Skip to main content

Advertisement

Log in

How order and disorder within paramyxoviral nucleoproteins and phosphoproteins orchestrate the molecular interplay of transcription and replication

  • Multi-author Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

In this review, we summarize computational and experimental data gathered so far showing that structural disorder is abundant within paramyxoviral nucleoproteins (N) and phosphoproteins (P). In particular, we focus on measles, Nipah, and Hendra viruses and highlight both commonalities and differences with respect to the closely related Sendai virus. The molecular mechanisms that control the disorder-to-order transition undergone by the intrinsically disordered C-terminal domain (NTAIL) of their N proteins upon binding to the C-terminal X domain (XD) of the homologous P proteins are described in detail. By having a significant residual disorder, NTAIL–XD complexes are illustrative examples of “fuzziness”, whose possible functional significance is discussed. Finally, the relevance of N–P interactions as promising targets for innovative antiviral approaches is underscored, and the functional advantages of structural disorder for paramyxoviruses are pinpointed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Modified from Ref. [58]

Fig. 7

Modified from Ref. [130]

Fig. 8

Modified from Ref. [151]

Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Lamb RA, Parks GD (2013) Paramyxoviridae. In: Knipe DM, Howley PM (eds) Fields virology. Lippincott Williams & Wilkins, Philadelphia, pp 957–995

    Google Scholar 

  2. Wolfson LJ, Strebel PM, Gacic-Dobo M, Hoekstra EJ, McFarland JW, Hersh BS, Measles I (2007) Has the 2005 measles mortality reduction goal been achieved? A natural history modelling study. Lancet 369:191–200

    Article  PubMed  Google Scholar 

  3. Eaton BT, Mackenzie JS, Wang LF (2007) Henipaviruses. In: Fields BN, Knipe DM, Howley PM (eds) Fields virology, 5th edn. Lippincott-Raven, Philadelphia, pp 1587–1600

    Google Scholar 

  4. Wang LF, Yu M, Hansson E, Pritchard LI, Shiell B, Michalski WP, Eaton BT (2000) The exceptionally large genome of Hendra virus: support for creation of a new genus within the family Paramyxoviridae. J Virol 74:9972–9979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Eaton BT, Broder CC, Middleton D, Wang LF (2006) Hendra and Nipah viruses: different and dangerous. Nat Rev Microbiol 4:23–35

    Article  CAS  PubMed  Google Scholar 

  6. Drexler JF, Corman VM, Gloza-Rausch F, Seebens A, Annan A, Ipsen A, Kruppa T, Muller MA, Kalko EK, Adu-Sarkodie Y, Oppong S, Drosten C (2009) Henipavirus RNA in African bats. PLoS One 4:e6367

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Karlin D, Longhi S, Canard B (2002) Substitution of two residues in the measles virus nucleoprotein results in an impaired self-association. Virology 302:420–432

    Article  CAS  PubMed  Google Scholar 

  8. Longhi S, Receveur-Brechot V, Karlin D, Johansson K, Darbon H, Bhella D, Yeo R, Finet S, Canard B (2003) The C-terminal domain of the measles virus nucleoprotein is intrinsically disordered and folds upon binding to the C-terminal moiety of the phosphoprotein. J Biol Chem 278:18638–18648

    Article  CAS  PubMed  Google Scholar 

  9. Schoehn G, Mavrakis M, Albertini A, Wade R, Hoenger A, Ruigrok RW (2004) The 12 A structure of trypsin-treated measles virus N-RNA. J Mol Biol 339:301–312

    Article  CAS  PubMed  Google Scholar 

  10. Bhella D (2007) Measles virus nucleocapsid structure, conformational flexibility and the rule of six. In: Longhi S (ed) Measles virus nucleoprotein. Nova Publishers Inc., Hauppage

    Google Scholar 

  11. Desfosses A, Goret G, Farias Estrozi L, Ruigrok RW, Gutsche I (2011) Nucleoprotein–RNA orientation in the measles virus nucleocapsid by three-dimensional electron microscopy. J Virol 85:1391–1395

    Article  CAS  PubMed  Google Scholar 

  12. Gutsche I, Desfosses A, Effantin G, Ling WL, Haupt M, Ruigrok RW, Sachse C, Schoehn G (2015) Near-atomic cryo-EM structure of the helical measles virus nucleocapsid. Science 348(6235):704–707

    Article  CAS  PubMed  Google Scholar 

  13. Halpin K, Bankamp B, Harcourt BH, Bellini WJ, Rota PA (2004) Nipah virus conforms to the rule of six in a minigenome replication assay. J Gen Virol 85:701–707

    Article  CAS  PubMed  Google Scholar 

  14. Kolakofsky D, Pelet T, Garcin D, Hausmann S, Curran J, Roux L (1998) Paramyxovirus RNA synthesis and the requirement for hexamer genome length: the rule of six revisited. J Virol 72:891–899

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Roux L (2005) Dans le génome des Paramyxovirinae, les promoteurs et leurs activités sont façonnés par la « règle de six. Virologie 9:19–34

    Google Scholar 

  16. Ruigrok RW, Crepin T, Kolakofsky D (2011) Nucleoproteins and nucleocapsids of negative-strand RNA viruses. Curr Opin Microbiol 14:504–510

    Article  CAS  PubMed  Google Scholar 

  17. Chan YP, Chua KB, Koh CL, Lim ME, Lam SK (2001) Complete nucleotide sequences of Nipah virus isolates from Malaysia. J Gen Virol 82:2151–2155

    Article  CAS  PubMed  Google Scholar 

  18. Blocquel D, Bourhis JM, Eléouët JF, Gerlier D, Habchi J, Jamin M, Longhi S, Yabukarski F (2012) Transcription et réplication des Mononégavirales: une machine moléculaire originale. Virologie 16:225–257

    Google Scholar 

  19. Bhella D, Ralph A, Murphy LB, Yeo RP (2002) Significant differences in nucleocapsid morphology within the Paramyxoviridae. J Gen Virol 83:1831–1839

    Article  CAS  PubMed  Google Scholar 

  20. Tan WS, Ong ST, Eshaghi M, Foo SS, Yusoff K (2004) Solubility, immunogenicity and physical properties of the nucleocapsid protein of Nipah virus produced in Escherichia coli. J Med Virol 73:105–112

    Article  CAS  PubMed  Google Scholar 

  21. Huber M, Cattaneo R, Spielhofer P, Orvell C, Norrby E, Messerli M, Perriard JC, Billeter MA (1991) Measles virus phosphoprotein retains the nucleocapsid protein in the cytoplasm. Virology 185:299–308

    Article  CAS  PubMed  Google Scholar 

  22. Spehner D, Drillien R, Howley PM (1997) The assembly of the measles virus nucleoprotein into nucleocapsid-like particles is modulated by the phosphoprotein. Virology 232:260–268

    Article  CAS  PubMed  Google Scholar 

  23. Albertini AAV, Schoehn G, Ruigrok RW (2005) Structures impliquées dans la réplication et la transcription des virus à ARN non segmentés de sens négatif. Virologie 9:83–92

    Google Scholar 

  24. Longhi S, Canard B (1999) Mécanismes de transcription et de réplication des Paramyxoviridae. Virologie 3:227–240

    Google Scholar 

  25. Morin B, Rahmeh AA, Whelan SP (2012) Mechanism of RNA synthesis initiation by the vesicular stomatitis virus polymerase. EMBO J 31:1320–1329

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Morin B, Liang B, Gardner E, Ross RA, Whelan SP (2016) An in vitro RNA synthesis assay for rabies virus defines critical ribonucleoprotein interactions for polymerase activity. J Virol 91(1):e01508-16

    Article  PubMed  PubMed Central  Google Scholar 

  27. Bloyet LM, Welsch J, Enchery F, Mathieu C, de Breyne S, Horvat B, Grigorov B, Gerlier D (2016) HSP90 Chaperoning in addition to phosphoprotein required for folding but not for supporting enzymatic activities of measles and Nipah virus L polymerases. J Virol 90:6642–6656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Katoh H, Kubota T, Nakatsu Y, Tahara M, Kidokoro M, Takeda M (2017) Heat shock protein 90 ensures efficient mumps virus replication by assisting with viral polymerase complex formation. J Virol. doi:10.1128/JVI.02220-16

  29. Chattopadhyay S, Banerjee AK (2009) Phosphoprotein, P of human parainfluenza virus type 3 prevents self-association of RNA-dependent RNA polymerase, L. Virology 383:226–236

