddy D, Wright P, Ganesalingam J, Williams KL, Tripathi V, Al-Saraj S, Al-Chalabi A, Leigh PN, Blair IP, Nicholson G, de Belleroche J, Gallo JM, Miller CC, Shaw CE (2009) Mutations in FUS, an RNA processing protein, cause familial amyotrophic lateral sclerosis type 6. Science 323(5918):1208–1211. doi:10.1126/science.1165942

    Article  CAS  PubMed  Google Scholar 

  103. Daigle JG, Lanson NA Jr, Smith RB, Casci I, Maltare A, Monaghan J, Nichols CD, Kryndushkin D, Shewmaker F, Pandey UB (2013) RNA-binding ability of FUS regulates neurodegeneration, cytoplasmic mislocalization and incorporation into stress granules associated with FUS carrying ALS-linked mutations. Hum Mol Genet 22(6):1193–1205. doi:10.1093/hmg/dds526

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  104. Couthouis J, Hart MP, Erion R, King OD, Diaz Z, Nakaya T, Ibrahim F, Kim HJ, Mojsilovic-Petrovic J, Panossian S, Kim CE, Frackelton EC, Solski JA, Williams KL, Clay-Falcone D, Elman L, McCluskey L, Greene R, Hakonarson H, Kalb RG, Lee VM, Trojanowski JQ, Nicholson GA, Blair IP, Bonini NM, Van Deerlin VM, Mourelatos Z, Shorter J, Gitler AD (2012) Evaluating the role of the FUS/TLS-related gene EWSR1 in amyotrophic lateral sclerosis. Hum Mol Genet 21(13):2899–2911. doi:10.1093/hmg/dds116

    Google Scholar 

  105. Kim HJ, Kim NC, Wang YD, Scarborough EA, Moore J, Diaz Z, MacLea KS, Freibaum B, Li S, Molliex A, Kanagaraj AP, Carter R, Boylan KB, Wojtas AM, Rademakers R, Pinkus JL, Greenberg SA, Trojanowski JQ, Traynor BJ, Smith BN, Topp S, Gkazi AS, Miller J, Shaw CE, Kottlors M, Kirschner J, Pestronk A, Li YR, Ford AF, Gitler AD, Benatar M, King OD, Kimonis VE, Ross ED, Weihl CC, Shorter J, Taylor JP (2013) Mutations in prion-like domains in hnRNPA2B1 and hnRNPA1 cause multisystem proteinopathy and ALS. Nature 495(7442):467–473. doi:10.1038/nature11922

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  106. Klar J, Sobol M, Melberg A, Mabert K, Ameur A, Johansson AC, Feuk L, Entesarian M, Orlen H, Casar-Borota O, Dahl N (2013) Welander distal myopathy caused by an ancient founder mutation in TIA1 associated with perturbed splicing. Hum Mutat 34(4):572–577. doi:10.1002/humu.22282

    CAS  PubMed  Google Scholar 

  107. Li YR, King OD, Shorter J, Gitler AD (2013) Stress granules as crucibles of ALS pathogenesis. J Cell Biol 201(3):361–372. doi:10.1083/jcb.201302044

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  108. Wolozin B (2012) Regulated protein aggregation: stress granules and neurodegeneration. Mol Neurodegener 7:56. doi:10.1186/1750-1326-7-56

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  109. Gilks N, Kedersha N, Ayodele M, Shen L, Stoecklin G, Dember LM, Anderson P (2004) Stress granule assembly is mediated by prion-like aggregation of TIA-1. Mol Biol Cell 15(12):5383–5398. doi:10.1091/mbc.E04-08-0715

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  110. Ramaswami M, Taylor JP, Parker R (2013) Altered ribostasis: RNA-protein granules in degenerative disorders. Cell 154(4):727–736. doi:10.1016/j.cell.2013.07.038

    Article  CAS  PubMed  Google Scholar 

  111. Yamanaka K, Sasagawa Y, Ogura T (2012) Recent advances in p97/VCP/Cdc48 cellular functions. Biochim Biophys Acta 1823(1):130–137. doi:10.1016/j.bbamcr.2011.07.001

    Article  CAS  PubMed  Google Scholar 

  112. Watts GD, Wymer J, Kovach MJ, Mehta SG, Mumm S, Darvish D, Pestronk A, Whyte MP, Kimonis VE (2004) Inclusion body myopathy associated with Paget disease of bone and frontotemporal dementia is caused by mutant valosin-containing protein. Nat Genet 36(4):377–381. doi:10.1038/ng1332

    Article  CAS  PubMed  Google Scholar 

  113. Johnson JO, Mandrioli J, Benatar M, Abramzon Y, Van Deerlin VM, Trojanowski JQ, Gibbs JR, Brunetti M, Gronka S, Wuu J, Ding J, McCluskey L, Martinez-Lage M, Falcone D, Hernandez DG, Arepalli S, Chong S, Schymick JC, Rothstein J, Landi F, Wang YD, Calvo A, Mora G, Sabatelli M, Monsurro MR, Battistini S, Salvi F, Spataro R, Sola P, Borghero G, Galassi G, Scholz SW, Taylor JP, Restagno G, Chio A, Traynor BJ (2010) Exome sequencing reveals VCP mutations as a cause of familial ALS. Neuron 68(5):857–864. doi:10.1016/j.neuron.2010.11.036

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  114. Buchan JR, Kolaitis RM, Taylor JP, Parker R (2013) Eukaryotic stress granules are cleared by autophagy and Cdc48/VCP function. Cell 153(7):1461–1474. doi:10.1016/j.cell.2013.05.037

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  115. Alexandrov AI, Polyanskaya AB, Serpionov GV, Ter-Avanesyan MD, Kushnirov VV (2012) The effects of amino acid composition of glutamine-rich domains on amyloid formation and fragmentation. PLoS ONE 7(10):e46458. doi:10.1371/journal.pone.0046458

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  116. Shorter J (2011) The mammalian disaggregase machinery: Hsp110 synergizes with Hsp70 and Hsp40 to catalyze protein disaggregation and reactivation in a cell-free system. PLoS ONE 6(10):e26319. doi:10.1371/journal.pone.0026319

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  117. Maddelein ML, Wickner RB (1999) Two prion-inducing regions of Ure2p are nonoverlapping. Mol Cell Biol 19(6):4516–4524

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by a National Institutes of Health grant (GM105991) and Muscular Dystrophy Association grant (255893) to E.D.R.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eric D. Ross.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cascarina, S.M., Ross, E.D. Yeast prions and human prion-like proteins: sequence features and prediction methods. Cell. Mol. Life Sci. 71, 2047–2063 (2014). https://doi.org/10.1007/s00018-013-1543-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-013-1543-6

Keywords

Navigation