Skip to main content

Advertisement

Log in

Neuronal calcium signaling: function and dysfunction

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Calcium (Ca2+) is an universal second messenger that regulates the most important activities of all eukaryotic cells. It is of critical importance to neurons as it participates in the transmission of the depolarizing signal and contributes to synaptic activity. Neurons have thus developed extensive and intricate Ca2+ signaling pathways to couple the Ca2+ signal to their biochemical machinery. Ca2+ influx into neurons occurs through plasma membrane receptors and voltage-dependent ion channels. The release of Ca2+ from the intracellular stores, such as the endoplasmic reticulum, by intracellular channels also contributes to the elevation of cytosolic Ca2+. Inside the cell, Ca2+ is controlled by the buffering action of cytosolic Ca2+-binding proteins and by its uptake and release by mitochondria. The uptake of Ca2+ in the mitochondrial matrix stimulates the citric acid cycle, thus enhancing ATP production and the removal of Ca2+ from the cytosol by the ATP-driven pumps in the endoplasmic reticulum and the plasma membrane. A Na+/Ca2+ exchanger in the plasma membrane also participates in the control of neuronal Ca2+. The impaired ability of neurons to maintain an adequate energy level may impact Ca2+ signaling: this occurs during aging and in neurodegenerative disease processes. The focus of this review is on neuronal Ca2+ signaling and its involvement in synaptic signaling processes, neuronal energy metabolism, and neurotransmission. The contribution of altered Ca2+ signaling in the most important neurological disorders will then be considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Carafoli E, Malmstrom K, Sigel E, Crompton M (1976) The regulation of intracellular calcium. Clin Endocrinol (Oxf) 5[Suppl]:49S–59S

    Google Scholar 

  2. Brini M, Cali T, Ottolini D, Carafoli E (2013) Intracellular calcium homeostasis and signaling. Met Ions Life Sci 12:119–168. doi:10.1007/978-94-007-5561-1_5

    PubMed  Google Scholar 

  3. Mellstrom B, Savignac M, Gomez-Villafuertes R, Naranjo JR (2008) Ca2+-operated transcriptional networks: molecular mechanisms and in vivo models. Physiol Rev 88(2):421–449. doi:10.1152/physrev.00041.2005

    CAS  PubMed  Google Scholar 

  4. Carafoli E (2007) The unusual history and unique properties of the calcium signal. In: Krebs J, Michalak M (eds) Calcium: a matter of life and death, vol 41. Elsevier, Amsterdam, pp 3–22

    Google Scholar 

  5. Prakriya M, Feske S, Gwack Y, Srikanth S, Rao A, Hogan PG (2006) Orai1 is an essential pore subunit of the CRAC channel. Nature 443(7108):230–233. doi:10.1038/nature05122

    CAS  PubMed  Google Scholar 

  6. Hofmann F, Lacinova L, Klugbauer N (1999) Voltage-dependent calcium channels: from structure to function. Rev Physiol Biochem Pharmacol 139:33–87

    CAS  PubMed  Google Scholar 

  7. Catterall WA (2000) Structure and regulation of voltage-gated Ca2+ channels. Annu Rev Cell Dev Biol 16:521–555. doi:10.1146/annurev.cellbio.16.1.521

    CAS  PubMed  Google Scholar 

  8. Davies A, Hendrich J, Van Minh AT, Wratten J, Douglas L, Dolphin AC (2007) Functional biology of the alpha(2)delta subunits of voltage-gated calcium channels. Trends Pharmacol Sci 28(5):220–228. doi:10.1016/j.tips.2007.03.005

    CAS  PubMed  Google Scholar 

  9. Hoppa MB, Lana B, Margas W, Dolphin AC, Ryan TA (2012) Alpha2delta expression sets presynaptic calcium channel abundance and release probability. Nature 486(7401):122–125. doi:10.1038/nature11033

    CAS  PubMed Central  PubMed  Google Scholar 

  10. Catterall WA (2011) Voltage-gated calcium channels. Cold Spring Harb Perspect Biol 3(8):a003947. doi:10.1101/cshperspect.a003947

    PubMed Central  PubMed  Google Scholar 

  11. Miyashita T, Oda Y, Horiuchi J, Yin JC, Morimoto T, Saitoe M (2012) Mg(2+) block of Drosophila NMDA receptors is required for long-term memory formation and CREB-dependent gene expression. Neuron 74(5):887–898. doi:10.1016/j.neuron.2012.03.039

    CAS  PubMed  Google Scholar 

  12. Rosenmund C, Stern-Bach Y, Stevens CF (1998) The tetrameric structure of a glutamate receptor channel. Science 280(5369):1596–1599

    CAS  PubMed  Google Scholar 

  13. Greger IH, Khatri L, Kong X, Ziff EB (2003) AMPA receptor tetramerization is mediated by Q/R editing. Neuron 40(4):763–774

    CAS  PubMed  Google Scholar 

  14. Higuchi M, Maas S, Single FN, Hartner J, Rozov A, Burnashev N, Feldmeyer D, Sprengel R, Seeburg PH (2000) Point mutation in an AMPA receptor gene rescues lethality in mice deficient in the RNA-editing enzyme ADAR2. Nature 406(6791):78–81. doi:10.1038/35017558

    CAS  PubMed  Google Scholar 

  15. Bowie D, Mayer ML (1995) Inward rectification of both AMPA and kainate subtype glutamate receptors generated by polyamine-mediated ion channel block. Neuron 15(2):453–462

    CAS  PubMed  Google Scholar 

  16. Paoletti P, Bellone C, Zhou Q (2013) NMDA receptor subunit diversity: impact on receptor properties, synaptic plasticity and disease. Nat Rev Neurosci 14(6):383–400. doi:10.1038/nrn3504

    CAS  PubMed  Google Scholar 

  17. Hardingham GE, Chawla S, Cruzalegui FH, Bading H (1999) Control of recruitment and transcription-activating function of CBP determines gene regulation by NMDA receptors and L-type calcium channels. Neuron 22(4):789–798

    CAS  PubMed  Google Scholar 

  18. Hardingham GE, Arnold FJ, Bading H (2001) Nuclear calcium signaling controls CREB-mediated gene expression triggered by synaptic activity. Nat Neurosci 4(3):261–267. doi:10.1038/85109

    CAS  PubMed  Google Scholar 

  19. Hardingham GE, Arnold FJ, Bading H (2001) A calcium microdomain near NMDA receptors: on switch for ERK-dependent synapse-to-nucleus communication. Nat Neurosci 4(6):565–566. doi:10.1038/88380

    CAS  PubMed  Google Scholar 

  20. Impey S, Goodman RH (2001) CREB signaling—timing is everything. Sci STKE 2001(82):pe1. doi:10.1126/stke.2001.82.pe1

  21. Wu GY, Deisseroth K, Tsien RW (2001) Activity-dependent CREB phosphorylation: convergence of a fast, sensitive calmodulin kinase pathway and a slow, less sensitive mitogen-activated protein kinase pathway. Proc Natl Acad Sci USA 98(5):2808–2813. doi:10.1073/pnas.051634198

    CAS  PubMed Central  PubMed  Google Scholar 

  22. Barco A, Alarcon JM, Kandel ER (2002) Expression of constitutively active CREB protein facilitates the late phase of long-term potentiation by enhancing synaptic capture. Cell 108(5):689–703

    CAS  PubMed  Google Scholar 

  23. Corlew R, Brasier DJ, Feldman DE, Philpot BD (2008) Presynaptic NMDA receptors: newly appreciated roles in cortical synaptic function and plasticity. Neuroscientist 14(6):609–625. doi:10.1177/1073858408322675

    PubMed Central  PubMed  Google Scholar 

  24. Burnstock G, Di Virgilio F (2013) Purinergic signalling and cancer. Purinergic Signal. doi:10.1007/s11302-013-9372-5

    Google Scholar 

  25. Di Virgilio F, Ceruti S, Bramanti P, Abbracchio MP (2009) Purinergic signalling in inflammation of the central nervous system. Trends Neurosci 32(2):79–87. doi:10.1016/j.tins.2008.11.003

    PubMed  Google Scholar 

  26. Franke H, Verkhratsky A, Burnstock G, Illes P (2012) Pathophysiology of astroglial purinergic signalling. Purinergic Signal 8(3):629–657. doi:10.1007/s11302-012-9300-0

    CAS  PubMed Central  PubMed  Google Scholar 

  27. Levano-Garcia J, Dluzewski AR, Markus RP, Garcia CR (2010) Purinergic signalling is involved in the malaria parasite Plasmodium falciparum invasion to red blood cells. Purinergic Signal 6(4):365–372. doi:10.1007/s11302-010-9202-y

    CAS  PubMed Central  PubMed  Google Scholar 

  28. Pankratov Y, Lalo U, Krishtal OA, Verkhratsky A (2009) P2X receptors and synaptic plasticity. Neuroscience 158(1):137–148. doi:10.1016/j.neuroscience.2008.03.076

    CAS  PubMed  Google Scholar 

  29. Hamilton NB, Attwell D (2010) Do astrocytes really exocytose neurotransmitters? Nat Rev Neurosci 11(4):227–238. doi:10.1038/nrn2803

    CAS  PubMed  Google Scholar 

  30. Burnstock G, Verkhratsky A (2010) Long-term (trophic) purinergic signalling: purinoceptors control cell proliferation, differentiation and death. Cell Death Dis 1:e9. doi:10.1038/cddis.2009.11

    CAS  PubMed Central  PubMed  Google Scholar 

  31. Zimmermann H (2011) Purinergic signaling in neural development. Semin Cell Dev Biol 22(2):194–204. doi:10.1016/j.semcdb.2011.02.007

    CAS  PubMed  Google Scholar 

  32. Browne LE, Jiang LH, North RA (2010) New structure enlivens interest in P2X receptors. Trends Pharmacol Sci 31(5):229–237. doi:10.1016/j.tips.2010.02.004

    CAS  PubMed Central  PubMed  Google Scholar 

  33. Burnstock G, Knight GE (2004) Cellular distribution and functions of P2 receptor subtypes in different systems. Int Rev Cytol 240:31–304. doi:10.1016/S0074-7696(04)40002-3

    CAS  PubMed  Google Scholar 

  34. Pankratov Y, Lalo U, Krishtal O, Verkhratsky A (2003) P2X receptor-mediated excitatory synaptic currents in somatosensory cortex. Mol Cell Neurosci 24(3):842–849

    CAS  PubMed  Google Scholar 

  35. Duan S, Neary JT (2006) P2X(7) receptors: properties and relevance to CNS function. Glia 54(7):738–746. doi:10.1002/glia.20397

