Skip to main content

Advertisement

Log in

Transcription factors and target genes of pre-TCR signaling

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Almost 30 years ago pioneering work by the laboratories of Harald von Boehmer and Susumo Tonegawa provided the first indications that developing thymocytes could assemble a functional TCRβ chain-containing receptor complex, the pre-TCR, before TCRα expression. The discovery and study of the pre-TCR complex revealed paradigms of signaling pathways in control of cell survival and proliferation, and culminated in the recognition of the multifunctional nature of this receptor. As a receptor integrated in a dynamic developmental process, the pre-TCR must be viewed not only in the light of the biological outcomes it promotes, but also in context with those molecular processes that drive its expression in thymocytes. This review article focuses on transcription factors and target genes activated by the pre-TCR to drive its different outcomes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Rossi SW, Jenkinson WE, Anderson G, Jenkinson EJ (2006) Clonal analysis reveals a common progenitor for thymic cortical and medullary epithelium. Nature 441:988–991

    CAS  PubMed  Google Scholar 

  2. Yang Q, Jeremiah Bell J, Bhandoola A (2010) T-cell lineage determination. Immunol Rev 238:12–22

    PubMed Central  CAS  PubMed  Google Scholar 

  3. Schwarz BA, Bhandoola A (2004) Circulating hematopoietic progenitors with T lineage potential. Nat Immunol 5:953–960

    CAS  PubMed  Google Scholar 

  4. Serwold T, Ehrlich LIR, Weissman IL (2009) Reductive isolation from bone marrow and blood implicates common lymphoid progenitors as the major source of thymopoiesis. Blood 113:807–815

    PubMed Central  CAS  PubMed  Google Scholar 

  5. Lind EF, Prockop SE, Porritt HE, Petrie HT (2001) Mapping precursor movement through the postnatal thymus reveals specific microenvironments supporting defined stages of early lymphoid development. J Exp Med 194:127–134

    PubMed Central  CAS  PubMed  Google Scholar 

  6. Godfrey DI, Kennedy J, Suda T, Zlotnik A (1993) A developmental pathway involving four phenotypically and functionally distinct subsets of CD3-CD4-CD8- triple-negative adult mouse thymocytes defined by CD44 and CD25 expression. J Immunol 150:4244–4252

    CAS  PubMed  Google Scholar 

  7. Radtke F, Wilson A, Stark G et al (1999) Deficient T cell fate specification in mice with an induced inactivation of Notch1. Immunity 10:547–558

    CAS  PubMed  Google Scholar 

  8. Von Freeden-Jeffry U, Vieira P, Lucian LA et al (1995) Lymphopenia in interleukin (IL)-7 gene-deleted mice identifies IL-7 as a nonredundant cytokine. J Exp Med 181:1519–1526

    Google Scholar 

  9. Ceredig R, Rolink T (2002) A positive look at double-negative thymocytes. Nat Rev Immunol 2:888–897

    CAS  PubMed  Google Scholar 

  10. Porritt HE, Rumfelt LL, Tabrizifard S et al (2004) Heterogeneity among DN1 prothymocytes reveals multiple progenitors with different capacities to generate T cell and non-T cell lineages. Immunity 20:735–745

    CAS  PubMed  Google Scholar 

  11. Raulet DH, Garman RD, Saito H, Tonegawa S (1985) Developmental regulation of T-cell receptor gene expression. Nature 314:103–107

    CAS  PubMed  Google Scholar 

  12. Von Boehmer H, Fehling HJ (1997) Structure and function of the pre-T cell receptor. Annu Rev Immunol 15:433–452

    Google Scholar 

  13. Malissen B, Ardouin L, Lin SY et al (1999) Function of the CD3 subunits of the pre-TCR and TCR complexes during T cell development. Adv Immunol 72:103–148

    CAS  PubMed  Google Scholar 

  14. Ciofani M, Zuniga-Pflucker JC (2005) Notch promotes survival of pre-T cells at the beta-selection checkpoint by regulating cellular metabolism. Nat Immunol 6:881–888

    CAS  PubMed  Google Scholar 

  15. Yui MA, Rothenberg EV (2014) Developmental gene networks: a triathlon on the course to T cell identity. Nat Rev Immunol 14:529–545

    CAS  PubMed  Google Scholar 

  16. Rothenberg EV, Taghon T (2005) Molecular genetics of T cell development. Annu Rev Immunol 23:601–649

    CAS  PubMed  Google Scholar 

  17. Ho IC, Tai TS, Pai SY (2009) GATA3 and the T-cell lineage: essential functions before and after T-helper-2-cell differentiation. Nat Rev Immunol 9:125–135

    PubMed Central  CAS  PubMed  Google Scholar 

  18. Rothenberg EV (2014) Transcriptional control of early T and B cell developmental choices. Annu Rev Immunol 32:283–321

    PubMed Central  CAS  PubMed  Google Scholar 

  19. Ikawa T, Fujimoto S, Kawamoto H et al (2001) Commitment to natural killer cells requires the helix-loop-helix inhibitor Id2. Proc Natl Acad Sci USA 98:5164–5169

    PubMed Central  CAS  PubMed  Google Scholar 

  20. Schwartz R, Engel I, Fallahi-Sichani M et al (2006) Gene expression patterns define novel roles for E47 in cell cycle progression, cytokine-mediated signaling, and T lineage development. Proc Natl Acad Sci USA 103:9976–9981

    PubMed Central  CAS  PubMed  Google Scholar 

  21. Del Real MM, Rothenberg EV (2013) Architecture of a lymphomyeloid developmental switch controlled by PU.1, Notch and Gata3. Development 140:1207–1219

    PubMed Central  PubMed  Google Scholar 

  22. Xu W, Carr T, Ramirez K et al (2013) E2A transcription factors limit expression of Gata3 to facilitate T lymphocyte lineage commitment. Blood 121:1534–1542

    PubMed Central  CAS  PubMed  Google Scholar 

  23. Hosoya T, Maillard I, Engel JD (2010) From the cradle to the grave: activities of GATA-3 throughout T-cell development and differentiation. Immunol Rev 238:110–125

    PubMed Central  CAS  PubMed  Google Scholar 

  24. Taghon T, Yui MA, Rothenberg EV (2007) Mast cell lineage diversion of T lineage precursors by the essential T cell transcription factor GATA-3. Nat Immunol 8:845–855

    PubMed Central  CAS  PubMed  Google Scholar 

  25. García-Ojeda ME, Wolterink RGJK, Lemâitre F et al (2013) GATA-3 promotes T-cell specification by repressing B-cell potential in pro-T cells in mice. Blood 121:1749–1759