    Article  CAS  PubMed  Google Scholar 

  30. Gopinath M, Shaila MS (2008) Recombinant L and P protein complex of Rinderpest virus catalyses mRNA synthesis in vitro. Virus Res 135:150–154

    Article  CAS  PubMed  Google Scholar 

  31. Ogino T, Kobayashi M, Iwama M, Mizumoto K (2005) Sendai virus RNA-dependent RNA polymerase L protein catalyzes cap methylation of virus-specific mRNA. J Biol Chem 280:4429–4435

    Article  CAS  PubMed  Google Scholar 

  32. Ferron F, Longhi S, Henrissat B, Canard B (2002) Viral RNA-polymerases—a predicted 2′-O-ribose methyltransferase domain shared by all Mononegavirales. Trends Biochem Sci 27:222–224

    Article  CAS  PubMed  Google Scholar 

  33. Noton SL, Deflube LR, Tremaglio CZ, Fearns R (2012) The respiratory syncytial virus polymerase has multiple RNA synthesis activities at the promoter. PLoS Pathog 8:e1002980

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Liang B, Li Z, Jenni S, Rahmeh AA, Morin BM, Grant T, Grigorieff N, Harrison SC, Whelan SP (2015) Structure of the L protein of vesicular stomatitis virus from electron cryomicroscopy. Cell 162:314–327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Bourhis JM, Longhi S (2007) Measles virus nucleoprotein: structural organization and functional role of the intrinsically disordered C-terminal domain. In: Longhi S (ed) Measles virus nucleoprotein. Nova Publishers Inc., Hauppage, pp 1–35

    Google Scholar 

  36. Longhi S (2007) Measles virus nucleoprotein. Nova Publishers Inc., Hauppage, NY

    Google Scholar 

  37. Longhi S (2009) Nucleocapsid structure and function. Curr Top Microbiol Immunol 329:103–128

    CAS  PubMed  Google Scholar 

  38. Longhi S, Oglesbee M (2010) Structural disorder within the measles virus nucleoprotein and phosphoprotein. Protein Pept Lett 17:961–978

    Article  CAS  PubMed  Google Scholar 

  39. Longhi S (2011) Structural disorder within the measles virus nucleoprotein and phosphoprotein: functional implications for transcription and replication. In: Luo M (ed) Negative strand RNA virus. World Scientific Publishing, Singapore, pp 95–125

    Chapter  Google Scholar 

  40. Habchi J, Longhi S (2012) Structural disorder within paramyxovirus nucleoproteins and phosphoproteins. Mol BioSyst 8:69–81

    Article  CAS  PubMed  Google Scholar 

  41. Habchi J, Mamelli L, Longhi S (2012) Structural disorder within the nucleoprotein and phosphoprotein from measles, Nipah and Hendra viruses. In: Uversky VN, Longhi S (eds) Flexible viruses: structural disorder in viral proteins. Wiley, Hoboken, pp 47–94

    Google Scholar 

  42. Communie G, Ruigrok RW, Jensen MR, Blackledge M (2014) Intrinsically disordered proteins implicated in paramyxoviral replication machinery. Curr Opin Virol 5:72–81

    Article  CAS  PubMed  Google Scholar 

  43. Longhi S (2015) Structural disorder within paramyxoviral nucleoproteins. FEBS Lett 589:2649–2659

    Article  CAS  PubMed  Google Scholar 

  44. Habchi J, Longhi S (2015) Structural disorder within paramyxoviral nucleoproteins and phosphoproteins in their free and bound forms: from predictions to experimental assessment. Int J Mol Sci 16:15688–15726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Karlin D, Longhi S, Receveur V, Canard B (2002) The N-terminal domain of the phosphoprotein of Morbilliviruses belongs to the natively unfolded class of proteins. Virology 296:251–262

    Article  CAS  PubMed  Google Scholar 

  46. Dunker AK, Babu MM, Barbar E, Blackledge M, Bondos SE, Dosztányi Z, Dyson HJ, Forman-Kay J, Fuxreiter M, Gsponer J, Han K-H, Jones DT, Longhi S, Metallo SJ, Nishikawa K, Nussinov R, Obradovic Z, Pappu RV, Rost B, Selenko P, Subramaniam V, Sussman JL, Tompa P, Uversky VN (2013) What’s in a name? Why these proteins are intrinsically disordered. Intrinsically Disord Proteins 1:e24157

    Article  PubMed  PubMed Central  Google Scholar 

  47. Tompa P, Fuxreiter M (2008) Fuzzy complexes: polymorphism and structural disorder in protein–protein interactions. Trends Biochem Sci 33:2–8

    Article  CAS  PubMed  Google Scholar 

  48. Miskei M, Antal C, Fuxreiter M (2016) FuzDB: database of fuzzy complexes, a tool to develop stochastic structure-function relationships for protein complexes and higher-order assemblies. Nucleic Acids Res 45:D228–S235

    Article  PubMed  PubMed Central  Google Scholar 

  49. Habchi J, Tompa P, Longhi S, Uversky VN (2014) Introducing protein intrinsic disorder. Chem Rev 114:6561–6588

    Article  CAS  PubMed  Google Scholar 

  50. Habchi J, Mamelli L, Darbon H, Longhi S (2010) Structural disorder within Henipavirus nucleoprotein and phosphoprotein: from predictions to experimental assessment. PLoS One 5:e11684

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  51. Karlin D, Ferron F, Canard B, Longhi S (2003) Structural disorder and modular organization in Paramyxovirinae N and P. J Gen Virol 84:3239–3252

    Article  CAS  PubMed  Google Scholar 

  52. Lieutaud P, Canard B, Longhi S (2008) MeDor: a metaserver for predicting protein disorder. BMC Genom 9:S25

    Article  Google Scholar 

  53. Garner E, Romero P, Dunker AK, Brown C, Obradovic Z (1999) Predicting binding regions within disordered proteins. Genome Inform Ser Workshop Genome Inform 10:41–50

    CAS  PubMed  Google Scholar 

  54. Oldfield CJ, Cheng Y, Cortese MS, Romero P, Uversky VN, Dunker AK (2005) Coupled folding and binding with alpha-helix-forming molecular recognition elements. Biochemistry 44:12454–12470

    Article  CAS  PubMed  Google Scholar 

  55. Mohan A, Oldfield CJ, Radivojac P, Vacic V, Cortese MS, Dunker AK, Uversky VN (2006) Analysis of molecular recognition features (MoRFs). J Mol Biol 362:1043–1059

    Article  CAS  PubMed  Google Scholar 

  56. Vacic V, Oldfield CJ, Mohan A, Radivojac P, Cortese MS, Uversky VN, Dunker AK (2007) Characterization of molecular recognition features, MoRFs, and their binding partners. J Proteome Res 6:2351–2366

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Yabukarski F, Lawrence P, Tarbouriech N, Bourhis JM, Delaforge E, Jensen MR, Ruigrok RW, Blackledge M, Volchkov V, Jamin M (2014) Structure of Nipah virus unassembled nucleoprotein in complex with its viral chaperone. Nat Struct Mol Biol 21:754–759

    Article  CAS  PubMed  Google Scholar 

  58. Guryanov SG, Liljeroos L, Kasaragod P, Kajander T, Butcher SJ (2016) Crystal structure of the measles virus nucleoprotein core in complex with an N-terminal region of phosphoprotein. J Virol 90:2849–2857

    Article  CAS  PubMed Central  Google Scholar 

  59. Karlin D, Belshaw R (2012) Detecting remote sequence homology in disordered proteins: discovery of conserved motifs in the N-termini of Mononegavirales phosphoproteins. PLoS One 7:e31719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Galloux M, Gabiane G, Sourimant J, Richard CA, England P, Moudjou M, Aumont-Nicaise M, Fix J, Rameix-Welti MA, Eleouet JF (2015) Identification and characterization of the binding site of the respiratory syncytial virus phosphoprotein to RNA-free nucleoprotein. J Virol 89:3484–3496

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Renner M, Bertinelli M, Leyrat C, Paesen GC, Saraiva de Oliveira LF, Huiskonen JT, Grimes JM (2016) Nucleocapsid assembly in pneumoviruses is regulated by conformational switching of the N protein. Elife 5:e12627