    PubMed  Google Scholar 

  36. Putney JW Jr (1986) A model for receptor-regulated calcium entry. Cell Calcium 7(1):1–12

    CAS  PubMed  Google Scholar 

  37. Feske S (2011) Immunodeficiency due to defects in store-operated calcium entry. Ann N Y Acad Sci 1238:74–90. doi:10.1111/j.1749-6632.2011.06240.x

    CAS  PubMed Central  PubMed  Google Scholar 

  38. Putney JW (2012) Calcium signaling: deciphering the calcium-NFAT pathway. Curr Biol 22(3):R87–R89. doi:10.1016/j.cub.2011.12.030

    CAS  PubMed  Google Scholar 

  39. Gwack Y, Srikanth S, Feske S, Cruz-Guilloty F, Oh-hora M, Neems DS, Hogan PG, Rao A (2007) Biochemical and functional characterization of Orai proteins. J Biol Chem 282(22):16232–16243. doi:10.1074/jbc.M609630200

    CAS  PubMed  Google Scholar 

  40. Venkiteswaran G, Hasan G (2009) Intracellular Ca2+ signaling and store-operated Ca2+ entry are required in Drosophila neurons for flight. Proc Natl Acad Sci USA 106(25):10326–10331. doi:10.1073/pnas.0902982106

    CAS  PubMed Central  PubMed  Google Scholar 

  41. Berna-Erro A, Braun A, Kraft R, Kleinschnitz C, Schuhmann MK, Stegner D, Wultsch T, Eilers J, Meuth SG, Stoll G, Nieswandt B (2009) STIM2 regulates capacitive Ca2+ entry in neurons and plays a key role in hypoxic neuronal cell death. Sci Signal 2(93):ra67. doi:10.1126/scisignal.2000522

    PubMed  Google Scholar 

  42. Thompson JL, Mignen O, Shuttleworth TJ (2013) The ARC channel—an endogenous store-independent Orai channel. Curr Top Membr 71:125–148. doi:10.1016/B978-0-12-407870-3.00006-8

    CAS  PubMed  Google Scholar 

  43. Rohacs T (2007) Regulation of TRP channels by PIP(2). Pflugers Arch 453(6):753–762. doi:10.1007/s00424-006-0153-7

    CAS  PubMed  Google Scholar 

  44. Ambudkar IS, Ong HL, Liu X, Bandyopadhyay BC, Cheng KT (2007) TRPC1: the link between functionally distinct store-operated calcium channels. Cell Calcium 42(2):213–223. doi:10.1016/j.ceca.2007.01.013

    CAS  PubMed  Google Scholar 

  45. Lu M, Branstrom R, Berglund E, Hoog A, Bjorklund P, Westin G, Larsson C, Farnebo LO, Forsberg L (2010) Expression and association of TRPC subtypes with Orai1 and STIM1 in human parathyroid. J Mol Endocrinol 44(5):285–294. doi:10.1677/JME-09-0138

    CAS  PubMed  Google Scholar 

  46. Liao Y, Erxleben C, Yildirim E, Abramowitz J, Armstrong DL, Birnbaumer L (2007) Orai proteins interact with TRPC channels and confer responsiveness to store depletion. Proc Natl Acad Sci USA 104(11):4682–4687. doi:10.1073/pnas.0611692104

    CAS  PubMed Central  PubMed  Google Scholar 

  47. Galione A, Evans AM, Ma J, Parrington J, Arredouani A, Cheng X, Zhu MX (2009) The acid test: the discovery of two-pore channels (TPCs) as NAADP-gated endolysosomal Ca(2+) release channels. Pflugers Arch 458(5):869–876. doi:10.1007/s00424-009-0682-y

    CAS  PubMed Central  PubMed  Google Scholar 

  48. Wang X, Zhang X, Dong XP, Samie M, Li X, Cheng X, Goschka A, Shen D, Zhou Y, Harlow J, Zhu MX, Clapham DE, Ren D, Xu H (2012) TPC proteins are phosphoinositide-activated sodium-selective ion channels in endosomes and lysosomes. Cell 151(2):372–383. doi:10.1016/j.cell.2012.08.036

    CAS  PubMed Central  PubMed  Google Scholar 

  49. Brini M, Carafoli E (2011) The plasma membrane Ca(2)+ ATPase and the plasma membrane sodium calcium exchanger cooperate in the regulation of cell calcium. Cold Spring Harb Perspect Biol 3(2). doi:10.1101/cshperspect.a004168

  50. Blaustein MP, Juhaszova M, Golovina VA, Church PJ, Stanley EF (2002) Na/Ca exchanger and PMCA localization in neurons and astrocytes: functional implications. Ann N Y Acad Sci 976:356–366

    CAS  PubMed  Google Scholar 

  51. Blaustein MP, Golovina VA (2001) Structural complexity and functional diversity of endoplasmic reticulum Ca(2+) stores. Trends Neurosci 24(10):602–608

    CAS  PubMed  Google Scholar 

  52. Bano D, Young KW, Guerin CJ, Lefeuvre R, Rothwell NJ, Naldini L, Rizzuto R, Carafoli E, Nicotera P (2005) Cleavage of the plasma membrane Na+/Ca2+ exchanger in excitotoxicity. Cell 120(2):275–285. doi:10.1016/j.cell.2004.11.049

    CAS  PubMed  Google Scholar 

  53. Annunziato L, Pignataro G, Boscia F, Sirabella R, Formisano L, Saggese M, Cuomo O, Gala R, Secondo A, Viggiano D, Molinaro P, Valsecchi V, Tortiglione A, Adornetto A, Scorziello A, Cataldi M, Di Renzo GF (2007) ncx1, ncx2, and ncx3 gene product expression and function in neuronal anoxia and brain ischemia. Ann N Y Acad Sci 1099:413–426. doi:10.1196/annals.1387.050

    CAS  PubMed  Google Scholar 

  54. James P, Maeda M, Fischer R, Verma AK, Krebs J, Penniston JT, Carafoli E (1988) Identification and primary structure of a calmodulin binding domain of the Ca2+ pump of human erythrocytes. J Biol Chem 263(6):2905–2910

    CAS  PubMed  Google Scholar 

  55. Enyedi A, Verma AK, Heim R, Adamo HP, Filoteo AG, Strehler EE, Penniston JT (1994) The Ca2+ affinity of the plasma membrane Ca2+ pump is controlled by alternative splicing. J Biol Chem 269(1):41–43

    CAS  PubMed  Google Scholar 

  56. Falchetto R, Vorherr T, Brunner J, Carafoli E (1991) The plasma membrane Ca2+ pump contains a site that interacts with its calmodulin-binding domain. J Biol Chem 266(5):2930–2936

    CAS  PubMed  Google Scholar 

  57. Falchetto R, Vorherr T, Carafoli E (1992) The calmodulin-binding site of the plasma membrane Ca2+ pump interacts with the transduction domain of the enzyme. Protein Sci 1(12):1613–1621. doi:10.1002/pro.5560011209

    CAS  PubMed Central  PubMed  Google Scholar 

  58. Enyedi A, Vorherr T, James P, McCormick DJ, Filoteo AG, Carafoli E, Penniston JT (1989) The calmodulin binding domain of the plasma membrane Ca2+ pump interacts both with calmodulin and with another part of the pump. J Biol Chem 264(21):12313–12321

    CAS  PubMed  Google Scholar 

  59. Zvaritch E, James P, Vorherr T, Falchetto R, Modyanov N, Carafoli E (1990) Mapping of functional domains in the plasma membrane Ca2+ pump using trypsin proteolysis. Biochemistry 29(35):8070–8076

    CAS  PubMed  Google Scholar 

  60. Brodin P, Falchetto R, Vorherr T, Carafoli E (1992) Identification of two domains which mediate the binding of activating phospholipids to the plasma-membrane Ca2+ pump. Eur J Biochem 204(2):939–946

    CAS  PubMed  Google Scholar 

  61. Oceandy D, Cartwright EJ, Emerson M, Prehar S, Baudoin FM, Zi M, Alatwi N, Venetucci L, Schuh K, Williams JC, Armesilla AL, Neyses L (2007) Neuronal nitric oxide synthase signaling in the heart is regulated by the sarcolemmal calcium pump 4b. Circulation 115(4):483–492. doi:10.1161/CIRCULATIONAHA.106.643791

    CAS  PubMed  Google Scholar 

  62. Mohamed TM, Oceandy D, Zi M, Prehar S, Alatwi N, Wang Y, Shaheen MA, Abou-Leisa R, Schelcher C, Hegab Z, Baudoin F, Emerson M, Mamas M, Di Benedetto G, Zaccolo M, Lei M, Cartwright EJ, Neyses L (2011) Plasma membrane calcium pump (PMCA4)-neuronal nitric-oxide synthase complex regulates cardiac contractility through modulation of a compartmentalized cyclic nucleotide microdomain. J Biol Chem 286(48):41520–41529. doi:10.1074/jbc.M111.290411

    CAS  PubMed Central  PubMed  Google Scholar 

  63. Ficarella R, Di Leva F, Bortolozzi M, Ortolano S, Donaudy F, Petrillo M, Melchionda S, Lelli A, Domi T, Fedrizzi L, Lim D, Shull GE, Gasparini P, Brini M, Mammano F, Carafoli E (2007) A functional study of plasma-membrane calcium-pump isoform 2 mutants causing digenic deafness. Proc Natl Acad Sci USA 104(5):1516–1521. doi:10.1073/pnas.0609775104

    CAS  PubMed Central  PubMed  Google Scholar 

  64. Spiden SL, Bortolozzi M, Di Leva F, de Angelis MH, Fuchs H, Lim D, Ortolano S, Ingham NJ, Brini M, Carafoli E, Mammano F, Steel KP (2008) The novel mouse mutation Oblivion inactivates the PMCA2 pump and causes progressive hearing loss. PLoS Genet 4(10):e1000238. doi:10.1371/journal.pgen.1000238

    PubMed Central  PubMed  Google Scholar 

  65. Street VA, McKee-Johnson JW, Fonseca RC, Tempel BL, Noben-Trauth K (1998) Mutations in a plasma membrane Ca2+-ATPase gene cause deafness in deafwaddler mice. Nat Genet 19(4):390–394

    CAS  PubMed  Google Scholar 

  66. Bortolozzi M, Brini M, Parkinson N, Crispino G, Scimemi P, De Siati RD, Di Leva F, Parker A, Ortolano S, Arslan E, Brown SD, Carafoli E, Mammano F (2010) The novel PMCA2 pump mutation Tommy impairs cytosolic calcium clearance in hair cells and links to deafness in mice. J Biol Chem 285(48):37693–37703. doi:10.1074/jbc.M110.170092

