Skip to main content

Advertisement

Log in

Myostatin and the skeletal muscle atrophy and hypertrophy signaling pathways

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Myostatin, a member of the transforming growth factor-β superfamily, is a potent negative regulator of skeletal muscle growth and is conserved in many species, from rodents to humans. Myostatin inactivation can induce skeletal muscle hypertrophy, while its overexpression or systemic administration causes muscle atrophy. As it represents a potential target for stimulating muscle growth and/or preventing muscle wasting, myostatin regulation and functions in the control of muscle mass have been extensively studied. A wealth of data strongly suggests that alterations in skeletal muscle mass are associated with dysregulation in myostatin expression. Moreover, myostatin plays a central role in integrating/mediating anabolic and catabolic responses. Myostatin negatively regulates the activity of the Akt pathway, which promotes protein synthesis, and increases the activity of the ubiquitin–proteasome system to induce atrophy. Several new studies have brought new information on how myostatin may affect both ribosomal biogenesis and translation efficiency of specific mRNA subclasses. In addition, although myostatin has been identified as a modulator of the major catabolic pathways, including the ubiquitin–proteasome and the autophagy–lysosome systems, the underlying mechanisms are only partially understood. The goal of this review is to highlight outstanding questions about myostatin-mediated regulation of the anabolic and catabolic signaling pathways in skeletal muscle. Particular emphasis has been placed on (1) the cross-regulation between myostatin, the growth-promoting pathways and the proteolytic systems; (2) how myostatin inhibition leads to muscle hypertrophy; and (3) the regulation of translation by myostatin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ruegg MA, Glass DJ (2011) Molecular mechanisms and treatment options for muscle wasting diseases. Annu Rev Pharmacol Toxicol 51:373–395. doi:10.1146/annurev-pharmtox-010510-100537

    Article  PubMed  CAS  Google Scholar 

  2. Glass DJ (2005) Skeletal muscle hypertrophy and atrophy signaling pathways. Int J Biochem Cell Biol 37(10):1974–1984. doi:10.1016/j.biocel.2005.04.018

    Article  PubMed  CAS  Google Scholar 

  3. Sandri M (2008) Signaling in muscle atrophy and hypertrophy. Physiology (Bethesda) 23:160–170. doi:10.1152/physiol.00041.2007

    Article  CAS  Google Scholar 

  4. Elliott B, Renshaw D, Getting S, Mackenzie R (2012) The central role of myostatin in skeletal muscle and whole body homeostasis. Acta Physiol (Oxf) 205(3):324–340. doi:10.1111/j.1748-1716.2012.02423.x

    Article  CAS  Google Scholar 

  5. McPherron AC, Lawler AM, Lee SJ (1997) Regulation of skeletal muscle mass in mice by a new TGF-beta superfamily member. Nature 387(6628):83–90

    Article  PubMed  CAS  Google Scholar 

  6. Mosher DS, Quignon P, Bustamante CD, Sutter NB, Mellersh CS, Parker HG, Ostrander EA (2007) A mutation in the myostatin gene increases muscle mass and enhances racing performance in heterozygote dogs. PLoS Genet 3(5):e79. doi:10.1371/journal.pgen.0030079

    Article  PubMed  PubMed Central  Google Scholar 

  7. Grobet L, Martin LJ, Poncelet D, Pirottin D, Brouwers B, Riquet J, Schoeberlein A, Dunner S, Menissier F, Massabanda J, Fries R, Hanset R, Georges M (1997) A deletion in the bovine myostatin gene causes the double-muscled phenotype in cattle. Nat Genet 17(1):71–74. doi:10.1038/ng0997-71

    Article  PubMed  CAS  Google Scholar 

  8. Kambadur R, Sharma M, Smith TP, Bass JJ (1997) Mutations in myostatin (GDF8) in double-muscled Belgian Blue and Piedmontese cattle. Genome Res 7(9):910–916

    PubMed  CAS  Google Scholar 

  9. Clop A, Marcq F, Takeda H, Pirottin D, Tordoir X, Bibe B, Bouix J, Caiment F, Elsen JM, Eychenne F, Larzul C, Laville E, Meish F, Milenkovic D, Tobin J, Charlier C, Georges M (2006) A mutation creating a potential illegitimate microRNA target site in the myostatin gene affects muscularity in sheep. Nat Genet 38(7):813–818. doi:10.1038/ng1810