    PubMed  Google Scholar 

  26. Kishi H, Wei XC, Jin ZX et al (2000) Lineage-specific regulation of the murine RAG-2 promoter: GATA-3 in T cells and Pax-5 in B cells. Blood 95:3845–3852

    CAS  PubMed  Google Scholar 

  27. Wang L, Wildt KF, Zhu J et al (2008) Distinct functions for the transcription factors GATA-3 and ThPOK during intrathymic differentiation of CD4(+) T cells. Nat Immunol 9:1122–1130

    PubMed Central  CAS  PubMed  Google Scholar 

  28. Staal FJ, Clevers HC (2005) WNT signalling and haematopoiesis: a WNT-WNT situation. Nat Rev Immunol 5:21–30

    CAS  PubMed  Google Scholar 

  29. Okamura RM, Sigvardsson M, Galceran J et al (1998) Redundant regulation of T cell differentiation and TCRalpha gene expression by the transcription factors LEF-1 and TCF-1. Immunity 8:11–20

    CAS  PubMed  Google Scholar 

  30. Hattori N, Kawamoto H, Fujimoto S et al (1996) Involvement of transcription factors TCF-1 and GATA-3 in the initiation of the earliest step of T cell development in the thymus. J Exp Med 184:1137–1147

    CAS  PubMed  Google Scholar 

  31. Germar K, Dose M, Konstantinou T et al (2011) T-cell factor 1 is a gatekeeper for T-cell specification in response to Notch signaling. Proc Natl Acad Sci 108:20060–20065

    PubMed Central  CAS  PubMed  Google Scholar 

  32. Weber BN, Chi AW, Chavez A et al (2011) A critical role for TCF-1 in T-lineage specification and differentiation. Nature 476:63–68

    PubMed Central  CAS  PubMed  Google Scholar 

  33. Verbeek S, Izon D, Hofhuis F et al (1995) An HMG-box-containing T-cell factor required for thymocyte differentiation. Nature 374:70–74

    CAS  PubMed  Google Scholar 

  34. Schilham MW, Wilson A, Moerer P et al (1998) Critical involvement of Tcf-1 in expansion of thymocytes. J Immunol 161:3984–3991

    CAS  PubMed  Google Scholar 

  35. Xu Y, Banerjee D, Huelsken J et al (2003) Deletion of beta-catenin impairs T cell development. Nat Immunol 4:1177–1182

    CAS  PubMed  Google Scholar 

  36. Gounari F, Aifantis I, Khazaie K et al (2001) Somatic activation of beta-catenin bypasses pre-TCR signaling and TCR selection in thymocyte development. Nat Immunol 2:863–869

    CAS  PubMed  Google Scholar 

  37. Xu M, Sharma A, Wiest DL, Sen JM (2009) Pre-TCR-induced beta-catenin facilitates traversal through beta-selection. J Immunol 182:751–758

    PubMed Central  CAS  PubMed  Google Scholar 

  38. Liu P, Li P, Burke S (2010) Critical roles of Bcl11b in T-cell development and maintenance of T-cell identity. Immunol Rev 238:138–149

    CAS  PubMed  Google Scholar 

  39. Yui MA, Feng N, Rothenberg EV (2010) Fine-scale staging of T cell lineage commitment in adult mouse thymus. J Immunol 185:284–293

    PubMed Central  CAS  PubMed  Google Scholar 

  40. Ikawa T, Hirose S, Masuda K et al (2010) An essential developmental checkpoint for production of the T cell lineage. Science 329:93–96

    CAS  PubMed  Google Scholar 

  41. Zhang S, Rozell M, Verma RK et al (2010) Antigen-specific clonal expansion and cytolytic effector function of CD8+ T lymphocytes depend on the transcription factor Bcl11b. J Exp Med 207:1687–1699

    PubMed Central  CAS  PubMed  Google Scholar 

  42. Vanvalkenburgh J, Albu DI, Bapanpally C et al (2011) Critical role of Bcl11b in suppressor function of T regulatory cells and prevention of inflammatory bowel disease. J Exp Med 208:2069–2081

    PubMed Central  CAS  PubMed  Google Scholar 

  43. Wakabayashi Y, Watanabe H, Inoue J et al (2003) Bcl11b is required for differentiation and survival of alphabeta T lymphocytes. Nat Immunol 4:533–539

    CAS  PubMed  Google Scholar 

  44. Albu DI, Feng D, Bhattacharya D et al (2007) BCL11B is required for positive selection and survival of double-positive thymocytes. J Exp Med 204:3003–3015

    PubMed Central  CAS  PubMed  Google Scholar 

  45. Li P, Burke S, Wang J et al (2010) Reprogramming of T cells to natural killer-like cells upon Bcl11b deletion. Science 329:85–89

    PubMed Central  CAS  PubMed  Google Scholar 

  46. Li L, Leid M, Rothenberg EV (2010) An early T cell lineage commitment checkpoint dependent on the transcription factor Bcl11b. Science 329:89–93

    PubMed Central  CAS  PubMed  Google Scholar 

  47. Zhang JA, Mortazavi A, Williams BA et al (2012) Dynamic transformations of genome-wide epigenetic marking and transcriptional control establish T cell identity. Cell 149:467–482

    PubMed Central  CAS  PubMed  Google Scholar 

  48. Mingueneau M, Kreslavsky T, Gray D et al (2013) The transcriptional landscape of αβ T cell differentiation. Nat Immunol 14:619–632

    CAS  PubMed  Google Scholar 

  49. Yashiro-Ohtani Y, He Y, Ohtani T et al (2009) Pre-TCR signaling inactivates Notch1 transcription by antagonizing E2A. Genes Dev 23:1665–1676

    PubMed Central  CAS  PubMed  Google Scholar 

  50. Engel I, Murre C (2004) E2A proteins enforce a proliferation checkpoint in developing thymocytes. EMBO J 23:202–211

    PubMed Central  CAS  PubMed  Google Scholar 

  51. Wojciechowski J, Lai A, Kondo M, Zhuang Y (2007) E2A and HEB are required to block thymocyte proliferation prior to pre-TCR expression. J Immunol 178:5717–5726

    PubMed Central  CAS  PubMed  Google Scholar 

  52. Agata Y, Tamaki N, Sakamoto S et al (2007) Regulation of T cell receptor β gene rearrangements and allelic exclusion by the Helix-Loop-Helix protein, E47. Immunity 27:871–884