    CAS  PubMed Central  PubMed  Google Scholar 

  67. Takahashi K, Kitamura K (1999) A point mutation in a plasma membrane Ca(2+)-ATPase gene causes deafness in Wriggle Mouse Sagami. Biochem Biophys Res Commun 261(3):773–778

    CAS  PubMed  Google Scholar 

  68. Schultz JM, Yang Y, Caride AJ, Filoteo AG, Penheiter AR, Lagziel A, Morell RJ, Mohiddin SA, Fananapazir L, Madeo AC, Penniston JT, Griffith AJ (2005) Modification of human hearing loss by plasma-membrane calcium pump PMCA2. N Engl J Med 352(15):1557–1564

    CAS  PubMed  Google Scholar 

  69. Zanni G, Cali T, Kalscheuer VM, Ottolini D, Barresi S, Lebrun N, Montecchi-Palazzi L, Hu H, Chelly J, Bertini E, Brini M, Carafoli E (2012) Mutation of plasma membrane Ca2+ ATPase isoform 3 in a family with X-linked congenital cerebellar ataxia impairs Ca2+ homeostasis. Proc Natl Acad Sci USA 109(36):14514–14519. doi:10.1073/pnas.1207488109

    CAS  PubMed Central  PubMed  Google Scholar 

  70. Taylor CW, Tovey SC (2010) IP(3) receptors: toward understanding their activation. Cold Spring Harb Perspect Biol 2(12):a004010. doi:10.1101/cshperspect.a004010

    CAS  PubMed Central  PubMed  Google Scholar 

  71. Taylor CW, Laude AJ (2002) IP3 receptors and their regulation by calmodulin and cytosolic Ca2+. Cell Calcium 32(5–6):321–334

    CAS  PubMed  Google Scholar 

  72. Lanner JT, Georgiou DK, Joshi AD, Hamilton SL (2010) Ryanodine receptors: structure, expression, molecular details, and function in calcium release. Cold Spring Harb Perspect Biol 2(11):a003996. doi:10.1101/cshperspect.a003996

    CAS  PubMed Central  PubMed  Google Scholar 

  73. De Flora A, Franco L, Guida L, Bruzzone S, Zocchi E (1998) Ectocellular CD38-catalyzed synthesis and intracellular Ca(2+)-mobilizing activity of cyclic ADP-ribose. Cell Biochem Biophys 28(1):45–62. doi:10.1007/BF02738309

    PubMed  Google Scholar 

  74. Brini M, Carafoli E (2009) Calcium pumps in health and disease. Physiol Rev 89(4):1341–1378. doi:10.1152/physrev.00032.2008

    CAS  PubMed  Google Scholar 

  75. Jouaville LS, Pinton P, Bastianutto C, Rutter GA, Rizzuto R (1999) Regulation of mitochondrial ATP synthesis by calcium: evidence for a long-term metabolic priming. Proc Natl Acad Sci USA 96(24):13807–13812

    CAS  PubMed Central  PubMed  Google Scholar 

  76. Denton RM (2009) Regulation of mitochondrial dehydrogenases by calcium ions. Biochim Biophys Acta 1787(11):1309–1316. doi:10.1016/j.bbabio.2009.01.005

    CAS  PubMed  Google Scholar 

  77. Hajnoczky G, Robb-Gaspers LD, Seitz MB, Thomas AP (1995) Decoding of cytosolic calcium oscillations in the mitochondria. Cell 82(3):415–424

    CAS  PubMed  Google Scholar 

  78. Hajnoczky G, Hager R, Thomas AP (1999) Mitochondria suppress local feedback activation of inositol 1,4, 5-trisphosphate receptors by Ca2+. J Biol Chem 274(20):14157–14162

    CAS  PubMed  Google Scholar 

  79. Hoth M, Fanger CM, Lewis RS (1997) Mitochondrial regulation of store-operated calcium signaling in T lymphocytes. J Cell Biol 137(3):633–648

    CAS  PubMed Central  PubMed  Google Scholar 

  80. Baughman JM, Perocchi F, Girgis HS, Plovanich M, Belcher-Timme CA, Sancak Y, Bao XR, Strittmatter L, Goldberger O, Bogorad RL, Koteliansky V, Mootha VK (2011) Integrative genomics identifies MCU as an essential component of the mitochondrial calcium uniporter. Nature 476(7360):341–345. doi:10.1038/nature10234

    CAS  PubMed Central  PubMed  Google Scholar 

  81. De Stefani D, Raffaello A, Teardo E, Szabo I, Rizzuto R (2011) A forty-kilodalton protein of the inner membrane is the mitochondrial calcium uniporter. Nature 476(7360):336–340. doi:10.1038/nature10230

    PubMed  Google Scholar 

  82. Raffaello A, De Stefani D, Sabbadin D, Teardo E, Merli G, Picard A, Checchetto V, Moro S, Szabo I, Rizzuto R (2013) The mitochondrial calcium uniporter is a multimer that can include a dominant-negative pore-forming subunit. EMBO J 32(17):2362–2376. doi:10.1038/emboj.2013.157

    CAS  PubMed  Google Scholar 

  83. Csordas G, Golenar T, Seifert EL, Kamer KJ, Sancak Y, Perocchi F, Moffat C, Weaver D, de la Fuente Perez S, Bogorad R, Koteliansky V, Adijanto J, Mootha VK, Hajnoczky G (2013) MICU1 controls both the threshold and cooperative activation of the mitochondrial Ca(2)(+) uniporter. Cell Metab 17(6):976–987. doi:10.1016/j.cmet.2013.04.020

    CAS  PubMed Central  PubMed  Google Scholar 

  84. Mallilankaraman K, Doonan P, Cardenas C, Chandramoorthy HC, Muller M, Miller R, Hoffman NE, Gandhirajan RK, Molgo J, Birnbaum MJ, Rothberg BS, Mak DO, Foskett JK, Madesh M (2012) MICU1 is an essential gatekeeper for MCU-mediated mitochondrial Ca(2+) uptake that regulates cell survival. Cell 151(3):630–644. doi:10.1016/j.cell.2012.10.011

    CAS  PubMed Central  PubMed  Google Scholar 

  85. Plovanich M, Bogorad RL, Sancak Y, Kamer KJ, Strittmatter L, Li AA, Girgis HS, Kuchimanchi S, De Groot J, Speciner L, Taneja N, Oshea J, Koteliansky V, Mootha VK (2013) MICU2, a paralog of MICU1, resides within the mitochondrial uniporter complex to regulate calcium handling. PLoS One 8(2):e55785. doi:10.1371/journal.pone.0055785

    CAS  PubMed Central  PubMed  Google Scholar 

  86. Sancak Y, Markhard AL, Kitami T, Kovacs-Bogdan E, Kamer KJ, Udeshi ND, Carr SA, Chaudhuri D, Clapham DE, Li AA, Calvo SE, Goldberger O, Mootha VK (2013) EMRE is an essential component of the mitochondrial calcium uniporter complex. Science 342:1379–1382. doi:10.1126/science.1242993

    Google Scholar 

  87. Carafoli E, Tiozzo R, Lugli G, Crovetti F, Kratzing C (1974) The release of calcium from heart mitochondria by sodium. J Mol Cell Cardiol 6(4):361–371

    CAS  PubMed  Google Scholar 

  88. Palty R, Silverman WF, Hershfinkel M, Caporale T, Sensi SL, Parnis J, Nolte C, Fishman D, Shoshan-Barmatz V, Herrmann S, Khananshvili D, Sekler I (2010) NCLX is an essential component of mitochondrial Na+/Ca2+ exchange. Proc Natl Acad Sci USA 107(1):436–441. doi:10.1073/pnas.0908099107

    CAS  PubMed Central  PubMed  Google Scholar 

  89. Bernardi P, von Stockum S (2012) The permeability transition pore as a Ca(2+) release channel: new answers to an old question. Cell Calcium 52(1):22–27. doi:10.1016/j.ceca.2012.03.004

    CAS  PubMed Central  PubMed  Google Scholar 

  90. Bernardi P (2013) The mitochondrial permeability transition pore: a mystery solved? Front Physiol 4:95. doi:10.3389/fphys.2013.00095

    CAS  PubMed Central  PubMed  Google Scholar 

  91. Bonora M, Bononi A, De Marchi E, Giorgi C, Lebiedzinska M, Marchi S, Patergnani S, Rimessi A, Suski JM, Wojtala A, Wieckowski MR, Kroemer G, Galluzzi L, Pinton P (2013) Role of the c subunit of the FO ATP synthase in mitochondrial permeability transition. Cell Cycle 12(4):674–683. doi:10.4161/cc.23599

    CAS  PubMed Central  PubMed  Google Scholar 

  92. Giorgio V, von Stockum S, Antoniel M, Fabbro A, Fogolari F, Forte M, Glick GD, Petronilli V, Zoratti M, Szabo I, Lippe G, Bernardi P (2013) Dimers of mitochondrial ATP synthase form the permeability transition pore. Proc Natl Acad Sci USA 110(15):5887–5892. doi:10.1073/pnas.1217823110

    CAS  PubMed Central  PubMed  Google Scholar 

  93. Chin D, Means AR (2000) Calmodulin: a prototypical calcium sensor. Trends Cell Biol 10(8):322–328

    CAS  PubMed  Google Scholar 

  94. Catterall WA, Few AP (2008) Calcium channel regulation and presynaptic plasticity. Neuron 59(6):882–901. doi:10.1016/j.neuron.2008.09.005

    CAS  PubMed  Google Scholar 

  95. Schwaller B (2009) The continuing disappearance of “pure” Ca2+ buffers. Cell Mol Life Sci 66(2):275–300. doi:10.1007/s00018-008-8564-6

    CAS  PubMed  Google Scholar 

  96. Schmidt H, Eilers J (2009) Spine neck geometry determines spino-dendritic cross-talk in the presence of mobile endogenous calcium binding proteins. J Comput Neurosci 27(2):229–243. doi:10.1007/s10827-009-0139-5

    PubMed  Google Scholar 

  97. Schmidt H, Kunerth S, Wilms C, Strotmann R, Eilers J (2007) Spino-dendritic cross-talk in rodent Purkinje neurons mediated by endogenous Ca2+-binding proteins. J Physiol 581(Pt 2):619–629. doi:10.1113/jphysiol.2007.127860

    PubMed Central  PubMed  Google Scholar 

  98. Fierro L, Llano I (1996) High endogenous calcium buffering in Purkinje cells from rat cerebellar slices. J Physiol 496(Pt 3):617–625