    Article  PubMed  CAS  Google Scholar 

  10. Schuelke M, Wagner KR, Stolz LE, Hubner C, Riebel T, Komen W, Braun T, Tobin JF, Lee SJ (2004) Myostatin mutation associated with gross muscle hypertrophy in a child. N Engl J Med 350(26):2682–2688. doi:10.1056/NEJMoa040933

    Article  PubMed  CAS  Google Scholar 

  11. Szabo G, Dallmann G, Muller G, Patthy L, Soller M, Varga L (1998) A deletion in the myostatin gene causes the compact (Cmpt) hypermuscular mutation in mice. Mamm Genome 9(8):671–672

    Article  PubMed  CAS  Google Scholar 

  12. Grobet L, Pirottin D, Farnir F, Poncelet D, Royo LJ, Brouwers B, Christians E, Desmecht D, Coignoul F, Kahn R, Georges M (2003) Modulating skeletal muscle mass by postnatal, muscle-specific inactivation of the myostatin gene. Genesis 35(4):227–238. doi:10.1002/gene.10188

    Article  PubMed  CAS  Google Scholar 

  13. Whittemore LA, Song K, Li X, Aghajanian J, Davies M, Girgenrath S, Hill JJ, Jalenak M, Kelley P, Knight A, Maylor R, O’Hara D, Pearson A, Quazi A, Ryerson S, Tan XY, Tomkinson KN, Veldman GM, Widom A, Wright JF, Wudyka S, Zhao L, Wolfman NM (2003) Inhibition of myostatin in adult mice increases skeletal muscle mass and strength. Biochem Biophys Res Commun 300(4):965–971 (pii):S0006291X02029534

    Article  PubMed  CAS  Google Scholar 

  14. Rebbapragada A, Benchabane H, Wrana JL, Celeste AJ, Attisano L (2003) Myostatin signals through a transforming growth factor beta-like signaling pathway to block adipogenesis. Mol Cell Biol 23(20):7230–7242

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  15. Lee SJ, McPherron AC (2001) Regulation of myostatin activity and muscle growth. Proc Natl Acad Sci USA 98(16):9306–9311

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  16. Derynck R, Zhang Y, Feng XH (1998) Smads: transcriptional activators of TGF-beta responses. Cell 95(6):737–740

    Article  PubMed  CAS  Google Scholar 

  17. Forbes D, Jackman M, Bishop A, Thomas M, Kambadur R, Sharma M (2006) Myostatin auto-regulates its expression by feedback loop through Smad7 dependent mechanism. J Cell Physiol 206(1):264–272

    Article  PubMed  CAS  Google Scholar 

  18. Zhu X, Topouzis S, Liang LF, Stotish RL (2004) Myostatin signaling through Smad2, Smad3 and Smad4 is regulated by the inhibitory Smad7 by a negative feedback mechanism. Cytokine 26(6):262–272. doi:10.1016/j.cyto.2004.03.007

    Article  PubMed  CAS  Google Scholar 

  19. Sartori R, Milan G, Patron M, Mammucari C, Blaauw B, Abraham R, Sandri M (2009) Smad2 and 3 transcription factors control muscle mass in adulthood. Am J Physiol Cell Physiol 296(6):C1248–C1257. doi:10.1152/ajpcell.00104.2009

    Article  PubMed  CAS  Google Scholar 

  20. Trendelenburg AU, Meyer A, Rohner D, Boyle J, Hatakeyama S, Glass DJ (2009) Myostatin reduces Akt/TORC1/p70S6K signaling, inhibiting myoblast differentiation and myotube size. Am J Physiol Cell Physiol 296(6):C1258–C1270. doi:10.1152/ajpcell.00105.2009

    Article  PubMed  CAS  Google Scholar 

  21. Sartori R, Schirwis E, Blaauw B, Bortolanza S, Zhao J, Enzo E, Stantzou A, Mouisel E, Toniolo L, Ferry A, Stricker S, Goldberg AL, Dupont S, Piccolo S, Amthor H, Sandri M (2013) BMP signaling controls muscle mass. Nat Genet 45(11):1309–1318. doi:10.1038/ng.2772

    Article  PubMed  CAS  Google Scholar 

  22. Liu W, Thomas SG, Asa SL, Gonzalez-Cadavid N, Bhasin S, Ezzat S (2003) Myostatin is a skeletal muscle target of growth hormone anabolic action. J Clin Endocrinol Metab 88(11):5490–5496

