Skip to main content

Advertisement

Log in

Regulation of myelopoiesis by proinflammatory cytokines in infectious diseases

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Hematopoiesis is hierarchically orchestrated by a very small population of hematopoietic stem cells (HSCs) that reside in the bone-marrow niche and are tightly regulated to maintain homeostatic blood production. HSCs are predominantly quiescent, but they enter the cell cycle in response to inflammatory signals evoked by severe systemic infection or injury. Thus, hematopoietic stem and progenitor cells (HSPCs) can be activated by pathogen recognition receptors and proinflammatory cytokines to induce emergency myelopoiesis during infection. This emergency myelopoiesis counterbalances the loss of cells and generates lineage-restricted hematopoietic progenitors, eventually replenishing mature myeloid cells to control the infection. Controlled generation of such signals effectively augments host defense, but dysregulated stimulation by these signals is harmful to HSPCs. Such hematopoietic failure often results in blood disorders including chronic inflammatory diseases and hematological malignancies. Recently, we found that interleukin (IL)-27, one of the IL-6/IL-12 family cytokines, has a unique ability to directly act on HSCs and promote their expansion and differentiation into myeloid progenitors. This process resulted in enhanced production of neutrophils by emergency myelopoiesis during the blood-stage mouse malaria infection. In this review, we summarize recent advances in the regulation of myelopoiesis by proinflammatory cytokines including type I and II interferons, IL-6, IL-27, granulocyte colony-stimulating factor, macrophage colony-stimulating factor, and IL-1 in infectious diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

BM:

Bone marrow

CAR:

C-X-C motif ligand 12-abundant reticular

CTL:

Cytotoxic CD8+ T cell

CXCL:

C-X-C motif ligand

DC:

Dendritic cell

EC:

Endothelial cell

G-CSF:

Granulocyte colony-stimulating factor

gp130:

β-Receptor glycoprotein 130

GM-CSF:

Granulocyte macrophage colony-stimulating factor

HSC:

Hematopoietic stem cell

HSPC:

Hematopoietic stem and progenitor cell

IFN:

Interferon

IFNAR:

IFN-α receptor

IL:

Interleukin

JAK:

Janus kinase

LCMV:

Lymphocytic choriomeningitis virus

LSK:

LineageSca-1+c-Kit+

LT-HSC:

Long-term repopulating hematopoietic stem cell

M-CSF:

Macrophage colony-stimulating factor

MDSC:

Myeloid-derived suppressor cell

MPP:

Multipotent progenitor

MYD88:

Myeloid differentiation primary response gene 88

MyRP:

Myeloid-restricted progenitor cell

MSC:

Mesenchymal stem/stromal cell

NK:

Natural killer

P. :

Plasmodium

R:

Receptor

RBC:

Red blood cell

Sca-1:

Stem cell antigen-1

SCF:

Stem cell factor

STAT:

Signal transducer and activator of transcription

Th:

Helper T

TLR:

Toll-like receptor

Treg:

Regulatory T

References

  1. Orkin SH, Zon LI (2008) Hematopoiesis: an evolving paradigm for stem cell biology. Cell 132(4):631–644. https://doi.org/10.1016/j.cell.2008.01.025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Oguro H, Ding L, Morrison SJ (2013) SLAM family markers resolve functionally distinct subpopulations of hematopoietic stem cells and multipotent progenitors. Cell Stem Cell 13(1):102–116. https://doi.org/10.1016/j.stem.2013.05.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Pang WW, Price EA, Sahoo D, Beerman I, Maloney WJ, Rossi DJ, Schrier SL, Weissman IL (2011) Human bone marrow hematopoietic stem cells are increased in frequency and myeloid-biased with age. Proc Natl Acad Sci USA 108(50):20012–20017. https://doi.org/10.1073/pnas.1116110108

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Mohrin M, Bourke E, Alexander D, Warr MR, Barry-Holson K, Le Beau MM, Morrison CG, Passegue E (2010) Hematopoietic stem cell quiescence promotes error-prone DNA repair and mutagenesis. Cell Stem Cell 7(2):174–185. https://doi.org/10.1016/j.stem.2010.06.014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Ding L, Morrison SJ (2013) Haematopoietic stem cells and early lymphoid progenitors occupy distinct bone marrow niches. Nature 495(7440):231–235. https://doi.org/10.1038/nature11885