    Article  PubMed  PubMed Central  Google Scholar 

  62. Leyrat C, Jensen MR, Ribeiro EA Jr, Gerard FC, Ruigrok RW, Blackledge M, Jamin M (2011) The N(0)-binding region of the vesicular stomatitis virus phosphoprotein is globally disordered but contains transient alpha-helices. Protein Sci 20:542–556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Leung DW, Borek D, Luthra P, Binning JM, Anantpadma M, Liu G, Harvey IB, Su Z, Endlich-Frazier A, Pan J, Shabman RS, Chiu W, Davey RA, Otwinowski Z, Basler CF, Amarasinghe GK (2015) An intrinsically disordered peptide from Ebola virus VP35 controls viral RNA synthesis by modulating nucleoprotein–RNA interactions. Cell Rep 11:376–389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Leyrat C, Yabukarski F, Tarbouriech N, Ribeiro EA Jr, Jensen MR, Blackledge M, Ruigrok RW, Jamin M (2011) Structure of the vesicular stomatitis virus N(0)–P complex. PLoS Pathog 7:e1002248

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Pereira N, Cardone C, Lassoued S, Galloux M, Fix J, Assrir N, Lescop E, Bontems F, Eleouet JF, Sizun C (2017) New insights into structural disorder in human respiratory syncytial virus phosphoprotein and implications for binding of protein partners. J Biol Chem 292:2120–2131

    Article  CAS  PubMed  Google Scholar 

  66. Sweetman DA, Miskin J, Baron MD (2001) Rinderpest virus C and V proteins interact with the major (L) component of the viral polymerase. Virology 281:193–204

    Article  CAS  PubMed  Google Scholar 

  67. Ding B, Zhang G, Yang X, Zhang S, Chen L, Yan Q, Xu M, Banerjee AK, Chen M (2014) Phosphoprotein of human parainfluenza virus type 3 blocks autophagosome–lysosome fusion to increase virus production. Cell Host Microbe 15:564–577

    Article  CAS  PubMed  Google Scholar 

  68. Castel G, Chteoui M, Caignard G, Prehaud C, Mehouas S, Real E, Jallet C, Jacob Y, Ruigrok RW, Tordo N (2009) Peptides that mimic the amino-terminal end of the rabies virus phosphoprotein have antiviral activity. J Virol 83:10808–10820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Rahmeh AA, Morin B, Schenk AD, Liang B, Heinrich BS, Brusic V, Walz T, Whelan SP (2012) Critical phosphoprotein elements that regulate polymerase architecture and function in vesicular stomatitis virus. Proc Natl Acad Sci USA 109:14628–14633

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Yabukarski F, Leyrat C, Martinez N, Communie G, Ivanov I, Ribeiro EA Jr, Buisson M, Gerard FC, Bourhis JM, Jensen MR, Bernado P, Blackledge M, Jamin M (2016) Ensemble structure of the highly flexible complex formed between vesicular stomatitis virus unassembled nucleoprotein and its phosphoprotein chaperone. J Mol Biol 428:2671–2694

    Article  CAS  PubMed  Google Scholar 

  71. Jamin M, Yabukarski F (2017) Nonsegmented negative-sense RNA viruses-structural data bring new insights into nucleocapsid assembly. Adv Virus Res 97:143–185

    Article  CAS  PubMed  Google Scholar 

  72. Ding H, Green TJ, Lu S, Luo M (2006) Crystal structure of the oligomerization domain of the phosphoprotein of vesicular stomatitis virus. J Virol 80:2808–2814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Ivanov I, Crepin T, Jamin M, Ruigrok RW (2010) Structure of the dimerization domain of the rabies virus phosphoprotein. J Virol 84:3707–3710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Uversky VN (2002) Natively unfolded proteins: a point where biology waits for physics. Protein Sci 11:739–756

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Dunker AK, Lawson JD, Brown CJ, Williams RM, Romero P, Oh JS, Oldfield CJ, Campen AM, Ratliff CM, Hipps KW, Ausio J, Nissen MS, Reeves R, Kang C, Kissinger CR, Bailey RW, Griswold MD, Chiu W, Garner EC, Obradovic Z (2001) Intrinsically disordered protein. J Mol Graph Model 19:26–59

    Article  CAS  PubMed  Google Scholar 

  76. Fuentes SM, Sun D, Schmitt AP, He B (2010) Phosphorylation of paramyxovirus phosphoprotein and its role in viral gene expression. Future Microbiol 5:9–13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Gerard FC, RibeiroEde A Jr, Leyrat C, Ivanov I, Blondel D, Longhi S, Ruigrok RW, Jamin M (2009) Modular organization of rabies virus phosphoprotein. J Mol Biol 388:978–996

    Article  CAS  PubMed  Google Scholar 

  78. Leyrat C, Gerard FC, de Almeida Ribeiro E, Jr Ivanov I, Ruigrok RW, Jamin M (2010) Structural disorder in proteins of the rhabdoviridae replication complex. Protein Pept Lett 17:979–987

    Article  CAS  PubMed  Google Scholar 

  79. Iakoucheva LM, Radivojac P, Brown CJ, O’Connor TR, Sikes JG, Obradovic Z, Dunker AK (2004) The importance of intrinsic disorder for protein phosphorylation. Nucleic Acids Res 32:1037–1049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Bourhis J, Johansson K, Receveur-Bréchot V, Oldfield CJ, Dunker AK, Canard B, Longhi S (2004) The C-terminal domain of measles virus nucleoprotein belongs to the class of intrinsically disordered proteins that fold upon binding to their physiological partner. Virus Res 99:157–167

    Article  CAS  PubMed  Google Scholar 

  81. Houben K, Marion D, Tarbouriech N, Ruigrok RW, Blanchard L (2007) Interaction of the C-terminal domains of Sendai virus N and P proteins: comparison of polymerase-nucleocapsid interactions within the paramyxovirus family. J Virol 81:6807–6816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Johansson K, Bourhis JM, Campanacci V, Cambillau C, Canard B, Longhi S (2003) Crystal structure of the measles virus phosphoprotein domain responsible for the induced folding of the C-terminal domain of the nucleoprotein. J Biol Chem 278:44567–44573

    Article  CAS  PubMed  Google Scholar 

  83. Kingston RL, Hamel DJ, Gay LS, Dahlquist FW, Matthews BW (2004) Structural basis for the attachment of a paramyxoviral polymerase to its template. Proc Natl Acad Sci USA 101:8301–8306

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Kingston RL, Walter AB, Gay LS (2004) Characterization of nucleocapsid binding by the measles and the mumps virus phosphoprotein. J Virol 78:8630–8640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Bernado P, Blanchard L, Timmins P, Marion D, Ruigrok RW, Blackledge M (2005) A structural model for unfolded proteins from residual dipolar couplings and small-angle X-ray scattering. Proc Natl Acad Sci USA 102:17002–17007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Blanchard L, Tarbouriech N, Blackledge M, Timmins P, Burmeister WP, Ruigrok RW, Marion D (2004) Structure and dynamics of the nucleocapsid-binding domain of the Sendai virus phosphoprotein in solution. Virology 319:201–211

    Article  CAS  PubMed  Google Scholar 

  87. Houben K, Blanchard L, Blackledge M, Marion D (2007) Intrinsic dynamics of the partly unstructured PX domain from the Sendai virus RNA polymerase cofactor P. Biophys J 93:2830–2844

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Communie G, Crepin T, Maurin D, Jensen MR, Blackledge M, Ruigrok RW (2013) Structure of the tetramerization domain of measles virus phosphoprotein. J Virol 87:7166–7169

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Tarbouriech N, Curran J, Ruigrok RW, Burmeister WP (2000) Tetrameric coiled coil domain of Sendai virus phosphoprotein. Nat Struct Biol 7:777–781

    Article  CAS  PubMed  Google Scholar 

  90. Gely S, Lowry DF, Bernard C, Ringkjobing-Jensen M, Blackledge M, Costanzo S, Darbon H, Daughdrill GW, Longhi S (2010) Solution structure of the C-terminal X domain of the measles virus phosphoprotein and interaction with the intrinsically disordered C-terminal domain of the nucleoprotein. J Mol Recognit 23:435–447

    Article  CAS  PubMed  Google Scholar 

  91. Communie G, Habchi J, Yabukarski F, Blocquel D, Schneider R, Tarbouriech N, Papageorgiou N, Ruigrok RW, Jamin M, Ringkjøbing-Jensen M, Longhi S, Blackledge M (2013) Atomic resolution description of the interaction between the nucleoprotein and phosphoprotein of Hendra virus. PLoS Pathog 9:e1003631