    Article  PubMed  CAS  Google Scholar 

  23. Brill KT, Weltman AL, Gentili A, Patrie JT, Fryburg DA, Hanks JB, Urban RJ, Veldhuis JD (2002) Single and combined effects of growth hormone and testosterone administration on measures of body composition, physical performance, mood, sexual function, bone turnover, and muscle gene expression in healthy older men. J Clin Endocrinol Metab 87(12):5649–5657

    Article  PubMed  CAS  Google Scholar 

  24. Mendler L, Baka Z, Kovacs-Simon A, Dux L (2007) Androgens negatively regulate myostatin expression in an androgen-dependent skeletal muscle. Biochem Biophys Res Commun 361(1):237–242

    Article  PubMed  CAS  Google Scholar 

  25. Braga M, Bhasin S, Jasuja R, Pervin S, Singh R (2012) Testosterone inhibits transforming growth factor-beta signaling during myogenic differentiation and proliferation of mouse satellite cells: potential role of follistatin in mediating testosterone action. Mol Cell Endocrinol 350(1):39–52. doi:10.1016/j.mce.2011.11.019

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  26. Dubois V, Laurent MR, Sinnesael M, Cielen N, Helsen C, Clinckemalie L, Spans L, Gayan-Ramirez G, Deldicque L, Hespel P, Carmeliet G, Vanderschueren D, Claessens F (2014) A satellite cell-specific knockout of the androgen receptor reveals myostatin as a direct androgen target in skeletal muscle. FASEB J. doi:10.1096/fj.14-249748

    PubMed  Google Scholar 

  27. Kim JS, Cross JM, Bamman MM (2005) Impact of resistance loading on myostatin expression and cell cycle regulation in young and older men and women. Am J Physiol Endocrinol Metab 288(6):E1110–E1119. doi:10.1152/ajpendo.00464.2004

    Article  PubMed  CAS  Google Scholar 

  28. Michel RN, Dunn SE, Chin ER (2004) Calcineurin and skeletal muscle growth. Proc Nutr Soc 63(2):341–349

    Article  PubMed  CAS  Google Scholar 

  29. Ruas JL, White JP, Rao RR, Kleiner S, Brannan KT, Harrison BC, Greene NP, Wu J, Estall JL, Irving BA, Lanza IR, Rasbach KA, Okutsu M, Nair KS, Yan Z, Leinwand LA, Spiegelman BM (2012) A PGC-1alpha isoform induced by resistance training regulates skeletal muscle hypertrophy. Cell 151(6):1319–1331. doi:10.1016/j.cell.2012.10.050

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  30. Roth SM, Martel GF, Ferrell RE, Metter EJ, Hurley BF, Rogers MA (2003) Myostatin gene expression is reduced in humans with heavy-resistance strength training: a brief communication. Exp Biol Med (Maywood) 228(6):706–709

    CAS  Google Scholar 

  31. Willoughby DS (2004) Effects of an alleged myostatin-binding supplement and heavy resistance training on serum myostatin, muscle strength and mass, and body composition. Int J Sport Nutr Exerc Metab 14(4):461–472

    PubMed  CAS  Google Scholar 

  32. Willoughby DS (2004) Effects of heavy resistance training on myostatin mRNA and protein expression. Med Sci Sports Exerc 36(4):574–582 (pii):00005768-200404000-00004

    Article  PubMed  Google Scholar 

  33. Hayot M, Rodriguez J, Vernus B, Carnac G, Jean E, Allen D, Goret L, Obert P, Candau R, Bonnieu A (2011) Myostatin up-regulation is associated with the skeletal muscle response to hypoxic stimuli. Mol Cell Endocrinol 332(1–2):38–47. doi:10.1016/j.mce.2010.09.008

    Article  PubMed  CAS  Google Scholar 

  34. Yarasheski KE, Bhasin S, Sinha-Hikim I, Pak-Loduca J, Gonzalez-Cadavid NF (2002) Serum myostatin-immunoreactive protein is increased in 60–92 year old women and men with muscle wasting. J Nutr Health Aging 6(5):343–348

    PubMed  CAS  Google Scholar 

  35. Ratkevicius A, Joyson A, Selmer I, Dhanani T, Grierson C, Tommasi AM, DeVries A, Rauchhaus P, Crowther D, Alesci S, Yaworsky P, Gilbert F, Redpath TW, Brady J, Fearon KC, Reid DM, Greig CA, Wackerhage H (2011) Serum concentrations of myostatin and myostatin-interacting proteins do not differ between young and sarcopenic elderly men. J Gerontol A Biol Sci Med Sci 66(6):620–626. doi:10.1093/gerona/glr025