    CAS  PubMed Central  PubMed  Google Scholar 

  99. Schwaller B, Tetko IV, Tandon P, Silveira DC, Vreugdenhil M, Henzi T, Potier MC, Celio MR, Villa AE (2004) Parvalbumin deficiency affects network properties resulting in increased susceptibility to epileptic seizures. Mol Cell Neurosci 25(4):650–663. doi:10.1016/j.mcn.2003.12.006

    CAS  PubMed  Google Scholar 

  100. Gall D, Roussel C, Susa I, D’Angelo E, Rossi P, Bearzatto B, Galas MC, Blum D, Schurmans S, Schiffmann SN (2003) Altered neuronal excitability in cerebellar granule cells of mice lacking calretinin. J Neurosci 23(28):9320–9327

    CAS  PubMed  Google Scholar 

  101. Moreno H, Burghardt NS, Vela-Duarte D, Masciotti J, Hua F, Fenton AA, Schwaller B, Small SA (2012) The absence of the calcium-buffering protein calbindin is associated with faster age-related decline in hippocampal metabolism. Hippocampus 22(5):1107–1120. doi:10.1002/hipo.20957

    CAS  PubMed Central  PubMed  Google Scholar 

  102. Pongs O, Lindemeier J, Zhu XR, Theil T, Engelkamp D, Krah-Jentgens I, Lambrecht HG, Koch KW, Schwemer J, Rivosecchi R et al (1993) Frequenin—a novel calcium-binding protein that modulates synaptic efficacy in the Drosophila nervous system. Neuron 11(1):15–28

    CAS  PubMed  Google Scholar 

  103. McFerran BW, Graham ME, Burgoyne RD (1998) Neuronal Ca2+ sensor 1, the mammalian homologue of frequenin, is expressed in chromaffin and PC12 cells and regulates neurosecretion from dense-core granules. J Biol Chem 273(35):22768–22772

    CAS  PubMed  Google Scholar 

  104. McFerran BW, Weiss JL, Burgoyne RD (1999) Neuronal Ca(2+) sensor 1. Characterization of the myristoylated protein, its cellular effects in permeabilized adrenal chromaffin cells, Ca(2+)-independent membrane association, and interaction with binding proteins, suggesting a role in rapid Ca(2+) signal transduction. J Biol Chem 274(42):30258–30265

    CAS  PubMed  Google Scholar 

  105. Weiss JL, Archer DA, Burgoyne RD (2000) Neuronal Ca2+ sensor-1/frequenin functions in an autocrine pathway regulating Ca2+ channels in bovine adrenal chromaffin cells. J Biol Chem 275(51):40082–40087. doi:10.1074/jbc.M008603200

    CAS  PubMed  Google Scholar 

  106. Tsujimoto T, Jeromin A, Saitoh N, Roder JC, Takahashi T (2002) Neuronal calcium sensor 1 and activity-dependent facilitation of P/Q-type calcium currents at presynaptic nerve terminals. Science 295(5563):2276–2279. doi:10.1126/science.1068278

    CAS  PubMed  Google Scholar 

  107. Sippy T, Cruz-Martin A, Jeromin A, Schweizer FE (2003) Acute changes in short-term plasticity at synapses with elevated levels of neuronal calcium sensor-1. Nat Neurosci 6(10):1031–1038. doi:10.1038/nn1117

    CAS  PubMed Central  PubMed  Google Scholar 

  108. Jo J, Heon S, Kim MJ, Son GH, Park Y, Henley JM, Weiss JL, Sheng M, Collingridge GL, Cho K (2008) Metabotropic glutamate receptor-mediated LTD involves two interacting Ca(2+) sensors, NCS-1 and PICK1. Neuron 60(6):1095–1111. doi:10.1016/j.neuron.2008.10.050

    CAS  PubMed Central  PubMed  Google Scholar 

  109. Dason JS, Romero-Pozuelo J, Marin L, Iyengar BG, Klose MK, Ferrus A, Atwood HL (2009) Frequenin/NCS-1 and the Ca2+-channel alpha1-subunit co-regulate synaptic transmission and nerve-terminal growth. J Cell Sci 122(Pt 22):4109–4121. doi:10.1242/jcs.055095

    CAS  PubMed  Google Scholar 

  110. Lee A, Wong ST, Gallagher D, Li B, Storm DR, Scheuer T, Catterall WA (1999) Ca2+/calmodulin binds to and modulates P/Q-type calcium channels. Nature 399(6732):155–159. doi:10.1038/20194

    CAS  PubMed  Google Scholar 

  111. An WF, Bowlby MR, Betty M, Cao J, Ling HP, Mendoza G, Hinson JW, Mattsson KI, Strassle BW, Trimmer JS, Rhodes KJ (2000) Modulation of A-type potassium channels by a family of calcium sensors. Nature 403(6769):553–556. doi:10.1038/35000592

    CAS  PubMed  Google Scholar 

  112. Carrion AM, Link WA, Ledo F, Mellstrom B, Naranjo JR (1999) DREAM is a Ca2+-regulated transcriptional repressor. Nature 398(6722):80–84. doi:10.1038/18044

    CAS  PubMed  Google Scholar 

  113. Buxbaum JD, Choi EK, Luo Y, Lilliehook C, Crowley AC, Merriam DE, Wasco W (1998) Calsenilin: a calcium-binding protein that interacts with the presenilins and regulates the levels of a presenilin fragment. Nat Med 4(10):1177–1181. doi:10.1038/2673

    CAS  PubMed  Google Scholar 

  114. De Strooper B, Iwatsubo T, Wolfe MS (2012) Presenilins and gamma-secretase: structure, function, and role in Alzheimer disease. Cold Spring Harb Perspect Med 2(1):a006304. doi:10.1101/cshperspect.a006304

    PubMed Central  PubMed  Google Scholar 

  115. Gomez-Villafuertes R, Torres B, Barrio J, Savignac M, Gabellini N, Rizzato F, Pintado B, Gutierrez-Adan A, Mellstrom B, Carafoli E, Naranjo JR (2005) Downstream regulatory element antagonist modulator regulates Ca2+ homeostasis and viability in cerebellar neurons. J Neurosci 25(47):10822–10830. doi:10.1523/JNEUROSCI.3912-05.2005

    CAS  PubMed  Google Scholar 

  116. Ronkainen JJ, Hanninen SL, Korhonen T, Koivumaki JT, Skoumal R, Rautio S, Ronkainen VP, Tavi P (2011) Ca2+-calmodulin-dependent protein kinase II represses cardiac transcription of the L-type calcium channel alpha(1C)-subunit gene (Cacna1c) by DREAM translocation. J Physiol 589(Pt 11):2669–2686. doi:10.1113/jphysiol.2010.201400

    CAS  PubMed Central  PubMed  Google Scholar 

  117. Fontan-Lozano A, Romero-Granados R, del-Pozo-Martin Y, Suarez-Pereira I, Delgado-Garcia JM, Penninger JM, Carrion AM (2009) Lack of DREAM protein enhances learning and memory and slows brain aging. Curr Biol 19(1):54–60. doi:10.1016/j.cub.2008.11.056

    CAS  PubMed  Google Scholar 

  118. Alexander JC, McDermott CM, Tunur T, Rands V, Stelly C, Karhson D, Bowlby MR, An WF, Sweatt JD, Schrader LA (2009) The role of calsenilin/DREAM/KChIP3 in contextual fear conditioning. Learn Mem 16(3):167–177. doi:10.1101/lm.1261709

    CAS  PubMed Central  PubMed  Google Scholar 

  119. Wu LJ, Mellstrom B, Wang H, Ren M, Domingo S, Kim SS, Li XY, Chen T, Naranjo JR, Zhuo M (2010) DREAM (downstream regulatory element antagonist modulator) contributes to synaptic depression and contextual fear memory. Mol Brain 3:3. doi:10.1186/1756-6606-3-3

    PubMed Central  PubMed  Google Scholar 

  120. Zhang Y, Su P, Liang P, Liu T, Liu X, Liu XY, Zhang B, Han T, Zhu YB, Yin DM, Li J, Zhou Z, Wang KW, Wang Y (2010) The DREAM protein negatively regulates the NMDA receptor through interaction with the NR1 subunit. J Neurosci 30(22):7575–7586. doi:10.1523/JNEUROSCI.1312-10.2010

    CAS  PubMed  Google Scholar 

  121. Rivera-Arconada I, Benedet T, Roza C, Torres B, Barrio J, Krzyzanowska A, Avendano C, Mellstrom B, Lopez-Garcia JA, Naranjo JR (2010) DREAM regulates BDNF-dependent spinal sensitization. Mol Pain 6:95. doi:10.1186/1744-8069-6-95

    PubMed Central  PubMed  Google Scholar 

  122. Karp G (2002) Cell and molecular biology. Wiley, New York

    Google Scholar 

  123. Hudmon A, Schulman H (2002) Neuronal CA2+/calmodulin-dependent protein kinase II: the role of structure and autoregulation in cellular function. Annu Rev Biochem 71:473–510. doi:10.1146/annurev.biochem.71.110601.135410

    CAS  PubMed  Google Scholar 

  124. Bading H (2013) Nuclear calcium signalling in the regulation of brain function. Nat Rev Neurosci 14(9):593–608. doi:10.1038/nrn3531

    CAS  PubMed  Google Scholar 

  125. Dick O, Bading H (2010) Synaptic activity and nuclear calcium signaling protect hippocampal neurons from death signal-associated nuclear translocation of FoxO3a induced by extrasynaptic N-methyl-D-aspartate receptors. J Biol Chem 285(25):19354–19361. doi:10.1074/jbc.M110.127654

    CAS  PubMed Central  PubMed  Google Scholar 

  126. Foskett JK (2010) Inositol trisphosphate receptor Ca2+ release channels in neurological diseases. Pflugers Arch 460(2):481–494. doi:10.1007/s00424-010-0826-0

    CAS  PubMed Central  PubMed  Google Scholar 

  127. Camandola S, Mattson MP (2011) Aberrant subcellular neuronal calcium regulation in aging and Alzheimer’s disease. Biochim Biophys Acta 1813(5):965–973. doi:10.1016/j.bbamcr.2010.10.005

    CAS  PubMed Central  PubMed  Google Scholar 

  128. Duchen MR (2012) Mitochondria, calcium-dependent neuronal death and neurodegenerative disease. Pflugers Arch 464(1):111–121. doi:10.1007/s00424-012-1112-0

    CAS  PubMed Central  PubMed  Google Scholar 

  129. Cali T, Ottolini D, Brini M (2012) Mitochondrial Ca(2+) and neurodegeneration. Cell Calcium 52(1):73–85. doi:10.1016/j.ceca.2012.04.015