    CAS  PubMed  Google Scholar 

  53. Jones ME, Zhuang Y (2009) Regulation of V(D)J recombination by E-protein transcription factors. Adv Exp Med Biol 650:148–156

    CAS  PubMed  Google Scholar 

  54. Kee BL (2009) E and ID proteins branch out. Nat Rev Immunol 9:175–184

    CAS  PubMed  Google Scholar 

  55. Kim D, Peng XC, Sun XH (1999) Massive apoptosis of thymocytes in T-cell-deficient Id1 transgenic mice. Mol Cell Biol 19:8240–8253

    PubMed Central  CAS  PubMed  Google Scholar 

  56. Engel I, Johns C, Bain G et al (2001) Early thymocyte development is regulated by modulation of E2A protein activity. J Exp Med 194:733–745

    PubMed Central  CAS  PubMed  Google Scholar 

  57. Heemskerk MH, Blom B, Nolan G et al (1997) Inhibition of T cell and promotion of natural killer cell development by the dominant negative helix loop helix factor Id3. J Exp Med 186:1597–1602

    PubMed Central  CAS  PubMed  Google Scholar 

  58. Anderson MK, Hernandez-Hoyos G, Diamond RA, Rothenberg EV (1999) Precise developmental regulation of Ets family transcription factors during specification and commitment to the T cell lineage. Development 126:3131–3148

    CAS  PubMed  Google Scholar 

  59. Eyquem S, Chemin K, Fasseu M, Bories JC (2004) The Ets-1 transcription factor is required for complete pre-T cell receptor function and allelic exclusion at the T cell receptor beta locus. Proc Natl Acad Sci USA 101:15712–15717

    PubMed Central  CAS  PubMed  Google Scholar 

  60. Lefebvre JM, Haks MC, Carleton MO et al (2005) Enforced expression of Spi-B reverses T lineage commitment and blocks beta-selection. J Immunol 174:6184–6194

    CAS  PubMed  Google Scholar 

  61. Rothenberg EV, Moore JE, Yui MA (2008) Launching the T-cell-lineage developmental programme. Nat Rev Immunol 8:9–21

    PubMed Central  CAS  PubMed  Google Scholar 

  62. Levanon D, Groner Y (2004) Structure and regulated expression of mammalian RUNX genes. Oncogene 23:4211–4219

    CAS  PubMed  Google Scholar 

  63. Egawa T, Tillman RE, Naoe Y et al (2007) The role of the Runx transcription factors in thymocyte differentiation and in homeostasis of naive T cells. J Exp Med 204:1945–1957

    PubMed Central  CAS  PubMed  Google Scholar 

  64. Talebian L, Li Z, Guo Y et al (2007) T-lymphoid, megakaryocyte, and granulocyte development are sensitive to decreases in CBFβ dosage. Blood 109:11–21

    PubMed Central  CAS  PubMed  Google Scholar 

  65. Ichikawa M, Asai T, Saito T et al (2004) AML-1 is required for megakaryocytic maturation and lymphocytic differentiation, but not for maintenance of hematopoietic stem cells in adult hematopoiesis. Nat Med 10:299–304

    CAS  PubMed  Google Scholar 

  66. Growney JD, Shigematsu H, Li Z et al (2005) Loss of Runx1 perturbs adult hematopoiesis and is associated with a myeloproliferative phenotype. Blood 106:494–504

    PubMed Central  CAS  PubMed  Google Scholar 

  67. Woolf E, Xiao C, Fainaru O et al (2003) Runx3 and Runx1 are required for CD8 T cell development during thymopoiesis. Proc Natl Acad Sci USA 100:7731–7736

    PubMed Central  CAS  PubMed  Google Scholar 

  68. Merkenschlager M (2010) Ikaros in immune receptor signaling, lymphocyte differentiation, and function. FEBS Lett 584:4910–4914

    CAS  PubMed  Google Scholar 

  69. Winandy S, Wu L, Wang JH, Georgopoulos K (1999) Pre-T cell receptor (TCR) and TCR-controlled checkpoints in T cell differentiation are set by Ikaros. J Exp Med 190:1039–1048

    PubMed Central  CAS  PubMed  Google Scholar 

  70. Dose M, Khan I, Guo Z et al (2006) c-Myc mediates pre-TCR-induced proliferation but not developmental progression. Blood 108:2669–2677

    PubMed Central  CAS  PubMed  Google Scholar 

  71. Douglas NC, Jacobs H, Bothwell AL, Hayday AC (2001) Defining the specific physiological requirements for c-Myc in T cell development. Nat Immunol 2:307–315

    CAS  PubMed  Google Scholar 

  72. Hayden MS, West AP, Ghosh S (2006) NF-kappaB and the immune response. Oncogene 25:6758–6780

    CAS  PubMed  Google Scholar 

  73. Gerondakis S, Fulford TS, Messina NL, Grumont RJ (2014) NF-κB control of T cell development. Nat Immunol 15:15–25

    CAS  PubMed  Google Scholar 

  74. Voll RE, Jimi E, Phillips RJ et al (2000) NF-kappa B activation by the pre-T cell receptor serves as a selective survival signal in T lymphocyte development. Immunity 13:677–689

    CAS  PubMed  Google Scholar 

  75. Aifantis I, Gounari F, Scorrano L et al (2001) Constitutive pre-TCR signaling promotes differentiation through Ca2+ mobilization and activation of NF-κB and NFAT. Nat Immunol 2:403–409

    CAS  PubMed  Google Scholar 

  76. Mandal M, Borowski C, Palomero T et al (2005) The BCL2A1 gene as a pre-T cell receptor-induced regulator of thymocyte survival. J Exp Med 201:603–614

    PubMed Central  CAS  PubMed  Google Scholar 

  77. Aifantis I, Mandal M, Sawai K et al (2006) Regulation of T-cell progenitor survival and cell-cycle entry by the pre-T-cell receptor. Immunol Rev 209:159–169

    CAS  PubMed  Google Scholar 

  78. Kiani A, Rao A, Aramburu J (2000) Manipulating immune responses with immunosuppressive agents that target NFAT. Immunity 12:359–372

    CAS  PubMed  Google Scholar 

  79. Macián F (2005) NFAT proteins: key regulators of T-cell development and function. Nat Rev Immunol 5:472–484

    PubMed  Google Scholar 

  80. Serfling E, Avots A, Klein-Hessling S et al (2012) NFATc1/αA: the other face of NFAT factors in lymphocytes. Cell Commun Signal 10:16