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Habchi J, Blangy S, Mamelli L, Ringkjobing Jensen M, Blackledge M, Darbon H, Oglesbee M, Shu Y, Longhi S (2011) Characterization of the interactions between the nucleoprotein and the phosphoprotein of Henipaviruses. J Biol Chem 286:13583–13602

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Kingston RL, Gay LS, Baase WS, Matthews BW (2008) Structure of the nucleocapsid-binding domain from the mumps virus polymerase; an example of protein folding induced by crystallization. J Mol Biol 379:719–731

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Bloyet L, Brunel J, Dosnon M, Hamon V, Erales J, Gruet A, Lazert C, Bignon C, Roche P, Longhi S, Gerlier D (2016) Modulation of re-initiation of measles virus transcription at intergenic regions by PXD to NTAIL binding strength. PLoS Pathog 12:e1006058

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Krumm SA, Takeda M, Plemper RK (2013) The measles virus nucleocapsid protein tail domain is dispensable for viral polymerase recruitment and activity. J Biol Chem 288:29943–29953

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Llorente MT, Barreno-Garcia B, Calero M, Camafeita E, Lopez JA, Longhi S, Ferron F, Varela PF, Melero JA (2006) Structural analysis of the human respiratory syncitial virus phosphoprotein: characterization of an a-helical domain involved in oligomerization. J Gen Virol 87:159–169

    Article  CAS  PubMed  Google Scholar 

  97. Tran TL, Castagne N, Bhella D, Varela PF, Bernard J, Chilmonczyk S, Berkenkamp S, Benhamo V, Grznarova K, Grosclaude J, Nespoulos C, Rey FA, Eleouet JF (2007) The nine C-terminal amino acids of the respiratory syncytial virus protein P are necessary and sufficient for binding to ribonucleoprotein complexes in which six ribonucleotides are contacted per N protein protomer. J Gen Virol 88:196–206

    Article  CAS  PubMed  Google Scholar 

  98. Yegambaram K, Bulloch EM, Kingston RL (2013) Protein domain definition should allow for conditional disorder. Protein Sci 22:1502–1518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. D’Urzo A, Konijnenberg A, Rossetti G, Habchi J, Li J, Carloni P, Sobott F, Longhi S, Grandori R (2015) Molecular basis for structural heterogeneity of an intrinsically disordered protein bound to a partner by combined ESI-IM-MS and modeling. J Am Soc Mass Spectrom 26:472–481

    Article  PubMed  CAS  Google Scholar 

  100. Bonetti D, Camilloni C, Visconti L, Longhi S, Brunori M, Vendruscolo M, Gianni S (2016) Identification and structural characterization of an intermediate in the folding of the measles virus X domain. J Biol Chem 291:10886–10892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Rahaman A, Srinivasan N, Shamala N, Shaila MS (2004) Phosphoprotein of the rinderpest virus forms a tetramer through a coiled coil region important for biological function. A structural insight. J Biol Chem 279:23606–23614

    Article  CAS  PubMed  Google Scholar 

  102. Blocquel D, Habchi J, Durand E, Sevajol M, Ferron F, Erales J, Papageorgiou N, Longhi S (2014) Coiled-coil deformations in crystal structures: the measles virus phosphoprotein multimerization domain as an illustrative example. Acta Crystallogr D 70:1589–1603

    Article  CAS  PubMed  Google Scholar 

  103. Cox R, Green TJ, Purushotham S, Deivanayagam C, Bedwell GJ, Prevelige PE, Luo M (2013) Structural and functional characterization of the mumps virus phosphoprotein. J Virol 87:7558–7568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Bruhn-Johannsen JF, Barnett K, Bibby J, Thomas J, Keegan R, Rigden D, Bornholdt ZA, Saphire EO (2014) Crystal structure of the Nipah virus phosphoprotein tetramerization domain. J Virol 88:758–762

    Article  CAS  Google Scholar 

  105. Leyrat C, Renner M, Harlos K, Grimes JM (2013) Solution and crystallographic structures of the central region of the phosphoprotein from human metapneumovirus. PLoS One 8:e80371

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Castagne N, Barbier A, Bernard J, Rezaei H, Huet JC, Henry C, Da Costa B, Eleouet JF (2004) Biochemical characterization of the respiratory syncytial virus P–P and P–N protein complexes and localization of the P protein oligomerization domain. J Gen Virol 85:1643–1653

    Article  CAS  PubMed  Google Scholar 

  107. Kolakofsky D, Le Mercier P, Iseni F, Garcin D (2004) Viral DNA polymerase scanning and the gymnastics of Sendai virus RNA synthesis. Virology 318:463–473

    Article  CAS  PubMed  Google Scholar 

  108. Llorente MT, Taylor IA, Lopez-Vinas E, Gomez-Puertas P, Calder LJ, Garcia-Barreno B, Melero JA (2008) Structural properties of the human respiratory syncytial virus P protein: evidence for an elongated homotetrameric molecule that is the smallest orthologue within the family of paramyxovirus polymerase cofactors. Proteins 72:946–958

    Article  CAS  PubMed  Google Scholar 

  109. Luthra P, Jordan DS, Leung DW, Amarasinghe GK, Basler CF (2015) Ebola virus VP35 interaction with dynein LC8 regulates viral RNA synthesis. J Virol 89:5148–5153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Beltrandi M, Blocquel D, Erales J, Barbier P, Cavalli A, Longhi S (2015) Insights into the coiled-coil organization of the Hendra virus phosphoprotein from combined biochemical and SAXS studies. Virology 477:42–55

    Article  CAS  PubMed  Google Scholar 

  111. Blocquel D, Beltrandi M, Erales J, Barbier P, Longhi S (2013) Biochemical and structural studies of the oligomerization domain of the Nipah virus phosphoprotein: evidence for an elongated coiled-coil homotrimer. Virology 446:162–172

    Article  CAS  PubMed  Google Scholar 

  112. Salvamani S, Goh Z, Ho K, Tey B, Tan W (2013) Oligomerization state of the multimerization domain of Nipah virus phosphoprotein. Process Biochem 48:1476–1480

    Article  CAS  Google Scholar 

  113. Dutta K, Alexandrov A, Huang H, Pascal SM (2001) pH-induced folding of an apoptotic coiled coil. Protein Sci 10:2531–2540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Lupas AN, Gruber M (2005) The structure of alpha-helical coiled coils. Adv Protein Chem 70:37–78

    Article  CAS  PubMed  Google Scholar 

  115. Oshaben KM, Salari R, McCaslin DR, Chong LT, Horne WS (2012) The native GCN4 leucine-zipper domain does not uniquely specify a dimeric oligomerization state. Biochemistry 51:9581–9591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Curran J (1998) A role for the Sendai virus P protein trimer in RNA synthesis. J Virol 72:4274–4280

    CAS  PubMed  PubMed Central  Google Scholar 

  117. Curran J, Boeck R, Lin-Marq N, Lupas A, Kolakofsky D (1995) Paramyxovirus phosphoproteins form homotrimers as determined by an epitope dilution assay, via predicted coiled coils. Virology 214:139–149

    Article  CAS  PubMed  Google Scholar 

  118. Bruhn JF, Kirchdoerfer RN, Urata SM, Li S, Tickle IJ, Bricogne G, Saphire EO (2017) Crystal structure of the Marburg virus VP35 oligomerization domain. J Virol 91. doi:10.1128/JVI.01085-16

  119. Asenjo A, Mendieta J, Gomez-Puertas P, Villanueva N (2008) Residues in human respiratory syncytial virus P protein that are essential for its activity on RNA viral synthesis. Virus Res 132:160–173

    Article  CAS  PubMed  Google Scholar 

  120. Chen M, Ogino T, Banerjee AK (2006) Mapping and functional role of the self-association domain of vesicular stomatitis virus phosphoprotein. J Virol 80:9511–9518

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Choudhary SK, Malur AG, Huo Y, De BP, Banerjee AK (2002) Characterization of the oligomerization domain of the phosphoprotein of human parainfluenza virus type 3. Virology 302:373–382

    Article  CAS  PubMed  Google Scholar 

  122. Jacob Y, Real E, Tordo N (2001) Functional interaction map of lyssavirus phosphoprotein: identification of the minimal transcription domains. J Virol 75:9613–9622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Warnes A, Fooks AR, Dowsett AB, Wilkinson GW, Stephenson JR (1995) Expression of the measles virus nucleoprotein gene in Escherichia coli and assembly of nucleocapsid-like structures. Gene 160:173–178