    CAS  PubMed Central  PubMed  Google Scholar 

  130. Rosen DR, Siddique T, Patterson D, Figlewicz DA, Sapp P, Hentati A, Donaldson D, Goto J, O’Regan JP, Deng HX et al (1993) Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 362(6415):59–62. doi:10.1038/362059a0

    CAS  PubMed  Google Scholar 

  131. Carriedo SG, Yin HZ, Weiss JH (1996) Motor neurons are selectively vulnerable to AMPA/kainate receptor-mediated injury in vitro. J Neurosci 16(13):4069–4079

    CAS  PubMed  Google Scholar 

  132. Rowland LP, Shneider NA (2001) Amyotrophic lateral sclerosis. N Engl J Med 344(22):1688–1700. doi:10.1056/NEJM200105313442207

    CAS  PubMed  Google Scholar 

  133. von Lewinski F, Keller BU (2005) Ca2+, mitochondria and selective motoneuron vulnerability: implications for ALS. Trends Neurosci 28(9):494–500. doi:10.1016/j.tins.2005.07.001

    Google Scholar 

  134. Alexianu ME, Ho BK, Mohamed AH, La Bella V, Smith RG, Appel SH (1994) The role of calcium-binding proteins in selective motoneuron vulnerability in amyotrophic lateral sclerosis. Ann Neurol 36(6):846–858. doi:10.1002/ana.410360608

    CAS  PubMed  Google Scholar 

  135. Iacopino AM, Christakos S (1990) Corticosterone regulates calbindin-D28k mRNA and protein levels in rat hippocampus. J Biol Chem 265(18):10177–10180

    CAS  PubMed  Google Scholar 

  136. Beers DR, Ho BK, Siklos L, Alexianu ME, Mosier DR, Mohamed AH, Otsuka Y, Kozovska ME, McAlhany RE, Smith RG, Appel SH (2001) Parvalbumin overexpression alters immune-mediated increases in intracellular calcium, and delays disease onset in a transgenic model of familial amyotrophic lateral sclerosis. J Neurochem 79(3):499–509

    CAS  PubMed  Google Scholar 

  137. Bernard-Marissal N, Moumen A, Sunyach C, Pellegrino C, Dudley K, Henderson CE, Raoul C, Pettmann B (2012) Reduced calreticulin levels link endoplasmic reticulum stress and Fas-triggered cell death in motoneurons vulnerable to ALS. J Neurosci 32(14):4901–4912. doi:10.1523/JNEUROSCI.5431-11.2012

    CAS  PubMed  Google Scholar 

  138. Beal MF (2000) Mitochondria and the pathogenesis of ALS. Brain 123(Pt 7):1291–1292

    PubMed  Google Scholar 

  139. Damiano M, Starkov AA, Petri S, Kipiani K, Kiaei M, Mattiazzi M, Flint Beal M, Manfredi G (2006) Neural mitochondrial Ca2+ capacity impairment precedes the onset of motor symptoms in G93A Cu/Zn-superoxide dismutase mutant mice. J Neurochem 96(5):1349–1361. doi:10.1111/j.1471-4159.2006.03619.x

    CAS  PubMed  Google Scholar 

  140. Carri MT, Ferri A, Battistoni A, Famhy L, Gabbianelli R, Poccia F, Rotilio G (1997) Expression of a Cu, Zn superoxide dismutase typical of familial amyotrophic lateral sclerosis induces mitochondrial alteration and increase of cytosolic Ca2+ concentration in transfected neuroblastoma SH-SY5Y cells. FEBS Lett 414(2):365–368

    CAS  PubMed  Google Scholar 

  141. Ferri A, Cozzolino M, Crosio C, Nencini M, Casciati A, Gralla EB, Rotilio G, Valentine JS, Carri MT (2006) Familial ALS-superoxide dismutases associate with mitochondria and shift their redox potentials. Proc Natl Acad Sci USA 103(37):13860–13865. doi:10.1073/pnas.0605814103

    CAS  PubMed Central  PubMed  Google Scholar 

  142. Son M, Leary SC, Romain N, Pierrel F, Winge DR, Haller RG, Elliott JL (2008) Isolated cytochrome c oxidase deficiency in G93A SOD1 mice overexpressing CCS protein. J Biol Chem 283(18):12267–12275. doi:10.1074/jbc.M708523200

    CAS  PubMed Central  PubMed  Google Scholar 

  143. Son M, Puttaparthi K, Kawamata H, Rajendran B, Boyer PJ, Manfredi G, Elliott JL (2007) Overexpression of CCS in G93A-SOD1 mice leads to accelerated neurological deficits with severe mitochondrial pathology. Proc Natl Acad Sci USA 104(14):6072–6077. doi:10.1073/pnas.0610923104

    CAS  PubMed Central  PubMed  Google Scholar 

  144. Mattiazzi M, D’Aurelio M, Gajewski CD, Martushova K, Kiaei M, Beal MF, Manfredi G (2002) Mutated human SOD1 causes dysfunction of oxidative phosphorylation in mitochondria of transgenic mice. J Biol Chem 277(33):29626–29633. doi:10.1074/jbc.M203065200

    CAS  PubMed  Google Scholar 

  145. Jung C, Higgins CM, Xu Z (2002) Mitochondrial electron transport chain complex dysfunction in a transgenic mouse model for amyotrophic lateral sclerosis. J Neurochem 83(3):535–545

    CAS  PubMed  Google Scholar 

  146. Jaiswal MK, Keller BU (2009) Cu/Zn superoxide dismutase typical for familial amyotrophic lateral sclerosis increases the vulnerability of mitochondria and perturbs Ca2+ homeostasis in SOD1G93A mice. Mol Pharmacol 75(3):478–489. doi:10.1124/mol.108.050831

    CAS  PubMed  Google Scholar 

  147. Jaiswal MK, Zech WD, Goos M, Leutbecher C, Ferri A, Zippelius A, Carri MT, Nau R, Keller BU (2009) Impairment of mitochondrial calcium handling in a mtSOD1 cell culture model of motoneuron disease. BMC Neurosci 10:64. doi:10.1186/1471-2202-10-64

    PubMed Central  PubMed  Google Scholar 

  148. Rothstein JD, Tsai G, Kuncl RW, Clawson L, Cornblath DR, Drachman DB, Pestronk A, Stauch BL, Coyle JT (1990) Abnormal excitatory amino acid metabolism in amyotrophic lateral sclerosis. Ann Neurol 28(1):18–25. doi:10.1002/ana.410280106

    CAS  PubMed  Google Scholar 

  149. Carriedo SG, Sensi SL, Yin HZ, Weiss JH (2000) AMPA exposures induce mitochondrial Ca(2+) overload and ROS generation in spinal motor neurons in vitro. J Neurosci 20(1):240–250

    CAS  PubMed  Google Scholar 

  150. Takuma H, Kwak S, Yoshizawa T, Kanazawa I (1999) Reduction of GluR2 RNA editing, a molecular change that increases calcium influx through AMPA receptors, selective in the spinal ventral gray of patients with amyotrophic lateral sclerosis. Ann Neurol 46(6):806–815

    CAS  PubMed  Google Scholar 

  151. Guatteo E, Carunchio I, Pieri M, Albo F, Canu N, Mercuri NB, Zona C (2007) Altered calcium homeostasis in motor neurons following AMPA receptor but not voltage-dependent calcium channels’ activation in a genetic model of amyotrophic lateral sclerosis. Neurobiol Dis 28(1):90–100. doi:10.1016/j.nbd.2007.07.002

    CAS  PubMed  Google Scholar 

  152. Zuccato C, Valenza M, Cattaneo E (2010) Molecular mechanisms and potential therapeutical targets in Huntington’s disease. Physiol Rev 90(3):905–981. doi:10.1152/physrev.00041.2009

    CAS  PubMed  Google Scholar 

  153. Graham RK, Deng Y, Slow EJ, Haigh B, Bissada N, Lu G, Pearson J, Shehadeh J, Bertram L, Murphy Z, Warby SC, Doty CN, Roy S, Wellington CL, Leavitt BR, Raymond LA, Nicholson DW, Hayden MR (2006) Cleavage at the caspase-6 site is required for neuronal dysfunction and degeneration due to mutant huntingtin. Cell 125(6):1179–1191. doi:10.1016/j.cell.2006.04.026

    CAS  PubMed  Google Scholar 

  154. Olzscha H, Schermann SM, Woerner AC, Pinkert S, Hecht MH, Tartaglia GG, Vendruscolo M, Hayer-Hartl M, Hartl FU, Vabulas RM (2011) Amyloid-like aggregates sequester numerous metastable proteins with essential cellular functions. Cell 144(1):67–78. doi:10.1016/j.cell.2010.11.050

    CAS  PubMed  Google Scholar 

  155. Bao J, Sharp AH, Wagster MV, Becher M, Schilling G, Ross CA, Dawson VL, Dawson TM (1996) Expansion of polyglutamine repeat in huntingtin leads to abnormal protein interactions involving calmodulin. Proc Natl Acad Sci USA 93(10):5037–5042

    CAS  PubMed Central  PubMed  Google Scholar 

  156. Yamanaka T, Nukina N (2010) Transcription factor sequestration by polyglutamine proteins. Methods Mol Biol 648:215–229. doi:10.1007/978-1-60761-756-3_14

    CAS  PubMed  Google Scholar 

  157. Fan MM, Raymond LA (2007) N-methyl-d-aspartate (NMDA) receptor function and excitotoxicity in Huntington’s disease. Prog Neurobiol 81(5–6):272–293. doi:10.1016/j.pneurobio.2006.11.003

    CAS  PubMed  Google Scholar 

  158. Bezprozvanny I (2007) Inositol 1,4,5-tripshosphate receptor, calcium signalling and Huntington’s disease. Subcell Biochem 45:323–335

    CAS  PubMed  Google Scholar 

  159. Lim D, Fedrizzi L, Tartari M, Zuccato C, Cattaneo E, Brini M, Carafoli E (2008) Calcium homeostasis and mitochondrial dysfunction in striatal neurons of Huntington disease. J Biol Chem 283(9):5780–5789. doi:10.1074/jbc.M704704200

    CAS  PubMed  Google Scholar 

  160. Seto-Ohshima A, Emson PC, Lawson E, Mountjoy CQ, Carrasco LH (1988) Loss of matrix calcium-binding protein-containing neurons in Huntington’s disease. Lancet 1(8597):1252–1255