    PubMed Central  CAS  PubMed  Google Scholar 

  81. Crabtree GR (1999) Generic signals and specific outcomes: signaling through Ca2+, calcineurin, and NF-AT. Cell 96:611–614

    CAS  PubMed  Google Scholar 

  82. Hogan PG, Chen L, Nardone J, Rao A (2003) Transcriptional regulation by calcium, calcineurin, and NFAT. Genes Dev 17:2205–2232

    CAS  PubMed  Google Scholar 

  83. Bueno OF, Brandt EB, Rothenberg ME, Molkentin JD (2002) Defective T cell development and function in calcineurin A beta -deficient mice. Proc Natl Acad Sci USA 99:9398–9403

    PubMed Central  CAS  PubMed  Google Scholar 

  84. Neilson JR, Winslow MM, Hur EM, Crabtree GR (2004) Calcineurin B1 is essential for positive but not negative selection during thymocyte development. Immunity 20:255–266

    CAS  PubMed  Google Scholar 

  85. Ranger AM, Hodge MR, Gravallese EM et al (1998) Delayed lymphoid repopulation with defects in IL-4-driven responses produced by inactivation of NF-ATc. Immunity 8:125–134

    CAS  PubMed  Google Scholar 

  86. Oukka M, Ho IC, de la Brousse FC et al (1998) The transcription factor NFAT4 is involved in the generation and survival of T cells. Immunity 9:295–304

    CAS  PubMed  Google Scholar 

  87. Yoshida H, Nishina H, Takimoto H et al (1998) The transcription factor NF-ATc1 regulates lymphocyte proliferation and Th2 cytokine production. Immunity 8:115–124

    CAS  PubMed  Google Scholar 

  88. Koltsova EK, Ciofani M, Benezra R et al (2007) Early growth response 1 and NF-ATc1 act in concert to promote thymocyte development beyond the beta-selection checkpoint. J Immunol 179:4694–4703

    CAS  PubMed  Google Scholar 

  89. Canté-Barrett K, Winslow MM, Crabtree GR (2007) Selective role of NFATc3 in positive selection of thymocytes. J Immunol 179:103–110

    PubMed  Google Scholar 

  90. Hayden-Martinez K, Kane LP, Hedrick SM (2000) Effects of a constitutively active form of calcineurin on T cell activation and thymic selection. J Immunol 165:3713–3721

    CAS  PubMed  Google Scholar 

  91. Amasaki Y, Masuda ES, Imamura R et al (1998) Distinct NFAT family proteins are involved in the nuclear NFAT-DNA binding complexes from human thymocyte subsets. J Immunol 160:2324–2333

    CAS  PubMed  Google Scholar 

  92. Patra AK, Avots A, Zahedi RP et al (2013) An alternative NFAT-activation pathway mediated by IL-7 is critical for early thymocyte development. Nat Immunol 14:127–135

    CAS  PubMed  Google Scholar 

  93. Lopez-Rodriguez C, Aramburu J, Rakeman AS, Rao A (1999) NFAT5, a constitutively nuclear NFAT protein that does not cooperate with Fos and Jun. Proc Natl Acad Sci USA 96:7214–7219

    PubMed Central  CAS  PubMed  Google Scholar 

  94. Aramburu J, Drews-Elger K, Estrada-Gelonch A et al (2006) Regulation of the hypertonic stress response and other cellular functions by the Rel-like transcription factor NFAT5. Biochem Pharmacol 72:1597–1604

    CAS  PubMed  Google Scholar 

  95. Buxadé M, Lunazzi G, Minguillón J et al (2012) Gene expression induced by Toll-like receptors in macrophages requires the transcription factor NFAT5. J Exp Med 209:379–393

    PubMed Central  PubMed  Google Scholar 

  96. Berga-Bolaños R, Alberdi M, Buxadé M et al (2013) NFAT5 induction by the pre-T-cell receptor serves as a selective survival signal in T-lymphocyte development. Proc Natl Acad Sci USA 110:16091–16096

    PubMed Central  PubMed  Google Scholar 

  97. Villey I, De Chasseval R, De Villartay JP (1999) RORγT, a thymus-specific isoform of the orphan nuclear receptor RORγ/TOR, is up-regulated by signaling through the pre-T cell receptor and binds to the TEA promoter. Eur J Immunol 29:4072–4080

    CAS  PubMed  Google Scholar 

  98. Sun Z, Unutmaz D, Zou YR et al (2000) Requirement for RORgamma in thymocyte survival and lymphoid organ development. Science 288:2369–2373

    CAS  PubMed  Google Scholar 

  99. Lieu YK, Kumar A, Pajerowski AG et al (2004) Requirement of c-myb in T cell development and in mature T cell function. Proc Natl Acad Sci USA 101:14853–14858

    PubMed Central  CAS  PubMed  Google Scholar 

  100. Bender TP, Kremer CS, Kraus M et al (2004) Critical functions for c-Myb at three checkpoints during thymocyte development. Nat Immunol 5:721–729

    CAS  PubMed  Google Scholar 

  101. Anderson MK (2006) At the crossroads: diverse roles of early thymocyte transcriptional regulators. Immunol Rev 209:191–211

    CAS  PubMed  Google Scholar 

  102. Reizis B, Leder P (2002) Direct induction of T lymphocyte-specific gene expression by the mammalian Notch signaling pathway. Genes Dev 16:295–300

    PubMed Central  CAS  PubMed  Google Scholar 

  103. Goldrath AW, Bevan MJ (1999) Selecting and maintaining a diverse T-cell repertoire. Nature 402:255–262

    CAS  PubMed  Google Scholar 

  104. Starr TK, Jameson SC, Hogquist KA (2003) Positive and negative selection of T cells. Annu Rev Immunol 21:139–176

    CAS  PubMed  Google Scholar 

  105. Zhang N, Hartig H, Dzhagalov I et al (2005) The role of apoptosis in the development and function of T lymphocytes. Cell Res 15:749–769

    CAS  PubMed  Google Scholar 

  106. Chao DT, Korsmeyer SJ (1998) BCL-2 family: regulators of cell death. Annu Rev Immunol 16:395–419

    CAS  PubMed  Google Scholar 

  107. Vander Heiden MG, Thompson CB (1999) Bcl-2 proteins: regulators of apoptosis or of mitochondrial homeostasis? Nat Cell Biol 1:E209–E216

    CAS  PubMed  Google Scholar 

  108. Gross A, McDonnell JM, Korsmeyer SJ (1999) BCL-2 family members and the mitochondria in apoptosis. Genes Dev 13:1899–1911