    Article  CAS  PubMed  Google Scholar 

  124. Bhella D, Ralph A, Yeo RP (2004) Conformational flexibility in recombinant measles virus nucleocapsids visualised by cryo-negative stain electron microscopy and real-space helical reconstruction. J Mol Biol 340:319–331

    Article  CAS  PubMed  Google Scholar 

  125. Milles S, Jensen MR, Communie G, Maurin D, Schoehn G, Ruigrok RW, Blackledge M (2016) Self-assembly of measles virus nucleocapsid-like particles: kinetics and RNA sequence dependence. Angew Chem Int Ed Engl 55:9356–9360

    Article  CAS  PubMed  Google Scholar 

  126. Jensen MR, Bernado P, Houben K, Blanchard L, Marion D, Ruigrok RW, Blackledge M (2010) Structural disorder within Sendai virus nucleoprotein and phosphoprotein: insight into the structural basis of molecular recognition. Protein Pept Lett 17:952–960

    Article  CAS  PubMed  Google Scholar 

  127. Erales J, Blocquel D, Habchi J, Beltrandi M, Gruet A, Dosnon M, Bignon C, Longhi S (2015) Order and disorder in the replicative complex of Paramyxoviruses. Adv Exp Med Biol 870:351–381

    Article  CAS  PubMed  Google Scholar 

  128. Heggeness MH, Scheid A, Choppin PW (1980) Conformation of the helical nucleocapsids of paramyxoviruses and vesicular stomatitis virus: reversible coiling and uncoiling induced by changes in salt concentration. Proc Natl Acad Sci USA 77:2631–2635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Heggeness MH, Scheid A, Choppin PW (1981) The relationship of conformational changes in the Sendai virus nucleocapsid to proteolytic cleavage of the NP polypeptide. Virology 114:555–562

    Article  CAS  PubMed  Google Scholar 

  130. Ringkjøbing Jensen M, Communie G, Ribeiro ED Jr, Martinez N, Desfosses A, Salmon L, Mollica L, Gabel F, Jamin M, Longhi S, Ruigrok RW, Blackledge M (2011) Intrinsic disorder in measles virus nucleocapsids. Proc Natl Acad Sci USA 108:9839–9844

    Article  Google Scholar 

  131. Bankamp B, Horikami SM, Thompson PD, Huber M, Billeter M, Moyer SA (1996) Domains of the measles virus N protein required for binding to P protein and self-assembly. Virology 216:272–277

    Article  CAS  PubMed  Google Scholar 

  132. Liston P, Batal R, DiFlumeri C, Briedis DJ (1997) Protein interaction domains of the measles virus nucleocapsid protein (NP). Adv Virol 142:305–321

    CAS  Google Scholar 

  133. Alayyoubi M, Leser GP, Kors CA, Lamb RA (2015) Structure of the paramyxovirus parainfluenza virus 5 nucleoprotein–RNA complex. Proc Natl Acad Sci USA 112:E1792–E1799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Tawar RG, Duquerroy S, Vonrhein C, Varela PF, Damier-Piolle L, Castagné N, MacLellan K, Bedouelle H, Bricogne G, Bhella D, Eleouet JF, Rey FA (2009) 3D structure of a nucleocapsid-like nucleoprotein–RNA complex of respiratory syncytial virus. Science 326:1279–1283

    Article  CAS  PubMed  Google Scholar 

  135. Severin C, Terrell JR, Zengel JR, Cox R, Plemper RK, He B, Luo M (2016) Releasing the genomic RNA sequestered in the mumps virus nucleocapsid. J Virol. doi:10.1128/JVI.01422-16

  136. Barbet-Massin E, Felletti M, Schneider R, Jehle S, Communie G, Martinez N, Jensen MR, Ruigrok RW, Emsley L, Lesage A, Blackledge M, Pintacuda G (2014) Insights into the structure and dynamics of measles virus nucleocapsids by 1H-detected solid-state NMR. Biophys J 107:941–946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Noton SL, Fearns R (2015) Initiation and regulation of paramyxovirus transcription and replication. Virology 479–480:545–554

    Article  PubMed  CAS  Google Scholar 

  138. Cox R, Pickar A, Qiu S, Tsao J, Rodenburg C, Dokland T, Elson A, He B, Luo M (2014) Structural studies on the authentic mumps virus nucleocapsid showing uncoiling by the phosphoprotein. Proc Natl Acad Sci USA 111:15208–15213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Wang Y, Chu X, Longhi S, Roche P, Han W, Wang E, Wang J (2013) Multiscaled exploration of coupled folding and binding of an intrinsically disordered molecular recognition element in measles virus nucleoprotein. Proc Natl Acad Sci USA 110:E3743–E3752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Morin B, Bourhis JM, Belle V, Woudstra M, Carrière F, Guigliarelli B, Fournel A, Longhi S (2006) Assessing induced folding of an intrinsically disordered protein by site-directed spin-labeling EPR spectroscopy. J Phys Chem B 110:20596–20608

    Article  CAS  PubMed  Google Scholar 

  141. Belle V, Rouger S, Costanzo S, Liquiere E, Strancar J, Guigliarelli B, Fournel A, Longhi S (2008) Mapping alpha-helical induced folding within the intrinsically disordered C-terminal domain of the measles virus nucleoprotein by site-directed spin-labeling EPR spectroscopy. Proteins Struct Funct Bioinform 73:973–988

    Article  CAS  Google Scholar 

  142. Jensen MR, Houben K, Lescop E, Blanchard L, Ruigrok RW, Blackledge M (2008) Quantitative conformational analysis of partially folded proteins from residual dipolar couplings: application to the molecular recognition element of Sendai virus nucleoprotein. J Am Chem Soc 130:8055–8061

    Article  CAS  PubMed  Google Scholar 

  143. Serrano L, Fersht AR (1989) Capping and alpha-helix stability. Nature 342:296–299

    Article  CAS  PubMed  Google Scholar 

  144. Blocquel D, Habchi J, Gruet A, Blangy S, Longhi S (2012) Compaction and binding properties of the intrinsically disordered C-terminal domain of Henipavirus nucleoprotein as unveiled by deletion studies. Mol BioSyst 8:392–410

    Article  CAS  PubMed  Google Scholar 

  145. Hazy E, Tompa P (2009) Limitations of induced folding in molecular recognition by intrinsically disordered proteins. ChemPhysChem 10:1415–1419

    Article  CAS  PubMed  Google Scholar 

  146. Martinho M, Habchi J, El Habre Z, Nesme L, Guigliarelli B, Belle V, Longhi S (2013) Assessing induced folding within the intrinsically disordered C-terminal domain of the Henipavirus nucleoproteins by site directed spin labeling EPR spectroscopy. J Biomol Struct Dyn 31:453–471

    Article  CAS  PubMed  Google Scholar 

  147. Baronti L, Erales J, Habchi J, Felli IC, Pierattelli R, Longhi S (2015) Dynamics of the intrinsically disordered C-terminal domain of the Nipah virus nucleoprotein and interaction with the X domain of the phosphoprotein as unveiled by NMR spectroscopy. ChemBioChem 16:268–276

    Article  CAS  PubMed  Google Scholar 

  148. Dosnon M, Bonetti D, Morrone A, Erales J, di Silvio E, Longhi S, Gianni S (2015) Demonstration of a folding after binding mechanism in the recognition between the measles virus NTAIL and X domains. ACS Chem Biol 10:795–802

    Article  CAS  PubMed  Google Scholar 

  149. Bourhis JM, Receveur-Bréchot V, Oglesbee M, Zhang X, Buccellato M, Darbon H, Canard B, Finet S, Longhi S (2005) The intrinsically disordered C-terminal domain of the measles virus nucleoprotein interacts with the C-terminal domain of the phosphoprotein via two distinct sites and remains predominantly unfolded. Protein Sci 14:1975–1992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Belle V, Rouger S, Costanzo S, Longhi S, Fournel A (2010) Site-directed spin labeling EPR spectroscopy. In: Uversky VN, Longhi S (eds) Instrumental analysis of intrinsically disordered proteins: assessing structure and conformation. Wiley, Hoboken

    Google Scholar 

  151. Erales J, Beltrandi M, Roche J, Maté M, Longhi S (2015) Insights into the Hendra virus NTAIL-XD complex: evidence for a parallel organization of the helical MoRE at the XD surface stabilized by a combination of hydrophobic and polar interactions. Biochim Biopys Acta 1854:1038–1053