    Article  PubMed  CAS  Google Scholar 

  36. Siriett V, Platt L, Salerno MS, Ling N, Kambadur R, Sharma M (2006) Prolonged absence of myostatin reduces sarcopenia. J Cell Physiol 209(3):866–873

    Article  PubMed  CAS  Google Scholar 

  37. Murphy KT, Koopman R, Naim T, Leger B, Trieu J, Ibebunjo C, Lynch GS (2010) Antibody-directed myostatin inhibition in 21-mo-old mice reveals novel roles for myostatin signaling in skeletal muscle structure and function. FASEB J 24(11):4433–4442. doi:10.1096/fj.10-159608

    Article  PubMed  CAS  Google Scholar 

  38. Kawada S, Tachi C, Ishii N (2001) Content and localization of myostatin in mouse skeletal muscles during aging, mechanical unloading and reloading. J Muscle Res Cell Motil 22(8):627–633

    Article  PubMed  CAS  Google Scholar 

  39. Baumann AP, Ibebunjo C, Grasser WA, Paralkar VM (2003) Myostatin expression in age and denervation-induced skeletal muscle atrophy. J Musculoskelet Neuronal Interact 3(1):8–16

    PubMed  CAS  Google Scholar 

  40. Carlson CJ, Booth FW, Gordon SE (1999) Skeletal muscle myostatin mRNA expression is fiber-type specific and increases during hindlimb unloading. Am J Physiol 277(2 Pt 2):R601–R606

    PubMed  CAS  Google Scholar 

  41. Oldham JM, Osepchook CC, Jeanplong F, Falconer SJ, Matthews KG, Conaglen JV, Gerrard DF, Smith HK, Wilkins RJ, Bass JJ, McMahon CD (2009) The decrease in mature myostatin protein in male skeletal muscle is developmentally regulated by growth hormone. J Physiol 587(Pt 3):669–677. doi:10.1113/jphysiol.2008.161521

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  42. Ohsawa Y, Hagiwara H, Nakatani M, Yasue A, Moriyama K, Murakami T, Tsuchida K, Noji S, Sunada Y (2006) Muscular atrophy of caveolin-3-deficient mice is rescued by myostatin inhibition. J Clin Invest 116(11):2924–2934

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  43. Gilson H, Schakman O, Combaret L, Lause P, Grobet L, Attaix D, Ketelslegers JM, Thissen JP (2007) Myostatin gene deletion prevents glucocorticoid-induced muscle atrophy. Endocrinology 148(1):452–460

    Article  PubMed  CAS  Google Scholar 

  44. Salehian B, Mahabadi V, Bilas J, Taylor WE, Ma K (2006) The effect of glutamine on prevention of glucocorticoid-induced skeletal muscle atrophy is associated with myostatin suppression. Metabolism 55(9):1239–1247. doi:10.1016/j.metabol.2006.05.009

    Article  PubMed  CAS  Google Scholar 

  45. Zimmers TA, Davies MV, Koniaris LG, Haynes P, Esquela AF, Tomkinson KN, McPherron AC, Wolfman NM, Lee SJ (2002) Induction of cachexia in mice by systemically administered myostatin. Science 296(5572):1486–1488. doi:10.1126/science.1069525

    Article  PubMed  CAS  Google Scholar 

  46. Durieux AC, Amirouche A, Banzet S, Koulmann N, Bonnefoy R, Pasdeloup M, Mouret C, Bigard X, Peinnequin A, Freyssenet D (2007) Ectopic expression of myostatin induces atrophy of adult skeletal muscle by decreasing muscle gene expression. Endocrinology 148(7):3140–3147

    Article  PubMed  CAS  Google Scholar 

  47. Amirouche A, Durieux AC, Banzet S, Koulmann N, Bonnefoy R, Mouret C, Bigard X, Peinnequin A, Freyssenet D (2009) Down-regulation of Akt/mammalian target of rapamycin signaling pathway in response to myostatin overexpression in skeletal muscle. Endocrinology 150(1):286–294. doi:10.1210/en.2008-0959

    Article  PubMed  CAS  Google Scholar 

  48. McMahon CD, Popovic L, Oldham JM, Jeanplong F, Smith HK, Kambadur R, Sharma M, Maxwell L, Bass JJ (2003) Myostatin-deficient mice lose more skeletal muscle mass than wild-type controls during hindlimb suspension. Am J Physiol Endocrinol Metab 285(1):E82–E87

    PubMed  CAS  Google Scholar 

  49. Bischoff R, Heintz C (1994) Enhancement of skeletal muscle regeneration. Dev Dyn 201(1):41–54. doi:10.1002/aja.1002010105