    CAS  PubMed  Google Scholar 

  161. Dong G, Gross K, Qiao F, Ferguson J, Callegari EA, Rezvani K, Zhang D, Gloeckner CJ, Ueffing M, Wang H (2012) Calretinin interacts with huntingtin and reduces mutant huntingtin-caused cytotoxicity. J Neurochem 123(3):437–446. doi:10.1111/j.1471-4159.2012.07919.x

    CAS  PubMed  Google Scholar 

  162. Sun Y, Savanenin A, Reddy PH, Liu YF (2001) Polyglutamine-expanded huntingtin promotes sensitization of N-methyl-d-aspartate receptors via post-synaptic density 95. J Biol Chem 276(27):24713–24718. doi:10.1074/jbc.M103501200

    CAS  PubMed  Google Scholar 

  163. Benchoua A, Trioulier Y, Zala D, Gaillard MC, Lefort N, Dufour N, Saudou F, Elalouf JM, Hirsch E, Hantraye P, Deglon N, Brouillet E (2006) Involvement of mitochondrial complex II defects in neuronal death produced by N-terminus fragment of mutated huntingtin. Mol Biol Cell 17(4):1652–1663. doi:10.1091/mbc.E05-07-0607

    CAS  PubMed Central  PubMed  Google Scholar 

  164. Beal MF, Brouillet E, Jenkins BG, Ferrante RJ, Kowall NW, Miller JM, Storey E, Srivastava R, Rosen BR, Hyman BT (1993) Neurochemical and histologic characterization of striatal excitotoxic lesions produced by the mitochondrial toxin 3-nitropropionic acid. J Neurosci 13(10):4181–4192

    CAS  PubMed  Google Scholar 

  165. Panov AV, Gutekunst CA, Leavitt BR, Hayden MR, Burke JR, Strittmatter WJ, Greenamyre JT (2002) Early mitochondrial calcium defects in Huntington’s disease are a direct effect of polyglutamines. Nat Neurosci 5(8):731–736. doi:10.1038/nn884

    CAS  PubMed  Google Scholar 

  166. Panov AV, Burke JR, Strittmatter WJ, Greenamyre JT (2003) In vitro effects of polyglutamine tracts on Ca2+-dependent depolarization of rat and human mitochondria: relevance to Huntington’s disease. Arch Biochem Biophys 410(1):1–6

    CAS  PubMed  Google Scholar 

  167. Choo YS, Johnson GV, MacDonald M, Detloff PJ, Lesort M (2004) Mutant huntingtin directly increases susceptibility of mitochondria to the calcium-induced permeability transition and cytochrome c release. Hum Mol Genet 13(14):1407–1420. doi:10.1093/hmg/ddh162

    CAS  PubMed  Google Scholar 

  168. Tang TS, Tu H, Chan EY, Maximov A, Wang Z, Wellington CL, Hayden MR, Bezprozvanny I (2003) Huntingtin and huntingtin-associated protein 1 influence neuronal calcium signaling mediated by inositol-(1,4,5) triphosphate receptor type 1. Neuron 39(2):227–239

    CAS  PubMed Central  PubMed  Google Scholar 

  169. Dreses-Werringloer U, Lambert JC, Vingtdeux V, Zhao H, Vais H, Siebert A, Jain A, Koppel J, Rovelet-Lecrux A, Hannequin D, Pasquier F, Galimberti D, Scarpini E, Mann D, Lendon C, Campion D, Amouyel P, Davies P, Foskett JK, Campagne F, Marambaud P (2008) A polymorphism in CALHM1 influences Ca2+ homeostasis, Abeta levels, and Alzheimer’s disease risk. Cell 133(7):1149–1161. doi:10.1016/j.cell.2008.05.048

    CAS  PubMed Central  PubMed  Google Scholar 

  170. Bezprozvanny I, Mattson MP (2008) Neuronal calcium mishandling and the pathogenesis of Alzheimer’s disease. Trends Neurosci 31(9):454–463. doi:10.1016/j.tins.2008.06.005

    CAS  PubMed Central  PubMed  Google Scholar 

  171. Green KN, LaFerla FM (2008) Linking calcium to Abeta and Alzheimer’s disease. Neuron 59(2):190–194. doi:10.1016/j.neuron.2008.07.013

    CAS  PubMed  Google Scholar 

  172. Berridge MJ (2010) Calcium hypothesis of Alzheimer’s disease. Pflugers Arch 459(3):441–449. doi:10.1007/s00424-009-0736-1

    CAS  PubMed  Google Scholar 

  173. Lopez JR, Lyckman A, Oddo S, Laferla FM, Querfurth HW, Shtifman A (2008) Increased intraneuronal resting [Ca2+] in adult Alzheimer’s disease mice. J Neurochem 105(1):262–271. doi:10.1111/j.1471-4159.2007.05135.x

    CAS  PubMed  Google Scholar 

  174. Kuchibhotla KV, Goldman ST, Lattarulo CR, Wu HY, Hyman BT, Bacskai BJ (2008) Abeta plaques lead to aberrant regulation of calcium homeostasis in vivo resulting in structural and functional disruption of neuronal networks. Neuron 59(2):214–225. doi:10.1016/j.neuron.2008.06.008

    CAS  PubMed Central  PubMed  Google Scholar 

  175. Lauren J, Gimbel DA, Nygaard HB, Gilbert JW, Strittmatter SM (2009) Cellular prion protein mediates impairment of synaptic plasticity by amyloid-beta oligomers. Nature 457(7233):1128–1132. doi:10.1038/nature07761

    CAS  PubMed Central  PubMed  Google Scholar 

  176. Mattson MP, Cheng B, Davis D, Bryant K, Lieberburg I, Rydel RE (1992) beta-Amyloid peptides destabilize calcium homeostasis and render human cortical neurons vulnerable to excitotoxicity. J Neurosci 12(2):376–389

    CAS  PubMed  Google Scholar 

  177. Kawahara M, Kuroda Y (2000) Molecular mechanism of neurodegeneration induced by Alzheimer’s beta-amyloid protein: channel formation and disruption of calcium homeostasis. Brain Res Bull 53(4):389–397

    CAS  PubMed  Google Scholar 

  178. Kagan BL, Hirakura Y, Azimov R, Azimova R, Lin MC (2002) The channel hypothesis of Alzheimer’s disease: current status. Peptides 23(7):1311–1315

    CAS  PubMed  Google Scholar 

  179. Price SA, Held B, Pearson HA (1998) Amyloid beta protein increases Ca2+ currents in rat cerebellar granule neurones. NeuroReport 9(3):539–545

    CAS  PubMed  Google Scholar 

  180. Tu H, Nelson O, Bezprozvanny A, Wang Z, Lee SF, Hao YH, Serneels L, De Strooper B, Yu G, Bezprozvanny I (2006) Presenilins form ER Ca2+ leak channels, a function disrupted by familial Alzheimer’s disease-linked mutations. Cell 126(5):981–993. doi:10.1016/j.cell.2006.06.059

    CAS  PubMed Central  PubMed  Google Scholar 

  181. Stutzmann GE, Smith I, Caccamo A, Oddo S, Laferla FM, Parker I (2006) Enhanced ryanodine receptor recruitment contributes to Ca2+ disruptions in young, adult, and aged Alzheimer’s disease mice. J Neurosci 26(19):5180–5189. doi:10.1523/JNEUROSCI.0739-06.2006

    CAS  PubMed  Google Scholar 

  182. Cheung KH, Shineman D, Muller M, Cardenas C, Mei L, Yang J, Tomita T, Iwatsubo T, Lee VM, Foskett JK (2008) Mechanism of Ca2+ disruption in Alzheimer’s disease by presenilin regulation of InsP3 receptor channel gating. Neuron 58(6):871–883. doi:10.1016/j.neuron.2008.04.015

    CAS  PubMed Central  PubMed  Google Scholar 

  183. Brunello L, Zampese E, Florean C, Pozzan T, Pizzo P, Fasolato C (2009) Presenilin-2 dampens intracellular Ca2+ stores by increasing Ca2+ leakage and reducing Ca2+ uptake. J Cell Mol Med 13(9B):3358–3369. doi:10.1111/j.1582-4934.2009.00755.x

    PubMed  Google Scholar 

  184. Green KN, Demuro A, Akbari Y, Hitt BD, Smith IF, Parker I, LaFerla FM (2008) SERCA pump activity is physiologically regulated by presenilin and regulates amyloid beta production. J Cell Biol 181(7):1107–1116. doi:10.1083/jcb.200706171

    CAS  PubMed Central  PubMed  Google Scholar 

  185. Zampese E, Fasolato C, Kipanyula MJ, Bortolozzi M, Pozzan T, Pizzo P (2011) Presenilin 2 modulates endoplasmic reticulum (ER)-mitochondria interactions and Ca2+ cross-talk. Proc Natl Acad Sci USA 108(7):2777–2782. doi:10.1073/pnas.1100735108

    CAS  PubMed Central  PubMed  Google Scholar 

  186. Leissring MA, Parker I, LaFerla FM (1999) Presenilin-2 mutations modulate amplitude and kinetics of inositol 1,4,5-trisphosphate-mediated calcium signals. J Biol Chem 274(46):32535–32538

    CAS  PubMed  Google Scholar 

  187. Guo Q, Furukawa K, Sopher BL, Pham DG, Xie J, Robinson N, Martin GM, Mattson MP (1996) Alzheimer’s PS-1 mutation perturbs calcium homeostasis and sensitizes PC12 cells to death induced by amyloid beta-peptide. NeuroReport 8(1):379–383

    CAS  PubMed  Google Scholar 

  188. Chan SL, Mayne M, Holden CP, Geiger JD, Mattson MP (2000) Presenilin-1 mutations increase levels of ryanodine receptors and calcium release in PC12 cells and cortical neurons. J Biol Chem 275(24):18195–18200. doi:10.1074/jbc.M000040200

    CAS  PubMed  Google Scholar 

  189. Lee SY, Hwang DY, Kim YK, Lee JW, Shin IC, Oh KW, Lee MK, Lim JS, Yoon DY, Hwang SJ, Hong JT (2006) PS2 mutation increases neuronal cell vulnerability to neurotoxicants through activation of caspase-3 by enhancing of ryanodine receptor-mediated calcium release. FASEB J 20(1):151–153. doi:10.1096/fj.05-4017fje;1

    CAS  PubMed  Google Scholar 

  190. Smith IF, Green KN, LaFerla FM (2005) Calcium dysregulation in Alzheimer’s disease: recent advances gained from genetically modified animals. Cell Calcium 38(3–4):427–437. doi:10.1016/j.ceca.2005.06.021