    Article  CAS  Google Scholar 

  152. Schreiber G, Haran G, Zhou HX (2009) Fundamental aspects of protein–protein association kinetics. Chem Rev 109:839–860

    Article  CAS  PubMed  Google Scholar 

  153. Xue Y, Yuwen T, Zhu F, Skrynnikov NR (2014) Role of electrostatic interactions in binding of peptides and intrinsically disordered proteins to their folded targets. 1. NMR and MD characterization of the complex between the c-Crk N-SH3 domain and the peptide Sos. Biochemistry 53:6473–6495

    Article  CAS  PubMed  Google Scholar 

  154. Meszaros B, Tompa P, Simon I, Dosztanyi Z (2007) Molecular principles of the interactions of disordered proteins. J Mol Biol 372:549–561

    Article  CAS  PubMed  Google Scholar 

  155. Tsai CD, Ma B, Kumar S, Wolfson H, Nussinov R (2001) Protein folding: binding of conformationally fluctuating building blocks via population selection. Crit Rev Biochem Mol Biol 36:399–433

    Article  CAS  PubMed  Google Scholar 

  156. Tsai CJ, Ma B, Sham YY, Kumar S, Nussinov R (2001) Structured disorder and conformational selection. Proteins Struct Funct Bioinform 44:418–427

    Article  CAS  Google Scholar 

  157. Shoemaker BA, Portman JJ, Wolynes PG (2000) Speeding molecular recognition by using the folding funnel: the fly-casting mechanism. Proc Natl Acad Sci USA 97:8868–8873

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Gianni S, Dogan J, Jemth P (2014) Distinguishing induced fit from conformational selection. Biophys Chem 189:33–39

    Article  CAS  PubMed  Google Scholar 

  159. Schneider R, Maurin D, Communie G, Kragelj J, Hansen DF, Ruigrok RW, Jensen MR, Blackledge M (2015) Visualizing the molecular recognition trajectory of an intrinsically disordered protein using multinuclear relaxation dispersion NMR. J Am Chem Soc 137:1220–1229

    Article  CAS  PubMed  Google Scholar 

  160. Fuxreiter M, Tompa P (2009) Fuzzy interactome: the limitations of models in molecular biology. Trends Biochem Sci 34:3

    Article  CAS  Google Scholar 

  161. Fuxreiter M (2012) Fuzziness: linking regulation to protein dynamics. Mol BioSyst 8:168–177

    Article  CAS  PubMed  Google Scholar 

  162. Longhi S (2012) The measles virus N(TAIL)-XD complex: an illustrative example of fuzziness. Adv Exp Med Biol 725:126–141

    Article  CAS  PubMed  Google Scholar 

  163. Kavalenka A, Urbancic I, Belle V, Rouger S, Costanzo S, Kure S, Fournel A, Longhi S, Guigliarelli B, Strancar J (2010) Conformational analysis of the partially disordered measles virus NTAIL-XD complex by SDSL EPR spectroscopy. Biophys J 98:1055–1064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Zhang X, Bourhis JM, Longhi S, Carsillo T, Buccellato M, Morin B, Canard B, Oglesbee M (2005) Hsp72 recognizes a P binding motif in the measles virus N protein C-terminus. Virology 337:162–174

    Article  CAS  PubMed  Google Scholar 

  165. Couturier M, Buccellato M, Costanzo S, Bourhis JM, Shu Y, Nicaise M, Desmadril M, Flaudrops C, Longhi S, Oglesbee M (2010) High affinity binding between Hsp70 and the C-terminal domain of the measles virus nucleoprotein requires an Hsp40 co-chaperone. J Mol Recognit 23:301–315

    CAS  PubMed  Google Scholar 

  166. Zhang X, Glendening C, Linke H, Parks CL, Brooks C, Udem SA, Oglesbee M (2002) Identification and characterization of a regulatory domain on the carboxyl terminus of the measles virus nucleocapsid protein. J Virol 76:8737–8746

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Carsillo T, Zhang X, Vasconcelos D, Niewiesk S, Oglesbee M (2006) A single codon in the nucleocapsid protein C terminus contributes to in vitro and in vivo fitness of Edmonston measles virus. J Virol 80:2904–2912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Oglesbee M (2007) Nucleocapsid protein interactions with the major inducible heat shock protein. In: Longhi S (ed) Measles virus nucleoprotein. Nova Publishers Inc., Hauppage, pp 53–98

    Google Scholar 

  169. Carsillo T, Traylor Z, Choi C, Niewiesk S, Oglesbee M (2006) hsp72, a host determinant of measles virus neurovirulence. J Virol 80:11031–11039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Hagiwara K, Sato H, Inoue Y, Watanabe A, Yoneda M, Ikeda F, Fujita K, Fukuda H, Takamura C, Kozuka-Hata H, Oyama M, Sugano S, Ohmi S, Kai C (2008) Phosphorylation of measles virus nucleoprotein upregulates the transcriptional activity of minigenomic RNA. Proteomics 8:1871–1879

    Article  CAS  PubMed  Google Scholar 

  171. Sugai A, Sato H, Yoneda M, Kai C (2013) Phosphorylation of measles virus nucleoprotein affects viral growth by changing gene expression and genomic RNA stability. J Virol 87:11684–11692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Huang M, Sato H, Hagiwara K, Watanabe A, Sugai A, Ikeda F, Kozuka-Hata H, Oyama M, Yoneda M, Kai C (2011) Determination of a phosphorylation site in Nipah virus nucleoprotein and its involvement in virus transcription. J Gen Virol 92:2133–2141

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Gruet A, Dosnon M, Vassena A, Lombard V, Gerlier D, Bignon C, Longhi S (2013) Dissecting partner recognition by an intrinsically disordered protein using descriptive random mutagenesis. J Mol Biol 425:3495–3509

    Article  CAS  PubMed  Google Scholar 

  174. Gruet A, Dosnon M, Blocquel D, Brunel J, Gerlier D, Das RK, Bonetti D, Gianni S, Fuxreiter M, Longhi S, Bignon C (2016) Fuzzy regions in an intrinsically disordered protein impair protein–protein interactions. FEBS J 283:576–594

    Article  CAS  PubMed  Google Scholar 

  175. Green TJ, Luo M (2009) Structure of the vesicular stomatitis virus nucleocapsid in complex with the nucleocapsid-binding domain of the small polymerase cofactor, P. Proc Natl Acad Sci USA 106:11713–11718

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  176. Oglesbee M, Ringler S, Krakowka S (1990) Interaction of canine distemper virus nucleocapsid variants with 70K heat-shock proteins. J Gen Virol 71:1585–1590

    Article  CAS  PubMed  Google Scholar 

  177. Oglesbee M, Tatalick L, Rice J, Krakowka S (1989) Isolation and characterization of canine distemper virus nucleocapsid variants. J Gen Virol 70(Pt 9):2409–2419

    Article  CAS  PubMed  Google Scholar 

  178. Shu Y, Habchi J, Costanzo S, Padilla A, Brunel J, Gerlier D, Oglesbee M, Longhi S (2012) Plasticity in structural and functional interactions between the phosphoprotein and nucleoprotein of measles virus. J Biol Chem 287:11951–11967

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Brunel J, Chopy D, Dosnon M, Bloyet LM, Devaux P, Urzua E, Cattaneo R, Longhi S, Gerlier D (2014) Sequence of events in measles virus replication: role of phosphoprotein–nucleocapsid interactions. J Virol 88:10851–10863

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  180. Huang H, Sarai A (2012) Analysis of the relationships between evolvability, thermodynamics, and the functions of intrinsically disordered proteins/regions. Comput Biol Chem 41:51–57

    Article  CAS  PubMed  Google Scholar 

  181. Kirchdoerfer RN, Moyer CL, Abelson DM, Saphire EO (2016) The Ebola virus VP30-NP interaction is a regulator of viral RNA synthesis. PLoS Pathog 12:e1005937

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  182. Sebolt-Leopold JS, English JM (2006) Mechanisms of drug inhibition of signalling molecules. Nature 441:457–462

    Article  CAS  PubMed  Google Scholar 

  183. Lagerstrom MC, Schioth HB (2008) Structural diversity of G protein-coupled receptors and significance for drug discovery. Nat Rev Drug Discov 7:339–357