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ding L, Saunders TL, Enikolopov G, Morrison SJ (2012) Endothelial and perivascular cells maintain haematopoietic stem cells. Nature 481(7382):457–462. https://doi.org/10.1038/nature10783

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Mendez-Ferrer S, Michurina TV, Ferraro F, Mazloom AR, Macarthur BD, Lira SA, Scadden DT, Ma’ayan A, Enikolopov GN, Frenette PS (2010) Mesenchymal and haematopoietic stem cells form a unique bone marrow niche. Nature 466(7308):829–834. https://doi.org/10.1038/nature09262

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Monteiro JP, Benjamin A, Costa ES, Barcinski MA, Bonomo A (2005) Normal hematopoiesis is maintained by activated bone marrow CD4+ T cells. Blood 105(4):1484–1491. https://doi.org/10.1182/blood-2004-07-2856

    Article  CAS  PubMed  Google Scholar 

  9. Yamazaki S, Ema H, Karlsson G, Yamaguchi T, Miyoshi H, Shioda S, Taketo MM, Karlsson S, Iwama A, Nakauchi H (2011) Nonmyelinating Schwann cells maintain hematopoietic stem cell hibernation in the bone marrow niche. Cell 147(5):1146–1158. https://doi.org/10.1016/j.cell.2011.09.053

    Article  CAS  PubMed  Google Scholar 

  10. Takizawa H, Boettcher S, Manz MG (2012) Demand-adapted regulation of early hematopoiesis in infection and inflammation. Blood 119(13):2991–3002. https://doi.org/10.1182/blood-2011-12-380113

    Article  CAS  PubMed  Google Scholar 

  11. Sato T, Onai N, Yoshihara H, Arai F, Suda T, Ohteki T (2009) Interferon regulatory factor-2 protects quiescent hematopoietic stem cells from type I interferon-dependent exhaustion. Nat Med 15(6):696–700. https://doi.org/10.1038/nm.1973

    Article  CAS  PubMed  Google Scholar 

  12. Essers MA, Offner S, Blanco-Bose WE, Waibler Z, Kalinke U, Duchosal MA, Trumpp A (2009) IFNalpha activates dormant haematopoietic stem cells in vivo. Nature 458(7240):904–908. https://doi.org/10.1038/nature07815

    Article  CAS  PubMed  Google Scholar 

  13. Baldridge MT, King KY, Boles NC, Weksberg DC, Goodell MA (2010) Quiescent haematopoietic stem cells are activated by IFN-gamma in response to chronic infection. Nature 465(7299):793–797. https://doi.org/10.1038/nature09135

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Boettcher S, Ziegler P, Schmid MA, Takizawa H, van Rooijen N, Kopf M, Heikenwalder M, Manz MG (2012) Cutting edge: LPS-induced emergency myelopoiesis depends on TLR4-expressing nonhematopoietic cells. J Immunol 188(12):5824–5828. https://doi.org/10.4049/jimmunol.1103253

    Article  CAS  PubMed  Google Scholar 

  15. Boettcher S, Manz MG (2016) Sensing and translation of pathogen signals into demand-adapted myelopoiesis. Curr Opin Hematol 23(1):5–10. https://doi.org/10.1097/MOH.0000000000000201

    Article  CAS  PubMed  Google Scholar 

  16. Mirantes C, Passegue E, Pietras EM (2014) Pro-inflammatory cytokines: emerging players regulating HSC function in normal and diseased hematopoiesis. Exp Cell Res 329(2):248–254. https://doi.org/10.1016/j.yexcr.2014.08.017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Clapes T, Lefkopoulos S, Trompouki E (2016) Stress and non-stress roles of inflammatory signals during HSC emergence and maintenance. Front Immunol 7:487. https://doi.org/10.3389/fimmu.2016.00487

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Boiko JR, Borghesi L (2012) Hematopoiesis sculpted by pathogens: toll-like receptors and inflammatory mediators directly activate stem cells. Cytokine 57(1):1–8. https://doi.org/10.1016/j.cyto.2011.10.005

    Article  CAS  PubMed  Google Scholar 

  19. Monlish DA, Bhatt ST, Schuettpelz LG (2016) The role of toll-like receptors in hematopoietic malignancies. Front Immunol 7:390. https://doi.org/10.3389/fimmu.2016.00390