    Article  PubMed  CAS  Google Scholar 

  50. Schmalbruch H, al-Amood WS, Lewis DM (1991) Morphology of long-term denervated rat soleus muscle and the effect of chronic electrical stimulation. J Physiol 441:233–241

    PubMed  CAS  PubMed Central  Google Scholar 

  51. Cooper RN, Tajbakhsh S, Mouly V, Cossu G, Buckingham M, Butler-Browne GS (1999) In vivo satellite cell activation via Myf5 and MyoD in regenerating mouse skeletal muscle. J Cell Sci 112(Pt 17):2895–2901

    PubMed  CAS  Google Scholar 

  52. McCroskery S, Thomas M, Maxwell L, Sharma M, Kambadur R (2003) Myostatin negatively regulates satellite cell activation and self-renewal. J Cell Biol 162(6):1135–1147. doi:10.1083/jcb.200207056

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  53. Magee TR, Artaza JN, Ferrini MG, Vernet D, Zuniga FI, Cantini L, Reisz-Porszasz S, Rajfer J, Gonzalez-Cadavid NF (2006) Myostatin short interfering hairpin RNA gene transfer increases skeletal muscle mass. J Gene Med 8(9):1171–1181. doi:10.1002/jgm.946

    Article  PubMed  CAS  Google Scholar 

  54. Amthor H, Otto A, Vulin A, Rochat A, Dumonceaux J, Garcia L, Mouisel E, Hourde C, Macharia R, Friedrichs M, Relaix F, Zammit PS, Matsakas A, Patel K, Partridge T (2009) Muscle hypertrophy driven by myostatin blockade does not require stem/precursor-cell activity. Proc Natl Acad Sci USA 106(18):7479–7484. doi:10.1073/pnas.0811129106

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  55. Welle S, Mehta S, Burgess K (2011) Effect of postdevelopmental myostatin depletion on myofibrillar protein metabolism. Am J Physiol Endocrinol Metab 300(6):E993–E1001. doi:10.1152/ajpendo.00509.2010

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  56. Lee SJ, Huynh TV, Lee YS, Sebald SM, Wilcox-Adelman SA, Iwamori N, Lepper C, Matzuk MM, Fan CM (2012) Role of satellite cells versus myofibers in muscle hypertrophy induced by inhibition of the myostatin/activin signaling pathway. Proc Natl Acad Sci USA 109(35):E2353–E2360. doi:10.1073/pnas.1206410109

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  57. Rodriguez J, Vernus B, Toubiana M, Jublanc E, Tintignac L, Leibovitch S, Bonnieu A (2011) Myostatin inactivation increases myotube size through regulation of translational initiation machinery. J Cell Biochem 112(12):3531–3542. doi:10.1002/jcb.23280

    Article  PubMed  CAS  Google Scholar 

  58. Wang Q, McPherron AC (2012) Myostatin inhibition induces muscle fibre hypertrophy prior to satellite cell activation. J Physiol 590(Pt 9):2151–2165. doi:10.1113/jphysiol.2011.226001

    PubMed  CAS  PubMed Central  Google Scholar 

  59. Thomas M, Langley B, Berry C, Sharma M, Kirk S, Bass J, Kambadur R (2000) Myostatin, a negative regulator of muscle growth, functions by inhibiting myoblast proliferation. J Biol Chem 275(51):40235–40243

    Article  PubMed  CAS  Google Scholar 

  60. Rios R, Carneiro I, Arce VM, Devesa J (2002) Myostatin is an inhibitor of myogenic differentiation. Am J Physiol Cell Physiol 282(5):C993–C999

    Article  PubMed  CAS  Google Scholar 

  61. Taylor WE, Bhasin S, Artaza J, Byhower F, Azam M, Willard DH Jr, Kull FC Jr, Gonzalez-Cadavid N (2001) Myostatin inhibits cell proliferation and protein synthesis in C2C12 muscle cells. Am J Physiol Endocrinol Metab 280(2):E221–E228

    PubMed  CAS  Google Scholar 

  62. Joulia D, Bernardi H, Garandel V, Rabenoelina F, Vernus B, Cabello G (2003) Mechanisms involved in the inhibition of myoblast proliferation and differentiation by myostatin. Exp Cell Res 286(2):263–275 (pii):S0014482703000740