    Article  PubMed  CAS  Google Scholar 

  184. Betzi S, Restouin A, Opi S, Arold ST, Parrot I, Guerlesquin F, Morelli X, Collette Y (2007) Protein protein interaction inhibition (2P2I) combining high throughput and virtual screening: application to the HIV-1 Nef protein. Proc Natl Acad Sci USA 104:19256–19261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Cox R, Plemper RK (2015) The paramyxovirus polymerase complex as a target for next-generation anti-paramyxovirus therapeutics. Front Microbiol 6:459

    Article  PubMed  PubMed Central  Google Scholar 

  186. Cheng Y, Legall T, Oldfield CJ, Mueller JP, Van YY, Romero P, Cortese MS, Uversky VN, Dunker AK (2006) Rational drug design via intrinsically disordered protein. Trends Biotechnol 24:435–442

    Article  CAS  PubMed  Google Scholar 

  187. Uversky VN (2010) Targeting intrinsically disordered proteins in neurodegenerative and protein dysfunction diseases: another illustration of the D(2) concept. Expert Rev Proteomics 7:543–564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Dunker AK, Uversky VN (2010) Drugs for ‘protein clouds’: targeting intrinsically disordered transcription factors. Curr Opin Pharmacol 10:782–788

    Article  CAS  PubMed  Google Scholar 

  189. Uversky VN (2012) Intrinsic disorder-based protein interactions and their modulators. Curr Pharm, Des

    Google Scholar 

  190. Uversky VN (2012) Intrinsically disordered proteins and novel strategies for drug discovery. Expert Opin Drug Discov 7:475–488

    Article  CAS  PubMed  Google Scholar 

  191. Marasco D, Scognamiglio PL (2015) Identification of inhibitors of biological interactions involving intrinsically disordered proteins. Int J Mol Sci 16:7394–7412

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Joshi P, Vendruscolo M (2015) Druggability of intrinsically disordered proteins. Adv Exp Med Biol 870:383–400

    Article  CAS  PubMed  Google Scholar 

  193. Lo Conte L, Chothia C, Janin J (1999) The atomic structure of protein–protein recognition sites. J Mol Biol 285:2177–2198

    Article  CAS  PubMed  Google Scholar 

  194. Gunasekaran K, Tsai CJ, Nussinov R (2004) Analysis of ordered and disordered protein complexes reveals structural features discriminating between stable and unstable monomers. J Mol Biol 341:1327–1341

    Article  CAS  PubMed  Google Scholar 

  195. Klein C, Vassilev LT (2004) Targeting the p53-MDM2 interaction to treat cancer. Br J Cancer 91:1415–1419

    CAS  PubMed  PubMed Central  Google Scholar 

  196. Vassilev LT (2004) Small-molecule antagonists of p53-MDM2 binding: research tools and potential therapeutics. Cell Cycle 3:419–421

    Article  CAS  PubMed  Google Scholar 

  197. Vassilev LT, Vu BT, Graves B, Carvajal D, Podlaski F, Filipovic Z, Kong N, Kammlott U, Lukacs C, Klein C, Fotouhi N, Liu EA (2004) In vivo activation of the p53 pathway by small-molecule antagonists of MDM2. Science 303:844–848

    Article  CAS  PubMed  Google Scholar 

  198. Krishnan N, Koveal D, Miller DH, Xue B, Akshinthala SD, Kragelj J, Jensen MR, Gauss CM, Page R, Blackledge M, Muthuswamy SK, Peti W, Tonks NK (2014) Targeting the disordered C terminus of PTP1B with an allosteric inhibitor. Nat Chem Biol 10:558–566

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Monaghan AE, McEwan IJ (2016) A sting in the tail: the N-terminal domain of the androgen receptor as a drug target. Asian J Androl 18:687–694

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  200. Dey S, Pal A, Chakrabarti P, Janin J (2010) The subunit interfaces of weakly associated homodimeric proteins. J Mol Biol 398:146–160

    Article  CAS  PubMed  Google Scholar 

  201. Bourgeas R, Basse MJ, Morelli X, Roche P (2010) Atomic analysis of protein–protein interfaces with known inhibitors: the 2P2I database. PLoS One 5:e9598

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  202. Dunker AK, Cortese MS, Romero P, Iakoucheva LM, Uversky VN (2005) Flexible nets. FEBS J 272:5129–5148

    Article  CAS  PubMed  Google Scholar 

  203. Uversky VN, Oldfield CJ, Dunker AK (2005) Showing your ID: intrinsic disorder as an ID for recognition, regulation and cell signaling. J Mol Recognit 18:343–384

    Article  CAS  PubMed  Google Scholar 

  204. Haynes C, Oldfield CJ, Ji F, Klitgord N, Cusick ME, Radivojac P, Uversky VN, Vidal M, Iakoucheva LM (2006) Intrinsic disorder is a common feature of hub proteins from four eukaryotic interactomes. PLoS Comput Biol 2:e100

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  205. Sato H, Masuda M, Miura R, Yoneda M, Kai C (2006) Morbillivirus nucleoprotein possesses a novel nuclear localization signal and a CRM1-independent nuclear export signal. Virology 352:121–130

    Article  CAS  PubMed  Google Scholar 

  206. Iwasaki M, Takeda M, Shirogane Y, Nakatsu Y, Nakamura T, Yanagi Y (2009) The matrix protein of measles virus regulates viral RNA synthesis and assembly by interacting with the nucleocapsid protein. J Virol 83:10374–10383

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Watanabe A, Yoneda M, Ikeda F, Sugai A, Sato H, Kai C (2011) Peroxiredoxin 1 is required for efficient transcription and replication of measles virus. J Virol 85:2247–2253

    Article  CAS  PubMed  Google Scholar 

  208. De BP, Banerjee AK (1999) Involvement of actin microfilaments in the transcription/replication of human parainfluenza virus type 3: possible role of actin in other viruses. Microsc Res Tech 47:114–123

    Article  CAS  PubMed  Google Scholar 

  209. Moyer SA, Baker SC, Horikami SM (1990) Host cell proteins required for measles virus reproduction. J Gen Virol 71:775–783

    Article  CAS  PubMed  Google Scholar 

  210. tenOever BR, Servant MJ, Grandvaux N, Lin R, Hiscott J (2002) Recognition of the measles virus nucleocapsid as a mechanism of IRF-3 activation. J Virol 76:3659–3669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Colombo M, Bourhis JM, Chamontin C, Soriano C, Villet S, Costanzo S, Couturier M, Belle V, Fournel A, Darbon H, Gerlier D, Longhi S (2009) The interaction between the measles virus nucleoprotein and the Interferon Regulator Factor 3 relies on a specific cellular environment. Virol J 6:59

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  212. Laine D, Bourhis J, Longhi S, Flacher M, Cassard L, Canard B, Sautès-Fridman C, Rabourdin-Combe C, Valentin H (2005) Measles virus nucleoprotein induces cell proliferation arrest and apoptosis through NTAIL/NR and NCORE/FcgRIIB1 interactions, respectively. J Gen Virol 86:1771–1784

    Article  CAS  PubMed  Google Scholar 

  213. Laine D, Trescol-Biémont M, Longhi S, Libeau G, Marie J, Vidalain P, Azocar O, Diallo A, Canard B, Rabourdin-Combe C, Valentin H (2003) Measles virus nucleoprotein binds to a novel cell surface receptor distinct from FcgRII via its C-terminal domain: role in MV-induced immunosuppression. J Virol 77:11332–11346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Chen M, Cortay JC, Gerlier D (2003) Measles virus protein interactions in yeast: new findings and caveats. Virus Res 98:123–129

    Article  CAS  PubMed  Google Scholar 

  215. Devaux P, Priniski L, Cattaneo R (2013) The measles virus phosphoprotein interacts with the linker domain of STAT1. Virology 444:250–256

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Curran J, Marq JB, Kolakofsky D (1995) An N-terminal domain of the Sendai paramyxovirus P protein acts as a chaperone for the NP protein during the nascent chain assembly step of genome replication. J Virol 69:849–855

    CAS  PubMed  PubMed Central  Google Scholar 

  217. Tapparel C, Maurice D, Roux L (1998) The activity of Sendai virus genomic and antigenomic promoters requires a second element past the leader template regions: a motif (GNNNNN)3 is essential for replication. J Virol 72:3117–3128