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. Seita J, Asakawa M, Ooehara J, Takayanagi S, Morita Y, Watanabe N, Fujita K, Kudo M, Mizuguchi J, Ema H, Nakauchi H, Yoshimoto T (2008) Interleukin-27 directly induces differentiation in hematopoietic stem cells. Blood 111(4):1903–1912. https://doi.org/10.1182/blood-2007-06-093328

    Article  CAS  PubMed  Google Scholar 

  21. Furusawa J, Mizoguchi I, Chiba Y, Hisada M, Kobayashi F, Yoshida H, Nakae S, Tsuchida A, Matsumoto T, Ema H, Mizuguchi J, Yoshimoto T (2016) Promotion of expansion and differentiation of hematopoietic stem cells by interleukin-27 into myeloid progenitors to control infection in emergency myelopoiesis. PLoS Pathog 12(3):e1005507. https://doi.org/10.1371/journal.ppat.1005507

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Isaacs A, Lindenmann J (1957) Virus interference. I. The interferon. Proc R Soc Lond B Biol Sci 147(927):258–267

    Article  CAS  PubMed  Google Scholar 

  23. Binder D, Fehr J, Hengartner H, Zinkernagel RM (1997) Virus-induced transient bone marrow aplasia: major role of interferon-alpha/beta during acute infection with the noncytopathic lymphocytic choriomeningitis virus. J Exp Med 185(3):517–530

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Lapidot T, Sirard C, Vormoor J, Murdoch B, Hoang T, Caceres-Cortes J, Minden M, Paterson B, Caligiuri MA, Dick JE (1994) A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature 367(6464):645–648. https://doi.org/10.1038/367645a0

    Article  CAS  PubMed  Google Scholar 

  25. Riether C, Schurch CM, Ochsenbein AF (2015) Regulation of hematopoietic and leukemic stem cells by the immune system. Cell Death Differ 22(2):187–198. https://doi.org/10.1038/cdd.2014.89

    Article  CAS  PubMed  Google Scholar 

  26. Schepers K, Pietras EM, Reynaud D, Flach J, Binnewies M, Garg T, Wagers AJ, Hsiao EC, Passegue E (2013) Myeloproliferative neoplasia remodels the endosteal bone marrow niche into a self-reinforcing leukemic niche. Cell Stem Cell 13(3):285–299. https://doi.org/10.1016/j.stem.2013.06.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Pietras EM, Lakshminarasimhan R, Techner JM, Fong S, Flach J, Binnewies M, Passegue E (2014) Re-entry into quiescence protects hematopoietic stem cells from the killing effect of chronic exposure to type I interferons. J Exp Med 211(2):245–262. https://doi.org/10.1084/jem.20131043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Haas S, Hansson J, Klimmeck D, Loeffler D, Velten L, Uckelmann H, Wurzer S, Prendergast AM, Schnell A, Hexel K, Santarella-Mellwig R, Blaszkiewicz S, Kuck A, Geiger H, Milsom MD, Steinmetz LM, Schroeder T, Trumpp A, Krijgsveld J, Essers MA (2015) Inflammation-induced emergency megakaryopoiesis driven by hematopoietic stem cell-like megakaryocyte progenitors. Cell Stem Cell 17(4):422–434. https://doi.org/10.1016/j.stem.2015.07.007

    Article  CAS  PubMed  Google Scholar 

  29. Billiau A, Matthys P (2009) Interferon-gamma: a historical perspective. Cytokine Growth Factor Rev 20(2):97–113. https://doi.org/10.1016/j.cytogfr.2009.02.004

    Article  CAS  PubMed  Google Scholar 

  30. Bach EA, Aguet M, Schreiber RD (1997) The IFN gamma receptor: a paradigm for cytokine receptor signaling. Annu Rev Immunol 15:563–591. https://doi.org/10.1146/annurev.immunol.15.1.563

    Article  CAS  PubMed  Google Scholar 

  31. Farrar MA, Schreiber RD (1993) The molecular cell biology of interferon-gamma and its receptor. Annu Rev Immunol 11:571–611. https://doi.org/10.1146/annurev.iy.11.040193.003035

    Article  CAS  PubMed  Google Scholar 

  32. Maciejewski J, Selleri C, Anderson S, Young NS (1995) Fas antigen expression on CD34+ human marrow cells is induced by interferon gamma and tumor necrosis factor alpha and potentiates cytokine-mediated hematopoietic suppression in vitro. Blood 85(11):3183–3190