    Article  PubMed  CAS  Google Scholar 

  63. Yang W, Zhang Y, Li Y, Wu Z, Zhu D (2007) Myostatin induces cyclin D1 degradation to cause cell cycle arrest through a phosphatidylinositol 3-kinase/AKT/GSK-3 beta pathway and is antagonized by insulin-like growth factor 1. J Biol Chem 282(6):3799–3808

    Article  PubMed  CAS  Google Scholar 

  64. Langley B, Thomas M, Bishop A, Sharma M, Gilmour S, Kambadur R (2002) Myostatin inhibits myoblast differentiation by down-regulating MyoD expression. J Biol Chem 277(51):49831–49840

    Article  PubMed  CAS  Google Scholar 

  65. McFarlane C, Hui GZ, Amanda WZ, Lau HY, Lokireddy S, Xiaojia G, Mouly V, Butler-Browne G, Gluckman PD, Sharma M, Kambadur R (2011) Human myostatin negatively regulates human myoblast growth and differentiation. Am J Physiol Cell Physiol 301(1):C195–C203. doi:10.1152/ajpcell.00012.2011

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  66. Amthor H, Huang R, McKinnell I, Christ B, Kambadur R, Sharma M, Patel K (2002) The regulation and action of myostatin as a negative regulator of muscle development during avian embryogenesis. Dev Biol 251(2):241–257

    Article  PubMed  CAS  Google Scholar 

  67. Salerno MS, Thomas M, Forbes D, Watson T, Kambadur R, Sharma M (2004) Molecular analysis of fiber type-specific expression of murine myostatin promoter. Am J Physiol Cell Physiol 287(4):C1031–C1040

    Article  PubMed  CAS  Google Scholar 

  68. Yang W, Chen Y, Zhang Y, Wang X, Yang N, Zhu D (2006) Extracellular signal-regulated kinase 1/2 mitogen-activated protein kinase pathway is involved in myostatin-regulated differentiation repression. Cancer Res 66(3):1320–1326

    Article  PubMed  CAS  Google Scholar 

  69. Chelh I, Meunier B, Picard B, Reecy MJ, Chevalier C, Hocquette JF, Cassar-Malek I (2009) Molecular profiles of Quadriceps muscle in myostatin-null mice reveal PI3K and apoptotic pathways as myostatin targets. BMC Genom 10:196

    Article  Google Scholar 

  70. Chelh I, Picard B, Hocquette JF, Cassar-Malek I (2011) Myostatin inactivation induces a similar muscle molecular signature in double-muscled cattle as in mice. Animal 5(2):278–286. doi:10.1017/S1751731110001862

    Article  PubMed  CAS  Google Scholar 

  71. Rommel C, Bodine SC, Clarke BA, Rossman R, Nunez L, Stitt TN, Yancopoulos GD, Glass DJ (2001) Mediation of IGF-1-induced skeletal myotube hypertrophy by PI(3)K/Akt/mTOR and PI(3)K/Akt/GSK3 pathways. Nat Cell Biol 3(11):1009–1013. doi:10.1038/ncb1101-1009

    Article  PubMed  CAS  Google Scholar 

  72. Bodine SC, Stitt TN, Gonzalez M, Kline WO, Stover GL, Bauerlein R, Zlotchenko E, Scrimgeour A, Lawrence JC, Glass DJ, Yancopoulos GD (2001) Akt/mTOR pathway is a crucial regulator of skeletal muscle hypertrophy and can prevent muscle atrophy in vivo. Nat Cell Biol 3(11):1014–1019

    Article  PubMed  CAS  Google Scholar 

  73. Pallafacchina G, Calabria E, Serrano AL, Kalhovde JM, Schiaffino S (2002) A protein kinase B-dependent and rapamycin-sensitive pathway controls skeletal muscle growth but not fiber type specification. Proc Natl Acad Sci USA 99(14):9213–9218. doi:10.1073/pnas.142166599

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  74. Wullschleger S, Loewith R, Hall MN (2006) TOR signaling in growth and metabolism. Cell 124(3):471–484. doi:10.1016/j.cell.2006.01.016

    Article  PubMed  CAS  Google Scholar 

  75. Hay N, Sonenberg N (2004) Upstream and downstream of mTOR. Genes Dev 18(16):1926–1945. doi:10.1101/gad.1212704

    Article  PubMed  CAS  Google Scholar 

  76. Ma XM, Blenis J (2009) Molecular mechanisms of mTOR-mediated translational control. Nat Rev Mol Cell Biol 10(5):307–318. doi:10.1038/nrm2672