    CAS  PubMed  PubMed Central  Google Scholar 

  218. Dunker AK, Garner E, Guilliot S, Romero P, Albrecht K, Hart J, Obradovic Z, Kissinger C, Villafranca JE (1998) Protein disorder and the evolution of molecular recognition: theory, predictions and observations. Pac Symp Biocomput 3:473–484

    Google Scholar 

  219. Wright PE, Dyson HJ (1999) Intrinsically unstructured proteins: re-assessing the protein structure-function paradigm. J Mol Biol 293:321–331

    Article  CAS  PubMed  Google Scholar 

  220. Dunker AK, Obradovic Z (2001) The protein trinity–linking function and disorder. Nat Biotechnol 19:805–806

    Article  CAS  PubMed  Google Scholar 

  221. Dunker AK, Brown CJ, Obradovic Z (2002) Identification and functions of usefully disordered proteins. Adv Protein Chem 62:25–49

    Article  CAS  PubMed  Google Scholar 

  222. Uversky VN, Li J, Souillac P, Jakes R, Goedert M, Fink AL (2002) Biophysical properties of the synucleins and their propensities to fibrillate: inhibition of alpha-synuclein assembly by beta- and gamma- synucleins. J Biol Chem 25:25

    Google Scholar 

  223. Gunasekaran K, Tsai CJ, Kumar S, Zanuy D, Nussinov R (2003) Extended disordered proteins: targeting function with less scaffold. Trends Biochem Sci 28:81–85

    Article  CAS  PubMed  Google Scholar 

  224. Fink AL (2005) Natively unfolded proteins. Curr Opin Struct Biol 15:35–41

    Article  CAS  PubMed  Google Scholar 

  225. Dyson HJ, Wright PE (2005) Intrinsically unstructured proteins and their functions. Nat Rev Mol Cell Biol 6:197–208

    Article  CAS  PubMed  Google Scholar 

  226. Pancsa R, Fuxreiter M (2012) Interactions via intrinsically disordered regions: what kind of motifs? IUBMB Life 64:513–520

    Article  CAS  PubMed  Google Scholar 

  227. Jordan IK, Sutter BA, McClure MA (2000) Molecular evolution of the Paramyxoviridae and Rhabdoviridae multiple-protein-encoding P gene. Mol Biol Evol 17:75–86

    Article  CAS  PubMed  Google Scholar 

  228. Narechania A, Terai M, Burk RD (2005) Overlapping reading frames in closely related human papillomaviruses result in modular rates of selection within E2. J Gen Virol 86:1307–1313

    Article  CAS  PubMed  Google Scholar 

  229. Rancurel C, Khosravi M, Dunker KA, Romero PR, Karlin D (2009) Overlapping genes produce proteins with unusual sequence properties and offer insight into de novo protein creation. J Virol 83:10719–10736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  230. Kovacs E, Tompa P, Liliom K, Kalmar L (2010) Dual coding in alternative reading frames correlates with intrinsic protein disorder. Proc Natl Acad Sci USA 107:5429–5434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Bourhis JM, Canard B, Longhi S (2006) Structural disorder within the replicative complex of measles virus: functional implications. Virology 344:94–110

    Article  CAS  PubMed  Google Scholar 

  232. Xue B, Blocquel D, Habchi J, Uversky AV, Kurgan L, Uversky VN, Longhi S (2014) Structural disorder in viral proteins. Chem Rev 114:6880–6911

    Article  CAS  PubMed  Google Scholar 

  233. Tokuriki N, Oldfield CJ, Uversky VN, Berezovsky IN, Tawfik DS (2009) Do viral proteins possess unique biophysical features? Trends Biochem Sci 34:53–59

    Article  CAS  PubMed  Google Scholar 

  234. Xue B, Williams RW, Oldfield CJ, Goh GK, Dunker AK, Uversky VN (2010) Viral disorder or disordered viruses: do viral proteins possess unique features? Protein Pept Lett 17:932–951

    Article  CAS  PubMed  Google Scholar 

  235. Afonso CL, Amarasinghe GK, Banyai K, Bao Y, Basler CF, Bavari S, Bejerman N, Blasdell KR, Briand FX, Briese T, Bukreyev A, Calisher CH, Chandran K, Cheng J, Clawson AN, Collins PL, Dietzgen RG, Dolnik O, Domier LL, Durrwald R, Dye JM, Easton AJ, Ebihara H, Farkas SL, Freitas-Astua J, Formenty P, Fouchier RA, Fu Y, Ghedin E, Goodin MM, Hewson R, Horie M, Hyndman TH, Jiang D, Kitajima EW, Kobinger GP, Kondo H, Kurath G, Lamb RA, Lenardon S, Leroy EM, Li CX, Lin XD, Liu L, Longdon B, Marton S, Maisner A, Muhlberger E, Netesov SV, Nowotny N, Patterson JL, Payne SL, Paweska JT, Randall RE, Rima BK, Rota P, Rubbenstroth D, Schwemmle M, Shi M, Smither SJ, Stenglein MD, Stone DM, Takada A, Terregino C, Tesh RB, Tian JH, Tomonaga K, Tordo N, Towner JS, Vasilakis N, Verbeek M, Volchkov VE, Wahl-Jensen V, Walsh JA, Walker PJ, Wang D, Wang LF, Wetzel T, Whitfield AE, Xie JT, Yuen KY, Zhang YZ, Kuhn JH (2016) Taxonomy of the order Mononegavirales: update 2016. Adv Virol 161:2351–2360

    CAS  Google Scholar 

  236. DeLano WL (2002) The PyMOL molecular graphics system. Proteins Struct Funct Bioinform 30:442–454

    Google Scholar 

Download references

Acknowledgements

S.L. wishes to thank all the members of her lab and her co-workers for their critical contribution to the studies herein summarized. Within her group, she thanks David Karlin, François Ferron, Jean-Marie Bourhis, Kenth Johansson, Antoine Gruet, Johnny Habchi, David Blocquel, Jenny Erales, Lorenzo Baronti, Marion Dosnon, Jennifer Roche and Matilde Beltrandi (previous members), and Christophe Bignon (present members). The authors also wish to thank David Blocquel who is the author of Fig. 9c. Among her numerous past and present co-workers, she thanks Bruno Canard (AFMB, Marseille, France), Maria Maté (AFMB, Marseille, France), Michael Oglesbee (Ohio State University, Columbus, USA), Hélène Valentin (CIRI, Lyon, France), Valerie Belle and Bruno Guigliarelli (BIP, Marseille, France), Janez Strancar (Jozef Stefan Institute, Ljubljana, Slovenia), Gary Daughdrill (University of South Florida, USA), Martin Blackledge, Malene Ringkjobin-Jensen and Guillaume Communie (Institut de Biologie Structurale, Grenoble, France), Jin Wang (Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun, China), Roberta Pierattelli and Isabella Felli (CERM, Florence, Italy), Rita Grandori (Universita’ degli Studi Milano-Bicocca, Milan, Italy), Andrea Cavalli (IRB, Bellinzona, Switzerland), Pascale Barbier (CRO2 UMR_S911, Marseille, France), Paolo Carloni (Institute for Advanced Simulation IAS-5 and Institute of Neuroscience and Medicine INM-9, Jülich, Germany), Joanna Brunel (CIRI, Lyon, France), Daniela Bonetti (Sapienza, Universita’ of Rome, Italy), and Carlo Camilloni and Michele Vendruscolo (Department of Chemistry, University of Cambridge, UK). She is particularly grateful to Vladimir Uversky (University of South Florida, USA) for the numerous stimulating discussions and for his useful advice on various issues. The studies herein reviewed were carried out with the financial support of the Agence Nationale de la Recherche, specific programs “Physico-Chimie du Vivant”, ANR-08-PCVI-0020-01, and “ASTRID”, ANR-11-ASTR-003-01 to S.L and D.G. They also benefited from support from the CNRS, the Direction Générale de l’Armement (DGA) and the Fondation pour la Recherche Médicale (FRM). Work partly supported by grants from the Italian Ministero dell’Istruzione dell’Università e della Ricerca (Progetto di Interesse ‘Invecchiamento’ to S.G.) and Sapienza University of Rome (C26A155S48 to S.G). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sonia Longhi.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Longhi, S., Bloyet, LM., Gianni, S. et al. How order and disorder within paramyxoviral nucleoproteins and phosphoproteins orchestrate the molecular interplay of transcription and replication. Cell. Mol. Life Sci. 74, 3091–3118 (2017). https://doi.org/10.1007/s00018-017-2556-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-017-2556-3

Keywords

Navigation