    CAS  PubMed  Google Scholar 

  109. Akashi K, Kondo M, von Freeden-Jeffry U et al (1997) Bcl-2 rescues T lymphopoiesis in interleukin-7 receptor-deficient mice. Cell 89:1033–1041

    CAS  PubMed  Google Scholar 

  110. Maraskovsky E, O’Reilly LA, Teepe M et al (1997) Bcl-2 can rescue T lymphocyte development in interleukin-7 receptor-deficient mice but not in mutant rag-1−/− mice. Cell 89:1011–1019

    CAS  PubMed  Google Scholar 

  111. Opferman JT, Letai A, Beard C et al (2003) Development and maintenance of B and T lymphocytes requires antiapoptotic MCL-1. Nature 426:671–676

    CAS  PubMed  Google Scholar 

  112. Grillot DA, Merino R, Nunez G (1995) Bcl-XL displays restricted distribution during T cell development and inhibits multiple forms of apoptosis but not clonal deletion in transgenic mice. J Exp Med 182:1973–1983

    CAS  PubMed  Google Scholar 

  113. Ma A, Pena JC, Chang B et al (1995) Bclx regulates the survival of double-positive thymocytes. Proc Natl Acad Sci USA 92:4763–4767

    PubMed Central  CAS  PubMed  Google Scholar 

  114. Motoyama N, Wang F, Roth KA et al (1995) Massive cell death of immature hematopoietic cells and neurons in Bcl-x-deficient mice. Science 267:1506–1510

    CAS  PubMed  Google Scholar 

  115. Rathmell JC, Lindsten T, Zong W-X et al (2002) Deficiency in Bak and Bax perturbs thymic selection and lymphoid homeostasis. Nat Immunol 3:932–939

    CAS  PubMed  Google Scholar 

  116. Lindsten T, Ross AJ, King A et al (2000) The combined functions of proapoptotic Bcl-2 family members Bak and Bax are essential for normal development of multiple tissues. Mol Cell 6:1389–1399

    PubMed Central  CAS  PubMed  Google Scholar 

  117. Wei MC, Zong WX, Cheng EH et al (2001) Proapoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death. Science 292:727–730

    PubMed Central  CAS  PubMed  Google Scholar 

  118. Yücel R, Karsunky H, Klein-Hitpass L, Möröy T (2003) The transcriptional repressor Gfi1 affects development of early, uncommitted c-Kit + T cell progenitors and CD4/CD8 lineage decision in the thymus. J Exp Med 197:831–844

    PubMed Central  PubMed  Google Scholar 

  119. Phelan JD, Saba I, Zeng H et al (2013) Growth factor independent-1 maintains Notch1-dependent transcriptional programming of lymphoid precursors. PLoS Genet 9:e1003713

    PubMed Central  CAS  PubMed  Google Scholar 

  120. Grimes HL, Gilks CB, Chan TO et al (1996) The Gfi-1 protooncoprotein represses Bax expression and inhibits T-cell death. Proc Natl Acad Sci USA 93:14569–14573

    PubMed Central  CAS  PubMed  Google Scholar 

  121. Schmidt T, Karsunky H, Rödel B et al (1998) Evidence implicating Gfi-1 and Pim-1 in pre-T-cell differentiation steps associated with β-selection. EMBO J 17:5349–5359

    PubMed Central  CAS  PubMed  Google Scholar 

  122. Huang DC, Strasser A (2000) BH3-Only proteins-essential initiators of apoptotic cell death. Cell 103:839–842

    CAS  PubMed  Google Scholar 

  123. Marsden VS, Strasser A (2003) Control of apoptosis in the immune system: Bcl-2, BH3-only proteins and more. Annu Rev Immunol 21:71–105

    CAS  PubMed  Google Scholar 

  124. Haks MC, Krimpenfort P, van den Brakel JH, Kruisbeek AM (1999) Pre-TCR signaling and inactivation of p53 induces crucial cell survival pathways in pre-T cells. Immunity 11:91–101

    CAS  PubMed  Google Scholar 

  125. Bogue MA, Zhu C, Aguilar-Cordova E et al (1996) p53 is required for both radiation-induced differentiation and rescue of V(D)J rearrangement in scid mouse thymocytes. Genes Dev 10:553–565

    CAS  PubMed  Google Scholar 

  126. Guidos CJ, Williams CJ, Grandal I et al (1996) V(D)J recombination activates a p53-dependent DNA damage checkpoint in scid lymphocyte precursors. Genes Dev 10:2038–2054

    CAS  PubMed  Google Scholar 

  127. Costello PS, Cleverley SC, Galandrini R et al (2000) The GTPase rho controls a p53-dependent survival checkpoint during thymopoiesis. J Exp Med 192:77–85

    PubMed Central  CAS  PubMed  Google Scholar 

  128. Oda E, Ohki R, Murasawa H et al (2000) Noxa, a BH3-only member of the Bcl-2 family and candidate mediator of p53-induced apoptosis. Science 288:1053–1058

    CAS  PubMed  Google Scholar 

  129. Nakano K, Vousden KH (2001) PUMA, a novel proapoptotic gene, is induced by p53. Mol Cell 7:683–694

    CAS  PubMed  Google Scholar 

  130. Yu J, Zhang L, Hwang PM et al (2001) PUMA induces the rapid apoptosis of colorectal cancer cells. Mol Cell 7:673–682

    CAS  PubMed  Google Scholar 

  131. Mandal M, Crusio KM, Meng F et al (2008) Regulation of lymphocyte progenitor survival by the proapoptotic activities of Bim and Bid. Proc Natl Acad Sci USA 105:20840–20845

    PubMed Central  CAS  PubMed  Google Scholar 

  132. Peschon JJ, Morrissey PJ, Grabstein KH et al (1994) Early lymphocyte expansion is severely impaired in interleukin 7 receptor-deficient mice. J Exp Med 180:1955–1960

    CAS  PubMed  Google Scholar 

  133. Hare KJ, Jenkinson EJ, Anderson G (2000) An essential role for the IL-7 receptor during intrathymic expansion of the positively selected neonatal T cell repertoire. J Immunol 165:2410–2414

    CAS  PubMed  Google Scholar 

  134. Pallard C, Stegmann AP, van Kleffens T et al (1999) Distinct roles of the phosphatidylinositol 3-kinase and STAT5 pathways in IL-7-mediated development of human thymocyte precursors. Immunity 10:525–535