    Article  PubMed  Google Scholar 

  77. Tee AR, Blenis J (2005) mTOR, translational control and human disease. Semin Cell Dev Biol 16(1):29–37. doi:10.1016/j.semcdb.2004.11.005

    Article  PubMed  CAS  Google Scholar 

  78. Meyuhas O (2000) Synthesis of the translational apparatus is regulated at the translational level. Eur J Biochem 267(21):6321–6330 (pii):ejb1719

    Article  PubMed  CAS  Google Scholar 

  79. Hannan KM, Brandenburger Y, Jenkins A, Sharkey K, Cavanaugh A, Rothblum L, Moss T, Poortinga G, McArthur GA, Pearson RB, Hannan RD (2003) mTOR-dependent regulation of ribosomal gene transcription requires S6K1 and is mediated by phosphorylation of the carboxy-terminal activation domain of the nucleolar transcription factor UBF. Mol Cell Biol 23(23):8862–8877

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  80. Morissette MR, Cook SA, Buranasombati C, Rosenberg MA, Rosenzweig A (2009) Myostatin inhibits IGF-I-induced myotube hypertrophy through Akt. Am J Physiol Cell Physiol 297(5):C1124–C1132. doi:10.1152/ajpcell.00043.2009

    Article  PubMed  CAS  Google Scholar 

  81. Lipina C, Kendall H, McPherron AC, Taylor PM, Hundal HS (2010) Mechanisms involved in the enhancement of mammalian target of rapamycin signalling and hypertrophy in skeletal muscle of myostatin-deficient mice. FEBS Lett 584(11):2403–2408. doi:10.1016/j.febslet.2010.04.039

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  82. Suryawan A, Frank JW, Nguyen HV, Davis TA (2006) Expression of the TGF-beta family of ligands is developmentally regulated in skeletal muscle of neonatal rats. Pediatr Res 59(2):175–179. doi:10.1203/01.pdr.0000196718.47935.6e

    Article  PubMed  CAS  Google Scholar 

  83. Welle S, Bhatt K, Pinkert CA (2006) Myofibrillar protein synthesis in myostatin-deficient mice. Am J Physiol Endocrinol Metab 290(3):E409–E415. doi:10.1152/ajpendo.00433.2005

    Article  PubMed  CAS  Google Scholar 

  84. Welle S, Burgess K, Mehta S (2009) Stimulation of skeletal muscle myofibrillar protein synthesis, p70 S6 kinase phosphorylation, and ribosomal protein S6 phosphorylation by inhibition of myostatin in mature mice. Am J Physiol Endocrinol Metab 296(3):E567–E572. doi:10.1152/ajpendo.90862.2008

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  85. Steelman CA, Recknor JC, Nettleton D, Reecy JM (2006) Transcriptional profiling of myostatin-knockout mice implicates Wnt signaling in postnatal skeletal muscle growth and hypertrophy. FASEB J 20(3):580–582. doi:10.1096/fj.05-5125fje

    PubMed  CAS  Google Scholar 

  86. Csibi A, Cornille K, Leibovitch MP, Poupon A, Tintignac LA, Sanchez AM, Leibovitch SA (2010) The translation regulatory subunit eIF3f controls the kinase-dependent mTOR signaling required for muscle differentiation and hypertrophy in mouse. PLoS One 5(2):e8994. doi:10.1371/journal.pone.0008994

    Article  PubMed  PubMed Central  Google Scholar 

  87. Lagirand-Cantaloube J, Offner N, Csibi A, Leibovitch MP, Batonnet-Pichon S, Tintignac LA, Segura CT, Leibovitch SA (2008) The initiation factor eIF3-f is a major target for atrogin1/MAFbx function in skeletal muscle atrophy. EMBO J 27(8):1266–1276. doi:10.1038/emboj.2008.52

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  88. Mayhew DL, Hornberger TA, Lincoln HC, Bamman MM (2011) Eukaryotic initiation factor 2B epsilon induces cap-dependent translation and skeletal muscle hypertrophy. J Physiol 589(Pt 12):3023–3037. doi:10.1113/jphysiol.2010.202432

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  89. Sandri M, Sandri C, Gilbert A, Skurk C, Calabria E, Picard A, Walsh K, Schiaffino S, Lecker SH, Goldberg AL (2004) Foxo transcription factors induce the atrophy-related ubiquitin ligase atrogin-1 and cause skeletal muscle atrophy. Cell 117(3):399–412 (pii):S0092867404004003