    CAS  PubMed  Google Scholar 

  33. Snoeck HW, Van Bockstaele DR, Nys G, Lenjou M, Lardon F, Haenen L, Rodrigus I, Peetermans ME, Berneman ZN (1994) Interferon gamma selectively inhibits very primitive CD342+ CD38− and not more mature CD34+ CD38+ human hematopoietic progenitor cells. J Exp Med 180(3):1177–1182

    Article  CAS  PubMed  Google Scholar 

  34. Kawano Y, Takaue Y, Hirao A, Abe T, Saito S, Matsunaga K, Watanabe T, Hirose M, Ninomiya T, Kuroda Y et al (1991) Synergistic effect of recombinant interferon-gamma and interleukin-3 on the growth of immature human hematopoietic progenitors. Blood 77(10):2118–2121

    CAS  PubMed  Google Scholar 

  35. Brugger W, Mocklin W, Heimfeld S, Berenson RJ, Mertelsmann R, Kanz L (1993) Ex vivo expansion of enriched peripheral blood CD34+ progenitor cells by stem cell factor, interleukin-1 beta (IL-1 beta), IL-6, IL-3, interferon-gamma, and erythropoietin. Blood 81(10):2579–2584

    CAS  PubMed  Google Scholar 

  36. de Bruin AM, Demirel O, Hooibrink B, Brandts CH, Nolte MA (2013) Interferon-gamma impairs proliferation of hematopoietic stem cells in mice. Blood 121(18):3578–3585. https://doi.org/10.1182/blood-2012-05-432906

    Article  PubMed  CAS  Google Scholar 

  37. Belyaev NN, Biro J, Langhorne J, Potocnik AJ (2013) Extramedullary myelopoiesis in malaria depends on mobilization of myeloid-restricted progenitors by IFN-gamma induced chemokines. PLoS Pathog 9(6):e1003406. https://doi.org/10.1371/journal.ppat.1003406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Schurch CM, Riether C, Ochsenbein AF (2014) Cytotoxic CD8+ T cells stimulate hematopoietic progenitors by promoting cytokine release from bone marrow mesenchymal stromal cells. Cell Stem Cell 14(4):460–472. https://doi.org/10.1016/j.stem.2014.01.002

    Article  CAS  PubMed  Google Scholar 

  39. Guermonprez P, Helft J, Claser C, Deroubaix S, Karanje H, Gazumyan A, Darasse-Jeze G, Telerman SB, Breton G, Schreiber HA, Frias-Staheli N, Billerbeck E, Dorner M, Rice CM, Ploss A, Klein F, Swiecki M, Colonna M, Kamphorst AO, Meredith M, Niec R, Takacs C, Mikhail F, Hari A, Bosque D, Eisenreich T, Merad M, Shi Y, Ginhoux F, Renia L, Urban BC, Nussenzweig MC (2013) Inflammatory Flt3l is essential to mobilize dendritic cells and for T cell responses during Plasmodium infection. Nat Med 19(6):730–738. https://doi.org/10.1038/nm.3197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Zhao X, Ren G, Liang L, Ai PZ, Zheng B, Tischfield JA, Shi Y, Shao C (2010) Brief report: interferon-gamma induces expansion of Lin(−)Sca-1(+)C-Kit(+) Cells. Stem Cells 28(1):122–126. https://doi.org/10.1002/stem.252

    Article  PubMed  CAS  Google Scholar 

  41. MacNamara KC, Jones M, Martin O, Winslow GM (2011) Transient activation of hematopoietic stem and progenitor cells by IFNgamma during acute bacterial infection. PLoS One 6(12):e28669. https://doi.org/10.1371/journal.pone.0028669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Umemoto T, Yamato M, Ishihara J, Shiratsuchi Y, Utsumi M, Morita Y, Tsukui H, Terasawa M, Shibata T, Nishida K, Kobayashi Y, Petrich BG, Nakauchi H, Eto K, Okano T (2012) Integrin-alphavbeta3 regulates thrombopoietin-mediated maintenance of hematopoietic stem cells. Blood 119(1):83–94. https://doi.org/10.1182/blood-2011-02-335430