    CAS  PubMed  Google Scholar 

  135. Maillard I, Adler SH, Pear WS (2003) Notch and the immune system. Immunity 19:781–791

    CAS  PubMed  Google Scholar 

  136. Koch U, Fiorini E, Benedito R et al (2008) Delta-like 4 is the essential, nonredundant ligand for Notch1 during thymic T cell lineage commitment. J Exp Med 205:2515–2523

    PubMed Central  CAS  PubMed  Google Scholar 

  137. Thompson PK, Zúñiga-Pflücker JC (2011) On becoming a T cell, a convergence of factors kick it up a Notch along the way. Semin Immunol 23:350–359

    CAS  PubMed  Google Scholar 

  138. Kopan R, Ilagan MX (2009) The canonical Notch signaling pathway: unfolding the activation mechanism. Cell 137:216–233

    PubMed Central  CAS  PubMed  Google Scholar 

  139. Pui JC, Allman D, Xu L et al (1999) Notch1 expression in early lymphopoiesis influences B versus T lineage determination. Immunity 11:299–308

    CAS  PubMed  Google Scholar 

  140. Wolfer A, Wilson A, Nemir M et al (2002) Inactivation of Notch1 impairs VDJbeta rearrangement and allows pre-TCR-independent survival of early alpha beta Lineage Thymocytes. Immunity 16:869–879

    CAS  PubMed  Google Scholar 

  141. Ciofani M, Knowles GC, Wiest DL et al (2006) Stage-specific and differential Notch dependency at the αβ and γδ T lineage bifurcation. Immunity 25:105–116

    CAS  PubMed  Google Scholar 

  142. Xiong J, Armato MA, Yankee TM (2011) Immature single-positive CD8+ thymocytes represent the transition from Notch-dependent to Notch-independent T-cell development. Int Immunol 23:55–64

    PubMed Central  CAS  PubMed  Google Scholar 

  143. Laky K, Fowlkes BJ (2008) Notch signaling in CD4 and CD8 T cell development. Curr Opin Immunol 20:197–202

    PubMed Central  CAS  PubMed  Google Scholar 

  144. Yuan JS, Kousis PC, Suliman S et al (2010) Functions of notch signaling in the immune system: consensus and controversies. Annu Rev Immunol 28:343–365

    PubMed  Google Scholar 

  145. Dudley EC, Petrie HT, Shah LM et al (1994) T cell receptor beta chain gene rearrangement and selection during thymocyte development in adult mice. Immunity 1:83–93

    CAS  PubMed  Google Scholar 

  146. Taghon T, Yui MA, Pant R et al (2006) Developmental and molecular characterization of emerging beta- and gammadelta-selected pre-T cells in the adult mouse thymus. Immunity 24:53–64

    CAS  PubMed  Google Scholar 

  147. Tsai FY, Orkin SH (1997) Transcription factor GATA-2 is required for proliferation/survival of early hematopoietic cells and mast cell formation, but not for erythroid and myeloid terminal differentiation. Blood 89:3636–3643

    CAS  PubMed  Google Scholar 

  148. Laiosa CV, Stadtfeld M, Xie H et al (2006) Reprogramming of committed T cell progenitors to macrophages and dendritic cells by C/EBP alpha and PU.1 transcription factors. Immunity 25:731–744

    CAS  PubMed  Google Scholar 

  149. DeKoter RP, Singh H (2000) Regulation of B lymphocyte and macrophage development by graded expression of PU.1. Science 288:1439–1441

    CAS  PubMed  Google Scholar 

  150. Braunstein M, Rajkumar P, Claus CL et al (2010) HEBAlt enhances the T-cell potential of fetal myeloid-biased precursors. Int Immunol 22:963–972

    CAS  PubMed  Google Scholar 

  151. Grawunder U, West RB, Lieber MR (1998) Antigen receptor gene rearrangement. Curr Opin Immunol 10:172–180

    CAS  PubMed  Google Scholar 

  152. Mallick CA, Dudley EC, Viney JL et al (1993) Rearrangement and diversity of T cell receptor beta chain genes in thymocytes: a critical role for the beta chain in development. Cell 73:513–519

    CAS  PubMed  Google Scholar 

  153. Michie AM, Zuniga-Pflucker JC (2002) Regulation of thymocyte differentiation: pre-TCR signals and beta-selection. Semin Immunol 14:311–323

    CAS  PubMed  Google Scholar 

  154. Gellert M (2002) V(D)J recombination: RAG proteins, repair factors, and regulation. Annu Rev Biochem 71:101–132

    CAS  PubMed  Google Scholar 

  155. Brady BL, Steinel NC, Bassing CH (2010) Antigen receptor allelic exclusion: an update and reappraisal. J Immunol 185:3801–3808

    PubMed Central  CAS  PubMed  Google Scholar 

  156. Kruisbeek AM, Haks MC, Carleton M et al (2000) Branching out to gain control: how the pre-TCR is linked to multiple functions. Immunol Today 21:637–644

    CAS  PubMed  Google Scholar 

  157. Von Boehmer H (2005) Unique features of the pre-T-cell receptor alpha-chain: not just a surrogate. Nat Rev Immunol 5:571–577

    Google Scholar 

  158. Von Boehmer H, Aifantis I, Azogui O et al (1999) The impact of pre-T-cell receptor signals on gene expression in developing T cells. Cold Spring Harb Symp Quant Biol 64:283–289

    Google Scholar 

  159. Saint-Ruf C, Panigada M, Azogui O et al (2000) Different initiation of pre-TCR and gammadeltaTCR signalling. Nature 406:524–527

    CAS  PubMed  Google Scholar 

  160. Aifantis I, Azogui O, Feinberg J et al (1998) On the role of the pre-T cell receptor in alphabeta versus gammadelta T lineage commitment. Immunity 9:649–655

    CAS  PubMed  Google Scholar 

  161. Snodgrass HR, Dembić Z, Steinmetz M, von Boehmer H (1985) Expression of T-cell antigen receptor genes during fetal development in the thymus. Nature 315:232–233

    CAS  PubMed  Google Scholar 

  162. Von Boehmer H (1990) Developmental biology of T cells in T cell-receptor transgenic mice. Annu Rev Immunol 8:531–556

    Google Scholar 

  163. Kishi H, Borgulya P, Scott B et al (1991) Surface expression of the beta T cell receptor (TCR) chain in the absence of other TCR or CD3 proteins on immature T cells. EMBO J 10:93–100