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  90. Stitt TN, Drujan D, Clarke BA, Panaro F, Timofeyva Y, Kline WO, Gonzalez M, Yancopoulos GD, Glass DJ (2004) The IGF-1/PI3K/Akt pathway prevents expression of muscle atrophy-induced ubiquitin ligases by inhibiting FOXO transcription factors. Mol Cell 14(3):395–403 (pii):S1097276504002114

    Article  PubMed  CAS  Google Scholar 

  91. McFarlane C, Plummer E, Thomas M, Hennebry A, Ashby M, Ling N, Smith H, Sharma M, Kambadur R (2006) Myostatin induces cachexia by activating the ubiquitin proteolytic system through an NF-kappaB-independent, FoxO1-dependent mechanism. J Cell Physiol 209(2):501–514

    Article  PubMed  CAS  Google Scholar 

  92. Allen DL, Unterman TG (2007) Regulation of myostatin expression and myoblast differentiation by FoxO and SMAD transcription factors. Am J Physiol Cell Physiol 292(1):C188–C199

    Article  PubMed  CAS  Google Scholar 

  93. Lokireddy S, Mouly V, Butler-Browne G, Gluckman PD, Sharma M, Kambadur R, McFarlane C (2011) Myostatin promotes the wasting of human myoblast cultures through promoting ubiquitin–proteasome pathway-mediated loss of sarcomeric proteins. Am J Physiol Cell Physiol 301(6):C1316–C1324. doi:10.1152/ajpcell.00114.2011

    Article  PubMed  CAS  Google Scholar 

  94. Lokireddy S, Wijesoma IW, Sze SK, McFarlane C, Kambadur R, Sharma M (2012) Identification of atrogin-1-targeted proteins during the myostatin-induced skeletal muscle wasting. Am J Physiol Cell Physiol 303(5):C512–C529. doi:10.1152/ajpcell.00402.2011

    Article  PubMed  CAS  Google Scholar 

  95. Mendias CL, Kayupov E, Bradley JR, Brooks SV, Claflin DR (2011) Decreased specific force and power production of muscle fibers from myostatin-deficient mice are associated with a suppression of protein degradation. J Appl Physiol 111(1):185–191. doi:10.1152/japplphysiol.00126.2011

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  96. Sriram S, Subramanian S, Juvvuna PK, Ge X, Lokireddy S, McFarlane CD, Wahli W, Kambadur R, Sharma M (2014) Myostatin augments muscle-specific ring finger protein-1 expression through an NF-kB independent mechanism in SMAD3 null muscle. Mol Endocrinol 28(3):317–330. doi:10.1210/me.2013-1179

    Article  PubMed  CAS  Google Scholar 

  97. Zhou X, Wang JL, Lu J, Song Y, Kwak KS, Jiao Q, Rosenfeld R, Chen Q, Boone T, Simonet WS, Lacey DL, Goldberg AL, Han HQ (2010) Reversal of cancer cachexia and muscle wasting by ActRIIB antagonism leads to prolonged survival. Cell 142(4):531–543. doi:10.1016/j.cell.2010.07.011

    Article  PubMed  CAS  Google Scholar 

  98. Lee JY, Hopkinson NS, Kemp PR (2011) Myostatin induces autophagy in skeletal muscle in vitro. Biochem Biophys Res Commun 415(4):632–636. doi:10.1016/j.bbrc.2011.10.124

    Article  PubMed  CAS  Google Scholar 

  99. Seiliez I, Taty Taty GC, Bugeon J, Dias K, Sabin N, Gabillard JC (2013) Myostatin induces atrophy of trout myotubes through inhibiting the TORC1 signaling and promoting ubiquitin–proteasome and autophagy–lysosome degradative pathways. Gen Comp Endocrinol 186:9–15. doi:10.1016/j.ygcen.2013.02.008

    Article  PubMed  CAS  Google Scholar 

  100. Garikipati DK, Rodgers BD (2012) Myostatin stimulates myosatellite cell differentiation in a novel model system: evidence for gene subfunctionalization. Am J Physiol Regul Integr Comp Physiol 302(9):R1059–R1066. doi:10.1152/ajpregu.00523.2011

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by funds from the Institut National de la Recherche Agronomique (INRA), from the Agence Nationale de la Recherche (ANR Myotrophy).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Bonnieu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rodriguez, J., Vernus, B., Chelh, I. et al. Myostatin and the skeletal muscle atrophy and hypertrophy signaling pathways. Cell. Mol. Life Sci. 71, 4361–4371 (2014). https://doi.org/10.1007/s00018-014-1689-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-014-1689-x

Keywords

Navigation