    CAS  PubMed  Google Scholar 

  191. Cheung KH, Mei L, Mak DO, Hayashi I, Iwatsubo T, Kang DE, Foskett JK (2010) Gain-of-function enhancement of IP3 receptor modal gating by familial Alzheimer’s disease-linked presenilin mutants in human cells and mouse neurons. Sci Signal 3(114):ra22. doi:10.1126/scisignal.2000818

    PubMed Central  PubMed  Google Scholar 

  192. Smith IF, Hitt B, Green KN, Oddo S, LaFerla FM (2005) Enhanced caffeine-induced Ca2+ release in the 3xTg-AD mouse model of Alzheimer’s disease. J Neurochem 94(6):1711–1718. doi:10.1111/j.1471-4159.2005.03332.x

    CAS  PubMed  Google Scholar 

  193. Supnet C, Grant J, Kong H, Westaway D, Mayne M (2006) Amyloid-beta-(1–42) increases ryanodine receptor-3 expression and function in neurons of TgCRND8 mice. J Biol Chem 281(50):38440–38447. doi:10.1074/jbc.M606736200

    CAS  PubMed  Google Scholar 

  194. Chakroborty S, Briggs C, Miller MB, Goussakov I, Schneider C, Kim J, Wicks J, Richardson JC, Conklin V, Cameransi BG, Stutzmann GE (2012) Stabilizing ER Ca2+ channel function as an early preventative strategy for Alzheimer’s disease. PLoS One 7(12):e52056. doi:10.1371/journal.pone.0052056

    CAS  PubMed Central  PubMed  Google Scholar 

  195. Giacomello M, Barbiero L, Zatti G, Squitti R, Binetti G, Pozzan T, Fasolato C, Ghidoni R, Pizzo P (2005) Reduction of Ca2+ stores and capacitative Ca2+ entry is associated with the familial Alzheimer’s disease presenilin-2 T122R mutation and anticipates the onset of dementia. Neurobiol Dis 18(3):638–648. doi:10.1016/j.nbd.2004.10.016

    CAS  PubMed  Google Scholar 

  196. Zatti G, Ghidoni R, Barbiero L, Binetti G, Pozzan T, Fasolato C, Pizzo P (2004) The presenilin 2 M239I mutation associated with familial Alzheimer’s disease reduces Ca2+ release from intracellular stores. Neurobiol Dis 15(2):269–278. doi:10.1016/j.nbd.2003.11.002

    CAS  PubMed  Google Scholar 

  197. Zatti G, Burgo A, Giacomello M, Barbiero L, Ghidoni R, Sinigaglia G, Florean C, Bagnoli S, Binetti G, Sorbi S, Pizzo P, Fasolato C (2006) Presenilin mutations linked to familial Alzheimer’s disease reduce endoplasmic reticulum and Golgi apparatus calcium levels. Cell Calcium 39(6):539–550. doi:10.1016/j.ceca.2006.03.002

    CAS  PubMed  Google Scholar 

  198. Hedskog L, Pinho CM, Filadi R, Ronnback A, Hertwig L, Wiehager B, Larssen P, Gellhaar S, Sandebring A, Westerlund M, Graff C, Winblad B, Galter D, Behbahani H, Pizzo P, Glaser E, Ankarcrona M (2013) Modulation of the endoplasmic reticulum–mitochondria interface in Alzheimer’s disease and related models. Proc Natl Acad Sci USA 110(19):7916–7921. doi:10.1073/pnas.1300677110

    CAS  PubMed Central  PubMed  Google Scholar 

  199. Dauer W, Przedborski S (2003) Parkinson’s disease: mechanisms and models. Neuron 39(6):889–909

    CAS  PubMed  Google Scholar 

  200. de Lau LM, Breteler MM (2006) Epidemiology of Parkinson’s disease. Lancet Neurol 5(6):525–535. doi:10.1016/S1474-4422(06)70471-9

    PubMed  Google Scholar 

  201. Trinh J, Farrer M (2013) Advances in the genetics of Parkinson disease. Nat Rev Neurol 9(8):445–454. doi:10.1038/nrneurol.2013.132

    CAS  PubMed  Google Scholar 

  202. Beal MF (2005) Mitochondria take center stage in aging and neurodegeneration. Ann Neurol 58(4):495–505. doi:10.1002/ana.20624

    CAS  PubMed  Google Scholar 

  203. Vives-Bauza C, Przedborski S (2011) Mitophagy: the latest problem for Parkinson’s disease. Trends Mol Med 17(3):158–165. doi:10.1016/j.molmed.2010.11.002

    CAS  PubMed  Google Scholar 

  204. Corti O, Brice A (2013) Mitochondrial quality control turns out to be the principal suspect in parkin and PINK1-related autosomal recessive Parkinson’s disease. Curr Opin Neurobiol 23(1):100–108. doi:10.1016/j.conb.2012.11.002

    CAS  PubMed  Google Scholar 

  205. Exner N, Lutz AK, Haass C, Winklhofer KF (2012) Mitochondrial dysfunction in Parkinson’s disease: molecular mechanisms and pathophysiological consequences. EMBO J 31(14):3038–3062. doi:10.1038/emboj.2012.170

    CAS  PubMed Central  PubMed  Google Scholar 

  206. McCoy MK, Cookson MR (2012) Mitochondrial quality control and dynamics in Parkinson’s disease. Antioxid Redox Signal 16(9):869–882. doi:10.1089/ars.2011.4074; 10.1089/ars.2011.4019

  207. Damier P, Hirsch EC, Agid Y, Graybiel AM (1999) The substantia nigra of the human brain. I. Nigrosomes and the nigral matrix, a compartmental organization based on calbindin D(28K) immunohistochemistry. Brain 122(Pt 8):1421–1436

    PubMed  Google Scholar 

  208. German DC, Manaye KF, Sonsalla PK, Brooks BA (1992) Midbrain dopaminergic cell loss in Parkinson’s disease and MPTP-induced parkinsonism: sparing of calbindin-D28k-containing cells. Ann N Y Acad Sci 648:42–62

    CAS  PubMed  Google Scholar 

  209. Nedergaard S, Flatman JA, Engberg I (1993) Nifedipine- and omega-conotoxin-sensitive Ca2+ conductances in guinea-pig substantia nigra pars compacta neurones. J Physiol 466:727–747

    CAS  PubMed Central  PubMed  Google Scholar 

  210. Mosharov EV, Larsen KE, Kanter E, Phillips KA, Wilson K, Schmitz Y, Krantz DE, Kobayashi K, Edwards RH, Sulzer D (2009) Interplay between cytosolic dopamine, calcium, and alpha-synuclein causes selective death of substantia nigra neurons. Neuron 62(2):218–229. doi:10.1016/j.neuron.2009.01.033

    CAS  PubMed Central  PubMed  Google Scholar 

  211. Guzman JN, Sanchez-Padilla J, Wokosin D, Kondapalli J, Ilijic E, Schumacker PT, Surmeier DJ (2010) Oxidant stress evoked by pacemaking in dopaminergic neurons is attenuated by DJ-1. Nature 468(7324):696–700. doi:10.1038/nature09536

    CAS  PubMed  Google Scholar 

  212. Surmeier DJ, Schumacker PT (2013) Calcium, bioenergetics, and neuronal vulnerability in Parkinson’s disease. J Biol Chem 288(15):10736–10741. doi:10.1074/jbc.R112.410530

    CAS  PubMed Central  PubMed  Google Scholar 

  213. Ottolini D, Cali T, Negro A, Brini M (2013) The Parkinson disease-related protein DJ-1 counteracts mitochondrial impairment induced by the tumour suppressor protein p53 by enhancing endoplasmic reticulum–mitochondria tethering. Hum Mol Genet 22(11):2152–2168. doi:10.1093/hmg/ddt068

    CAS  PubMed  Google Scholar 

  214. Cali T, Ottolini D, Negro A, Brini M (2013) Enhanced parkin levels favor ER-mitochondria crosstalk and guarantee Ca(2+) transfer to sustain cell bioenergetics. Biochim Biophys Acta 1832(4):495–508. doi:10.1016/j.bbadis.2013.01.004

    CAS  PubMed  Google Scholar 

  215. Cali T, Ottolini D, Negro A, Brini M (2012) alpha-Synuclein controls mitochondrial calcium homeostasis by enhancing endoplasmic reticulum-mitochondria interactions. J Biol Chem 287(22):17914–17929. doi:10.1074/jbc.M111.302794

    CAS  PubMed Central  PubMed  Google Scholar 

  216. Melachroinou K, Xilouri M, Emmanouilidou E, Masgrau R, Papazafiri P, Stefanis L, Vekrellis K (2013) Deregulation of calcium homeostasis mediates secreted alpha-synuclein-induced neurotoxicity. Neurobiol Aging. doi:10.1016/j.neurobiolaging.2013.06.006

    PubMed  Google Scholar 

  217. Hettiarachchi NT, Parker A, Dallas ML, Pennington K, Hung CC, Pearson HA, Boyle JP, Robinson P, Peers C (2009) alpha-Synuclein modulation of Ca2+ signaling in human neuroblastoma (SH-SY5Y) cells. J Neurochem 111(5):1192–1201. doi:10.1111/j.1471-4159.2009.06411.x

    CAS  PubMed  Google Scholar 

  218. Furukawa K, Matsuzaki-Kobayashi M, Hasegawa T, Kikuchi A, Sugeno N, Itoyama Y, Wang Y, Yao PJ, Bushlin I, Takeda A (2006) Plasma membrane ion permeability induced by mutant alpha-synuclein contributes to the degeneration of neural cells. J Neurochem 97(4):1071–1077. doi:10.1111/j.1471-4159.2006.03803.x

    CAS  PubMed  Google Scholar 

  219. Marongiu R, Spencer B, Crews L, Adame A, Patrick C, Trejo M, Dallapiccola B, Valente EM, Masliah E (2009) Mutant Pink1 induces mitochondrial dysfunction in a neuronal cell model of Parkinson’s disease by disturbing calcium flux. J Neurochem 108(6):1561–1574. doi:10.1111/j.1471-4159.2009.05932.x

    CAS  PubMed Central  PubMed  Google Scholar 

  220. Gandhi S, Wood-Kaczmar A, Yao Z, Plun-Favreau H, Deas E, Klupsch K, Downward J, Latchman DS, Tabrizi SJ, Wood NW, Duchen MR, Abramov AY (2009) PINK1-associated Parkinson’s disease is caused by neuronal vulnerability to calcium-induced cell death. Mol Cell 33(5):627–638. doi:10.1016/j.molcel.2009.02.013

    CAS  PubMed Central  PubMed  Google Scholar 

  221. Gautier CA, Giaime E, Caballero E, Nunez L, Song Z, Chan D, Villalobos C, Shen J (2012) Regulation of mitochondrial permeability transition pore by PINK1. Mol Neurodegener 7:22. doi:10.1186/1750-1326-7-22