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Umemoto T, Matsuzaki Y, Shiratsuchi Y, Hashimoto M, Yoshimoto T, Nakamura-Ishizu A, Petrich B, Yamato M, Suda T (2017) Integrin alphavbeta3 enhances the suppressive effect of interferon-gamma on hematopoietic stem cells. EMBO J 36(16):2390–2403. https://doi.org/10.15252/embj.201796771

    Article  CAS  PubMed  Google Scholar 

  44. Belyaev NN, Brown DE, Diaz AI, Rae A, Jarra W, Thompson J, Langhorne J, Potocnik AJ (2010) Induction of an IL7-R(+)c-Kit(hi) myelolymphoid progenitor critically dependent on IFN-gamma signaling during acute malaria. Nat Immunol 11(6):477–485. https://doi.org/10.1038/ni.1869

    Article  CAS  PubMed  Google Scholar 

  45. Feng CG, Weksberg DC, Taylor GA, Sher A, Goodell MA (2008) The p47 GTPase Lrg-47 (Irgm1) links host defense and hematopoietic stem cell proliferation. Cell Stem Cell 2(1):83–89. https://doi.org/10.1016/j.stem.2007.10.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. King KY, Baldridge MT, Weksberg DC, Chambers SM, Lukov GL, Wu S, Boles NC, Jung SY, Qin J, Liu D, Songyang Z, Eissa NT, Taylor GA, Goodell MA (2011) Irgm1 protects hematopoietic stem cells by negative regulation of IFN signaling. Blood 118(6):1525–1533. https://doi.org/10.1182/blood-2011-01-328682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Ishihara K, Hirano T (2002) IL-6 in autoimmune disease and chronic inflammatory proliferative disease. Cytokine Growth Factor Rev 13(4–5):357–368

    Article  CAS  PubMed  Google Scholar 

  48. Schaper F, Rose-John S (2015) Interleukin-6: biology, signaling and strategies of blockade. Cytokine Growth Factor Rev 26(5):475–487. https://doi.org/10.1016/j.cytogfr.2015.07.004

    Article  CAS  PubMed  Google Scholar 

  49. Scheller J, Chalaris A, Schmidt-Arras D, Rose-John S (2011) The pro- and anti-inflammatory properties of the cytokine interleukin-6. Biochim Biophys Acta 1813(5):878–888. https://doi.org/10.1016/j.bbamcr.2011.01.034

    Article  CAS  PubMed  Google Scholar 

  50. Maeda K, Baba Y, Nagai Y, Miyazaki K, Malykhin A, Nakamura K, Kincade PW, Sakaguchi N, Coggeshall KM (2005) IL-6 blocks a discrete early step in lymphopoiesis. Blood 106(3):879–885. https://doi.org/10.1182/blood-2005-02-0456

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Reynaud D, Pietras E, Barry-Holson K, Mir A, Binnewies M, Jeanne M, Sala-Torra O, Radich JP, Passegue E (2011) IL-6 controls leukemic multipotent progenitor cell fate and contributes to chronic myelogenous leukemia development. Cancer Cell 20(5):661–673. https://doi.org/10.1016/j.ccr.2011.10.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Zhao JL, Ma C, O’Connell RM, Mehta A, DiLoreto R, Heath JR, Baltimore D (2014) Conversion of danger signals into cytokine signals by hematopoietic stem and progenitor cells for regulation of stress-induced hematopoiesis. Cell Stem Cell 14(4):445–459. https://doi.org/10.1016/j.stem.2014.01.007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Pflanz S, Timans JC, Cheung J, Rosales R, Kanzler H, Gilbert J, Hibbert L, Churakova T, Travis M, Vaisberg E, Blumenschein WM, Mattson JD, Wagner JL, To W, Zurawski S, McClanahan TK, Gorman DM, Bazan JF, de Waal Malefyt R, Rennick D, Kastelein RA (2002) IL-27, a heterodimeric cytokine composed of EBI3 and p28 protein, induces proliferation of naive CD4 + T cells. Immunity 16(6):779–790. https://doi.org/10.1016/S1074-7613(02)00324-2

    Article  CAS  PubMed  Google Scholar 

  54. Hall AO, Silver JS, Hunter CA (2012) The Immunobiology of IL-27. Adv Immunol 115:1–44. https://doi.org/10.1016/b978-0-12-394299-9.00001-1