    PubMed Central  CAS  PubMed  Google Scholar 

  164. Shinkai Y, Koyasu S, Nakayama K et al (1993) Restoration of T cell development in RAG-2-deficient mice by functional TCR transgenes. Science 259:822–825

    CAS  PubMed  Google Scholar 

  165. Mombaerts P, Clarke AR, Rudnicki MA et al (1992) Mutations in T-cell antigen receptor genes alpha and beta block thymocyte development at different stages. Nature 360:225–231

    CAS  PubMed  Google Scholar 

  166. Haks MC, Lefebvre JM, Lauritsen JPH et al (2005) Attenuation of gammadeltaTCR signaling efficiently diverts thymocytes to the alphabeta lineage. Immunity 22:595–606

    CAS  PubMed  Google Scholar 

  167. Hayes SM, Li L, Love PE (2005) TCR signal strength influences αβ/γδ lineage fate. Immunity 22:583–593

    CAS  PubMed  Google Scholar 

  168. Panigada M, Porcellini S, Barbier E et al (2002) Constitutive endocytosis and degradation of the pre-T cell receptor. J Exp Med 195:1585–1597

    PubMed Central  CAS  PubMed  Google Scholar 

  169. Tremblay M, Herblot S, Lecuyer E, Hoang T (2003) Regulation of pT alpha gene expression by a dosage of E2A, HEB, and SCL. J Biol Chem 278:12680–12687

    CAS  PubMed  Google Scholar 

  170. Trop S, Rhodes M, Wiest DL et al (2000) Competitive displacement of pT alpha by TCR-alpha during TCR assembly prevents surface coexpression of pre-TCR and alpha beta TCR. J Immunol 165:5566–5572

    CAS  PubMed  Google Scholar 

  171. Yamasaki S, Saito T (2007) Molecular basis for pre-TCR-mediated autonomous signaling. Trends Immunol 28:39–43

    CAS  PubMed  Google Scholar 

  172. Yamasaki S, Ishikawa E, Sakuma M et al (2006) Mechanistic basis of pre-T cell receptor-mediated autonomous signaling critical for thymocyte development. Nat Immunol 7:67–75

    CAS  PubMed  Google Scholar 

  173. Aifantis I, Borowski C, Gounari F et al (2002) A critical role for the cytoplasmic tail of pTalpha in T lymphocyte development. Nat Immunol 3:483–488

    CAS  PubMed  Google Scholar 

  174. Ciofani M, Schmitt TM, Ciofani A et al (2004) Obligatory role for cooperative signaling by pre-TCR and Notch during thymocyte differentiation. J Immunol 172:5230–5239

    CAS  PubMed  Google Scholar 

  175. Trampont PC, Tosello-Trampont AC, Shen Y et al (2010) CXCR4 acts as a costimulator during thymic beta-selection. Nat Immunol 11:162–170

    PubMed Central  CAS  PubMed  Google Scholar 

  176. Janas ML, Varano G, Gudmundsson K et al (2010) Thymic development beyond beta-selection requires phosphatidylinositol 3-kinase activation by CXCR4. J Exp Med 207:247–261

    PubMed Central  CAS  PubMed  Google Scholar 

  177. Staal FJ, Clevers HC (2003) Wnt signaling in the thymus. Curr Opin Immunol 15:204–208

    CAS  PubMed  Google Scholar 

  178. Goux D, Coudert JD, Maurice D et al (2005) Cooperating pre-T-cell receptor and TCF-1-dependent signals ensure thymocyte survival. Blood 106:1726–1733

    CAS  PubMed  Google Scholar 

  179. Borowski C, Li X, Aifantis I et al (2004) Pre-TCRalpha and TCRalpha are not interchangeable partners of TCRbeta during T lymphocyte development. J Exp Med 199:607–615

    PubMed Central  CAS  PubMed  Google Scholar 

  180. Von Boehmer H, Aifantis I, Feinberg J et al (1999) Pleiotropic changes controlled by the pre-T-cell receptor. Curr Opin Immunol 11:135–142

    Google Scholar 

  181. Groves T, Smiley P, Cooke MP et al (1996) Fyn can partially substitute for Lck in T lymphocyte development. Immunity 5:417–428

    CAS  PubMed  Google Scholar 

  182. Palacios EH, Weiss A (2004) Function of the Src-family kinases, Lck and Fyn, in T-cell development and activation. Oncogene 23:7990–8000

    CAS  PubMed  Google Scholar 

  183. Cheng AM, Negishi I, Anderson SJ et al (1997) The Syk and ZAP-70 SH2-containing tyrosine kinases are implicated in pre-T cell receptor signaling. Proc Natl Acad Sci USA 94:9797–9801

    PubMed Central  CAS  PubMed  Google Scholar 

  184. Pivniouk V, Tsitsikov E, Swinton P et al (1998) Impaired viability and profound block in thymocyte development in mice lacking the adaptor protein SLP-76. Cell 94:229–238

    CAS  PubMed  Google Scholar 

  185. Palacios EH, Weiss A (2007) Distinct roles for Syk and ZAP-70 during early thymocyte development. J Exp Med 204:1703–1715

    PubMed Central  CAS  PubMed  Google Scholar 

  186. Fayard E, Moncayo G, Hemmings BA, Hollander GA (2010) Phosphatidylinositol 3-kinase signaling in thymocytes: the need for stringent control. Sci Signal 3:5

    Google Scholar 

  187. Juntilla MM, Wofford JA, Birnbaum MJ et al (2007) Akt1 and Akt2 are required for alphabeta thymocyte survival and differentiation. Proc Natl Acad Sci USA 104:12105–12110

    PubMed Central  CAS  PubMed  Google Scholar 

  188. Brunet A, Bonni A, Zigmond MJ et al (1999) Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 96:857–868

    CAS  PubMed  Google Scholar 

  189. Kelly AP, Finlay DK, Hinton HJ et al (2007) Notch-induced T cell development requires phosphoinositide-dependent kinase 1. EMBO J 26:3441–3450

    PubMed Central  CAS  PubMed  Google Scholar 

  190. Aramburu J, Rao A, Klee CB (2000) Calcineurin: from structure to function. Curr Top Cell Regul 36:237–295

    CAS  PubMed  Google Scholar 

  191. Tan S-L, Parker PJ (2003) Emerging and diverse roles of protein kinase C in immune cell signalling. Biochem J 376:545–552

    PubMed Central  CAS  PubMed  Google Scholar 

  192. Hayashi K, Altman A (2007) Protein kinase C theta (PKCtheta): a key player in T cell life and death. Pharmacol Res 55:537–544