    CAS  PubMed  Google Scholar 

  222. Heeman B, Van den Haute C, Aelvoet SA, Valsecchi F, Rodenburg RJ, Reumers V, Debyser Z, Callewaert G, Koopman WJ, Willems PH, Baekelandt V (2011) Depletion of PINK1 affects mitochondrial metabolism, calcium homeostasis and energy maintenance. J Cell Sci 124(Pt 7):1115–1125. doi:10.1242/jcs.078303

    CAS  PubMed  Google Scholar 

  223. Airaksinen MS, Eilers J, Garaschuk O, Thoenen H, Konnerth A, Meyer M (1997) Ataxia and altered dendritic calcium signaling in mice carrying a targeted null mutation of the calbindin D28k gene. Proc Natl Acad Sci USA 94(4):1488–1493

    CAS  PubMed Central  PubMed  Google Scholar 

  224. Lledo PM, Somasundaram B, Morton AJ, Emson PC, Mason WT (1992) Stable transfection of calbindin-D28k into the GH3 cell line alters calcium currents and intracellular calcium homeostasis. Neuron 9(5):943–954

    CAS  PubMed  Google Scholar 

  225. Chard PS, Bleakman D, Christakos S, Fullmer CS, Miller RJ (1993) Calcium buffering properties of calbindin D28k and parvalbumin in rat sensory neurones. J Physiol 472:341–357

    CAS  PubMed Central  PubMed  Google Scholar 

  226. Watase K, Barrett CF, Miyazaki T, Ishiguro T, Ishikawa K, Hu Y, Unno T, Sun Y, Kasai S, Watanabe M, Gomez CM, Mizusawa H, Tsien RW, Zoghbi HY (2008) Spinocerebellar ataxia type 6 knockin mice develop a progressive neuronal dysfunction with age-dependent accumulation of mutant CaV2.1 channels. Proc Natl Acad Sci USA 105(33):11987–11992. doi:10.1073/pnas.0804350105

    CAS  PubMed Central  PubMed  Google Scholar 

  227. Chen X, Tang TS, Tu H, Nelson O, Pook M, Hammer R, Nukina N, Bezprozvanny I (2008) Deranged calcium signaling and neurodegeneration in spinocerebellar ataxia type 3. J Neurosci 28(48):12713–12724. doi:10.1523/JNEUROSCI.3909-08.2008

    CAS  PubMed Central  PubMed  Google Scholar 

  228. Liu J, Tang TS, Tu H, Nelson O, Herndon E, Huynh DP, Pulst SM, Bezprozvanny I (2009) Deranged calcium signaling and neurodegeneration in spinocerebellar ataxia type 2. J Neurosci 29(29):9148–9162. doi:10.1523/JNEUROSCI.0660-09.2009

    CAS  PubMed Central  PubMed  Google Scholar 

  229. Giacomello M, De Mario A, Primerano S, Brini M, Carafoli E (2012) Hair cells, plasma membrane Ca(2)(+) ATPase and deafness. Int J Biochem Cell Biol 44(5):679–683. doi:10.1016/j.biocel.2012.02.006

    CAS  PubMed  Google Scholar 

  230. Empson RM, Turner PR, Nagaraja RY, Beesley PW, Knopfel T (2010) Reduced expression of the Ca(2+) transporter protein PMCA2 slows Ca(2+) dynamics in mouse cerebellar Purkinje neurones and alters the precision of motor coordination. J Physiol 588(Pt 6):907–922. doi:10.1113/jphysiol.2009.182196

    CAS  PubMed Central  PubMed  Google Scholar 

  231. Empson RM, Akemann W, Knopfel T (2010) The role of the calcium transporter protein plasma membrane calcium ATPase PMCA2 in cerebellar Purkinje neuron function. Funct Neurol 25(3):153–158

    CAS  PubMed  Google Scholar 

  232. Fierro L, DiPolo R, Llano I (1998) Intracellular calcium clearance in Purkinje cell somata from rat cerebellar slices. J Physiol 510(Pt 2):499–512

    CAS  PubMed Central  PubMed  Google Scholar 

  233. Hartmann J, Konnerth A (2005) Determinants of postsynaptic Ca2+ signaling in Purkinje neurons. Cell Calcium 37(5):459–466. doi:10.1016/j.ceca.2005.01.014

    CAS  PubMed  Google Scholar 

  234. Zhao S, Chen N, Yang Z, Huang L, Zhu Y, Guan S, Chen Q, Wang JH (2008) Ischemia deteriorates the spike encoding of rat cerebellar Purkinje cells by raising intracellular Ca2+. Biochem Biophys Res Commun 366(2):401–407. doi:10.1016/j.bbrc.2007.11.173

    CAS  PubMed  Google Scholar 

  235. Filoteo AG, Elwess NL, Enyedi A, Caride A, Aung HH, Penniston JT (1997) Plasma membrane Ca2+ pump in rat brain. Patterns of alternative splices seen by isoform-specific antibodies. J Biol Chem 272(38):23741–23747

    CAS  PubMed  Google Scholar 

  236. Pietrobon D, Moskowitz MA (2013) Pathophysiology of migraine. Annu Rev Physiol 75:365–391. doi:10.1146/annurev-physiol-030212-183717

    CAS  PubMed  Google Scholar 

  237. de Vries B, Frants RR, Ferrari MD, van den Maagdenberg AM (2009) Molecular genetics of migraine. Hum Genet 126(1):115–132. doi:10.1007/s00439-009-0684-z

    CAS  PubMed  Google Scholar 

  238. Ophoff RA, Terwindt GM, Vergouwe MN, van Eijk R, Oefner PJ, Hoffman SM, Lamerdin JE, Mohrenweiser HW, Bulman DE, Ferrari M, Haan J, Lindhout D, van Ommen GJ, Hofker MH, Ferrari MD, Frants RR (1996) Familial hemiplegic migraine and episodic ataxia type-2 are caused by mutations in the Ca2+ channel gene CACNL1A4. Cell 87(3):543–552

    CAS  PubMed  Google Scholar 

  239. Pietrobon D (2013) Calcium channels and migraine. Biochim Biophys Acta 1828(7):1655–1665. doi:10.1016/j.bbamem.2012.11.012

    CAS  PubMed  Google Scholar 

  240. De Fusco M, Marconi R, Silvestri L, Atorino L, Rampoldi L, Morgante L, Ballabio A, Aridon P, Casari G (2003) Haploinsufficiency of ATP1A2 encoding the Na+/K+ pump alpha2 subunit associated with familial hemiplegic migraine type 2. Nat Genet 33(2):192–196. doi:10.1038/ng1081

    PubMed  Google Scholar 

  241. Rose EM, Koo JC, Antflick JE, Ahmed SM, Angers S, Hampson DR (2009) Glutamate transporter coupling to Na, K-ATPase. J Neurosci 29(25):8143–8155. doi:10.1523/JNEUROSCI.1081-09.2009

    CAS  PubMed  Google Scholar 

  242. Tavraz NN, Friedrich T, Durr KL, Koenderink JB, Bamberg E, Freilinger T, Dichgans M (2008) Diverse functional consequences of mutations in the Na+/K+-ATPase alpha2-subunit causing familial hemiplegic migraine type 2. J Biol Chem 283(45):31097–31106. doi:10.1074/jbc.M802771200

    CAS  PubMed Central  PubMed  Google Scholar 

  243. Tavraz NN, Durr KL, Koenderink JB, Freilinger T, Bamberg E, Dichgans M, Friedrich T (2009) Impaired plasma membrane targeting or protein stability by certain ATP1A2 mutations identified in sporadic or familial hemiplegic migraine. Channels (Austin) 3(2):82–87

    CAS  Google Scholar 

  244. Dichgans M, Freilinger T, Eckstein G, Babini E, Lorenz-Depiereux B, Biskup S, Ferrari MD, Herzog J, van den Maagdenberg AM, Pusch M, Strom TM (2005) Mutation in the neuronal voltage-gated sodium channel SCN1A in familial hemiplegic migraine. Lancet 366(9483):371–377. doi:10.1016/S0140-6736(05)66786-4

    CAS  PubMed  Google Scholar 

  245. Catterall WA, Kalume F, Oakley JC (2010) NaV1.1 channels and epilepsy. J Physiol 588(Pt 11):1849–1859. doi:10.1113/jphysiol.2010.187484

    CAS  PubMed Central  PubMed  Google Scholar 

  246. Cestele S, Scalmani P, Rusconi R, Terragni B, Franceschetti S, Mantegazza M (2008) Self-limited hyperexcitability: functional effect of a familial hemiplegic migraine mutation of the Nav1.1 (SCN1A) Na+ channel. J Neurosci 28(29):7273–7283. doi:10.1523/JNEUROSCI.4453-07.2008

    CAS  PubMed Central  PubMed  Google Scholar 

  247. Kahlig KM, Rhodes TH, Pusch M, Freilinger T, Pereira-Monteiro JM, Ferrari MD, van den Maagdenberg AM, Dichgans M, George AL Jr (2008) Divergent sodium channel defects in familial hemiplegic migraine. Proc Natl Acad Sci USA 105(28):9799–9804. doi:10.1073/pnas.0711717105

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

The original work by the authors has been supported over the years by grants from the Italian Ministry of University and Research (FIRB2001 to E.C., PRIN 2003, 2005 and 2008 to M.B), the Telethon Foundation (Project GGP04169 to M.B.), the FP6 program of the European Union (FP6 Network of Excellence NeuroNe, LSH-2003-2.1.3-3 to E.C. and Integrated Project Eurohear to E.C.), the Human Frontier Science Program Organization to E.C., the ERANet-Neuron (nEUROsyn), and CARIPARO Foundation to E.C, the Italian National Research Council (Agenzia 2000, CNR) and by grant from the University of Padova (Progetto di Ateneo 2008 CPDA082825) to M.B. Tito Calì is supported by the University of Padova (Progetto Giovani GRIC128SP0, Bando 2012). We apologize to many authors who have published substantial scientific contributions in the field of this specific Ca2+ research whose work could not or not sufficiently be cited here. This is due to space restrictions. Figures 1, 3 and 5 were produced using ServierMedical Art (http://www.servier.com/serviermedical-art/powerpoint-image-bank).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Marisa Brini or Ernesto Carafoli.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Brini, M., Calì, T., Ottolini, D. et al. Neuronal calcium signaling: function and dysfunction. Cell. Mol. Life Sci. 71, 2787–2814 (2014). https://doi.org/10.1007/s00018-013-1550-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-013-1550-7

Keywords

Navigation