    Article  PubMed  CAS  Google Scholar 

  55. Mizoguchi I, Higuchi K, Mitobe K, Tsunoda R, Mizuguchi J, Yoshimoto T (2013) Interleukin-27: regulation of immune responses and disease development by a pleiotropic cytokine with pro- and anti-inflammatory properties. In: Yoshimoto T, Yoshimoto T (eds) Cytokine frontiers: regulation of immune responses in health and disease. Springer, Tokyo, pp 353–375

    Google Scholar 

  56. Yoshida H, Hunter CA (2015) The immunobiology of interleukin-27. Annu Rev Immunol 33:417–443. https://doi.org/10.1146/annurev-immunol-032414-112134

    Article  CAS  PubMed  Google Scholar 

  57. Morishima N, Owaki T, Asakawa M, Kamiya S, Mizuguchi J, Yoshimoto T (2005) Augmentation of effector CD8+ T cell generation with enhanced granzyme B expression by IL-27. J Immunol 175(3):1686–1693

    Article  CAS  PubMed  Google Scholar 

  58. Schneider R, Yaneva T, Beauseigle D, El-Khoury L, Arbour N (2011) IL-27 increases the proliferation and effector functions of human naive CD8+ T lymphocytes and promotes their development into Tc1 cells. Eur J Immunol 41(1):47–59. https://doi.org/10.1002/eji.201040804

    Article  CAS  PubMed  Google Scholar 

  59. Awasthi A, Carrier Y, Peron JP, Bettelli E, Kamanaka M, Flavell RA, Kuchroo VK, Oukka M, Weiner HL (2007) A dominant function for interleukin 27 in generating interleukin 10-producing anti-inflammatory T cells. Nat Immunol 8(12):1380–1389. https://doi.org/10.1038/ni1541

    Article  CAS  PubMed  Google Scholar 

  60. Fitzgerald DC, Zhang GX, El-Behi M, Fonseca-Kelly Z, Li H, Yu S, Saris CJ, Gran B, Ciric B, Rostami A (2007) Suppression of autoimmune inflammation of the central nervous system by interleukin 10 secreted by interleukin 27-stimulated T cells. Nat Immunol 8(12):1372–1379

    Article  CAS  PubMed  Google Scholar 

  61. Stumhofer JS, Silver JS, Laurence A, Porrett PM, Harris TH, Turka LA, Ernst M, Saris CJ, O’Shea JJ, Hunter CA (2007) Interleukins 27 and 6 induce STAT3-mediated T cell production of interleukin 10. Nat Immunol 8(12):1363–1371

    Article  CAS  PubMed  Google Scholar 

  62. Do J, Kim D, Kim S, Valentin-Torres A, Dvorina N, Jang E, Nagarajavel V, DeSilva TM, Li X, Ting AH, Vignali DAA, Stohlman SA, Baldwin WM 3rd, Min B (2017) Treg-specific IL-27Ralpha deletion uncovers a key role for IL-27 in Treg function to control autoimmunity. Proc Natl Acad Sci USA 114(38):10190–10195. https://doi.org/10.1073/pnas.1703100114

    Article  CAS  PubMed  Google Scholar 

  63. Yoshimoto T, Yoneto T, Waki S, Nariuchi H (1998) Interleukin-12-dependent mechanisms in the clearance of blood-stage murine malaria parasite Plasmodium berghei XAT, an attenuated variant of P. berghei NK65. J Infect Dis 177(6):1674–1681

    Article  CAS  PubMed  Google Scholar 

  64. Yoneto T, Waki S, Takai T, Tagawa Y, Iwakura Y, Mizuguchi J, Nariuchi H, Yoshimoto T (2001) A critical role of Fc receptor-mediated antibody-dependent phagocytosis in the host resistance to blood-stage Plasmodium berghei XAT infection. J Immunol 166(10):6236–6241

    Article  CAS  PubMed  Google Scholar 

  65. Hisada M, Kamiya S, Fujita K, Belladonna ML, Aoki T, Koyanagi Y, Mizuguchi J, Yoshimoto T (2004) Potent antitumor activity of interleukin-27. Cancer Res 64(3):1152–1156. https://doi.org/10.1158/0008-5472.CAN-03-2084

    Article  CAS  PubMed  Google Scholar 

  66. Yoshimoto T, Chiba Y, Furusawa JI, Xu M, Tsunoda R, Higuchi K, Mizoguchi I (2015) Potential clinical application of interleukin-27 as an antitumor agent. Cancer Sci. https://doi.org/10.1111/cas.12731