    PubMed Central  CAS  PubMed  Google Scholar 

  193. Felli MP, Vacca A, Calce A et al (2005) PKC theta mediates pre-TCR signaling and contributes to Notch3-induced T-cell leukemia. Oncogene 24:992–1000

    CAS  PubMed  Google Scholar 

  194. Michie AM, Soh JW, Hawley RG et al (2001) Allelic exclusion and differentiation by protein kinase C-mediated signals in immature thymocytes. Proc Natl Acad Sci USA 98:609–614

    PubMed Central  CAS  PubMed  Google Scholar 

  195. Rincon M, Flavell RA, Davis RJ (2001) Signal transduction by MAP kinases in T lymphocytes. Oncogene 20:2490–2497

    CAS  PubMed  Google Scholar 

  196. Iritani BM, Alberola-Lla J, Forbush KA, Perlmutter RM (1999) Distinct signals mediate maturation and allelic exclusion in lymphocyte progenitors. Immunity 10:713–722

    CAS  PubMed  Google Scholar 

  197. Carleton M, Haks MC, Smeele SA et al (2002) Early growth response transcription factors are required for development of CD4(−)CD8(−) thymocytes to the CD4(+)CD8(+) stage. J Immunol 168:1649–1658

    CAS  PubMed  Google Scholar 

  198. Xi H, Kersh GJ (2004) Sustained early growth response gene 3 expression inhibits the survival of CD4/CD8 double-positive thymocytes. J Immunol 173:340–348

    CAS  PubMed  Google Scholar 

  199. Miyazaki T (1997) Two distinct steps during thymocyte maturation from CD4− CD8− to CD4+ CD8+ distinguished in the early growth response (Egr)-1 transgenic mice with a recombinase-activating gene-deficient background. J Exp Med 186:877–885

    PubMed Central  CAS  PubMed  Google Scholar 

  200. Bain G, Cravatt CB, Loomans C et al (2001) Regulation of the helix-loop-helix proteins, E2A and Id3, by the Ras-ERK MAPK cascade. Nat Immunol 2:165–171

    CAS  PubMed  Google Scholar 

  201. Engel I, Murre C (2002) Disruption of pre-TCR expression accelerates lymphomagenesis in E2A-deficient mice. Proc Natl Acad Sci USA 99:11322–11327

    PubMed Central  CAS  PubMed  Google Scholar 

  202. Xi H, Schwartz R, Engel I et al (2006) Interplay between RORgammat, Egr3, and E proteins controls proliferation in response to pre-TCR signals. Immunity 24:813–826

    CAS  PubMed  Google Scholar 

  203. Lin WC, Desiderio S (1994) Cell cycle regulation of V(D)J recombination-activating protein RAG-2. Proc Natl Acad Sci USA 91:2733–2737

    PubMed Central  CAS  PubMed  Google Scholar 

  204. De la Cueva E, García-Cao I, Herranz M et al (2006) Tumorigenic activity of p21Waf1/Cip1 in thymic lymphoma. Oncogene 25:4128–4132

    PubMed  Google Scholar 

  205. El-Deiry WS, Tokino T, Velculescu VE et al (1993) WAF1, a potential mediator of p53 tumor suppression. Cell 75:817–825

    CAS  PubMed  Google Scholar 

  206. Stahl M, Dijkers PF, Kops GJ et al (2002) The forkhead transcription factor FoxO regulates transcription of p27Kip1 and Bim in response to IL-2. J Immunol 168:5024–5031

    CAS  PubMed  Google Scholar 

  207. Mombaerts P, Terhorst C, Jacks T et al (1995) Characterization of immature thymocyte lines derived from T-cell receptor or recombination activating gene 1 and p53 double mutant mice. Proc Natl Acad Sci USA 92:7420–7424

    PubMed Central  CAS  PubMed  Google Scholar 

  208. Rashkovan M, Vadnais C, Ross J et al (2014) Miz-1 regulates translation of Trp53 via ribosomal protein L22 in cells undergoing V(D)J recombination. Proc Natl Acad Sci USA 111:E5411–E5419

    CAS  PubMed  Google Scholar 

  209. Anderson SJ, Lauritsen JPH, Hartman MG et al (2007) Ablation of ribosomal protein L22 selectively impairs alphabeta T cell development by activation of a p53-dependent checkpoint. Immunity 26:759–772

    CAS  PubMed  Google Scholar 

  210. Stadanlick JE, Zhang Z, Lee S-Y et al (2011) Developmental arrest of T cells in Rpl22-deficient mice is dependent upon multiple p53 effectors. J Immunol 187:664–675

    PubMed Central  CAS  PubMed  Google Scholar 

  211. Saba I, Kosan C, Vassen L et al (2011) Miz-1 is required to coordinate the expression of TCRbeta and p53 effector genes at the pre-TCR “beta-selection” checkpoint. J Immunol 187:2982–2992

    CAS  PubMed  Google Scholar 

  212. Sicinska E, Aifantis I, Le Cam L et al (2003) Requirement for cyclin D3 in lymphocyte development and T cell leukemias. Cancer Cell 4:451–461

    CAS  PubMed  Google Scholar 

  213. Lara-Astiaso D, Weiner A, Lorenzo-Vivas E et al (2014) Chromatin state dynamics during blood formation. Science 345:943–949

    PubMed Central  CAS  PubMed  Google Scholar 

  214. Buenrostro JD, Giresi PG, Zaba LC et al (2013) Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat Methods 10:1213–1218

    PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

Work in CL-R and JA laboratory has been supported by the Ramón y Cajal and I3 Researchers Programs (CL-R), research grants from the Spanish Government (SAF2009-08066, SAF2012-36535 to CL-R; and BFU2008-01070, SAF2011-24268 to JA), Fundació la Marató TV3 (080730, 122530 to CL-R and JA), the Marie Curie International Reintegration Program of the European Union (MCIRG516308 to CL-R), the Spanish Ministry of Health (ISCIII-RETIC RD06/0009-FEDER), and Generalitat de Catalunya (2009SGR601, 2014SGR1153). CL-R is a recipient of the ICREA Acadèmia Award (Generalitat de Catalunya).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cristina López-Rodríguez.

Additional information

We apologize to those authors whose work was not cited due to space limitations or our oversight.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

López-Rodríguez, C., Aramburu, J. & Berga-Bolaños, R. Transcription factors and target genes of pre-TCR signaling. Cell. Mol. Life Sci. 72, 2305–2321 (2015). https://doi.org/10.1007/s00018-015-1864-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-015-1864-8

Keywords

Navigation