    PubMed  PubMed Central  Google Scholar 

  67. Mizoguchi I, Chiba Y, Furusawa JI, Xu M, Tsunoda R, Higuchi K, Yoshimoto T (2015) Therapeutic potential of interleukin-27 against cancers in preclinical mouse models. Oncoimmunology 4(10):e1042200. https://doi.org/10.1080/2162402X.2015.1042200

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  68. Chiba Y, Mizoguchi I, Furusawa J, Hasegawa H, Ohashi M, Xu M, Owaki T, Yoshimoto T (2017) Interleukin-27 exerts its antitumor effects by promoting differentiation of hematopoietic stem cells to M1 macrophages. Cancer Res. https://doi.org/10.1158/0008-5472.CAN-17-0960

    Google Scholar 

  69. Shimizu M, Shimamura M, Owaki T, Asakawa M, Fujita K, Kudo M, Iwakura Y, Takeda Y, Luster AD, Mizuguchi J, Yoshimoto T (2006) Antiangiogenic and antitumor activities of IL-27. J Immunol 176(12):7317–7324

    Article  CAS  PubMed  Google Scholar 

  70. Yoshimoto T, Morishima N, Mizoguchi I, Shimizu M, Nagai H, Oniki S, Oka M, Nishigori C, Mizuguchi J (2008) Antiproliferative activity of IL-27 on melanoma. J Immunol 180(10):6527–6535

    Article  CAS  PubMed  Google Scholar 

  71. Tormo AJ, Beaupre LA, Elson G, Crabe S, Gauchat JF (2013) A polyglutamic acid motif confers IL-27 hydroxyapatite and bone-binding properties. J Immunol 190(6):2931–2937. https://doi.org/10.4049/jimmunol.1201460

    Article  CAS  PubMed  Google Scholar 

  72. Larousserie F, Bsiri L, Dumaine V, Dietrich C, Audebourg A, Radenen-Bussiere B, Anract P, Vacher-Lavenu MC, Devergne O (2017) Frontline science: human bone cells as a source of IL-27 under inflammatory conditions: role of TLRs and cytokines. J Leukoc Biol 101(6):1289–1300. https://doi.org/10.1189/jlb.3HI0616-280R

    Article  CAS  PubMed  Google Scholar 

  73. Bronchud MH, Scarffe JH, Thatcher N, Crowther D, Souza LM, Alton NK, Testa NG, Dexter TM (1987) Phase I/II study of recombinant human granulocyte colony-stimulating factor in patients receiving intensive chemotherapy for small cell lung cancer. Br J Cancer 56(6):809–813

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Gabrilove JL, Jakubowski A, Scher H, Sternberg C, Wong G, Grous J, Yagoda A, Fain K, Moore MA, Clarkson B et al (1988) Effect of granulocyte colony-stimulating factor on neutropenia and associated morbidity due to chemotherapy for transitional-cell carcinoma of the urothelium. N Engl J Med 318(22):1414–1422. https://doi.org/10.1056/NEJM198806023182202

    Article  CAS  PubMed  Google Scholar 

  75. Tamura M, Hattori K, Nomura H, Oheda M, Kubota N, Imazeki I, Ono M, Ueyama Y, Nagata S, Shirafuji N et al (1987) Induction of neutrophilic granulocytosis in mice by administration of purified human native granulocyte colony-stimulating factor (G-CSF). Biochem Biophys Res Commun 142(2):454–460

    Article  CAS  PubMed  Google Scholar 

  76. Duhrsen U, Villeval JL, Boyd J, Kannourakis G, Morstyn G, Metcalf D (1988) Effects of recombinant human granulocyte colony-stimulating factor on hematopoietic progenitor cells in cancer patients. Blood 72(6):2074–2081

    CAS  PubMed  Google Scholar 

  77. Demetri GD, Griffin JD (1991) Granulocyte colony-stimulating factor and its receptor. Blood 78(11):2791–2808

    CAS  PubMed  Google Scholar 

  78. Cebon J, Layton JE, Maher D, Morstyn G (1994) Endogenous haemopoietic growth factors in neutropenia and infection. Br J Haematol 86(2):265–274

    Article  CAS  PubMed  Google Scholar 

  79. Kawakami M, Tsutsumi H, Kumakawa T, Abe H, Hirai M, Kurosawa S, Mori M, Fukushima M (1990) Levels of serum granulocyte colony-stimulating factor in patients with infections. Blood 76(10):1962–1964

    CAS  PubMed  Google Scholar 

  80. Sano E, Ohashi K, Sato Y, Kashiwagi M, Joguchi A, Naruse N (2007) A possible role of autogenous IFN-beta for cytokine productions in human fibroblasts. J Cell Biochem 100(6):1459–1476. https://doi.org/10.1002/jcb.21128

    Article  CAS  PubMed  Google Scholar 

  81. Fossiez F, Djossou O, Chomarat P, Flores-Romo L, Ait-Yahia S, Maat C, Pin JJ, Garrone P, Garcia E, Saeland S, Blanchard D, Gaillard C, Das Mahapatra B, Rouvier E, Golstein P, Banchereau J, Lebecque S (1996) T cell interleukin-17 induces stromal cells to produce proinflammatory and hematopoietic cytokines. J Exp Med 183(6):2593–2603

    Article  CAS  PubMed  Google Scholar 

  82. Liu F, Poursine-Laurent J, Link DC (2000) Expression of the G-CSF receptor on hematopoietic progenitor cells is not required for their mobilization by G-CSF. Blood 95(10):3025–3031

    CAS  PubMed  Google Scholar 

  83. Levesque JP, Hendy J, Takamatsu Y, Simmons PJ, Bendall LJ (2003) Disruption of the CXCR4/CXCL12 chemotactic interaction during hematopoietic stem cell mobilization induced by GCSF or cyclophosphamide. J Clin Invest 111(2):187–196. https://doi.org/10.1172/JCI15994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Pelus LM, Bian H, King AG, Fukuda S (2004) Neutrophil-derived MMP-9 mediates synergistic mobilization of hematopoietic stem and progenitor cells by the combination of G-CSF and the chemokines GRObeta/CXCL2 and GRObetaT/CXCL2delta4. Blood 103(1):110–119. https://doi.org/10.1182/blood-2003-04-1115

    Article  CAS  PubMed  Google Scholar 

  85. Katayama Y, Battista M, Kao WM, Hidalgo A, Peired AJ, Thomas SA, Frenette PS (2006) Signals from the sympathetic nervous system regulate hematopoietic stem cell egress from bone marrow. Cell 124(2):407–421. https://doi.org/10.1016/j.cell.2005.10.041

    Article  CAS  PubMed  Google Scholar 

  86. Chow A, Lucas D, Hidalgo A, Mendez-Ferrer S, Hashimoto D, Scheiermann C, Battista M, Leboeuf M, Prophete C, van Rooijen N, Tanaka M, Merad M, Frenette PS (2011) Bone marrow CD169+ macrophages promote the retention of hematopoietic stem and progenitor cells in the mesenchymal stem cell niche. J Exp Med 208(2):261–271. https://doi.org/10.1084/jem.20101688

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Semerad CL, Christopher MJ, Liu F, Short B, Simmons PJ, Winkler I, Levesque JP, Chappel J, Ross FP, Link DC (2005) G-CSF potently inhibits osteoblast activity and CXCL12 mRNA expression in the bone marrow. Blood 106(9):3020–3027. https://doi.org/10.1182/blood-2004-01-0272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Lieschke GJ, Grail D, Hodgson G, Metcalf D, Stanley E, Cheers C, Fowler KJ, Basu S, Zhan YF, Dunn AR (1994) Mice lacking granulocyte colony-stimulating factor have chronic neutropenia, granulocyte and macrophage progenitor cell deficiency, and impaired neutrophil mobilization. Blood 84(6):1737–1746

    CAS  PubMed  Google Scholar 

  89. Liu F, Wu HY, Wesselschmidt R, Kornaga T, Link DC (1996) Impaired production and increased apoptosis of neutrophils in granulocyte colony-stimulating factor receptor-deficient mice. Immunity 5(5):491–501

    Article  CAS  PubMed  Google Scholar 

  90. Anasetti C, Logan BR, Lee SJ, Waller EK, Weisdorf DJ, Wingard JR, Cutler CS, Westervelt P, Woolfrey A, Couban S, Ehninger G, Johnston L, Maziarz RT, Pulsipher MA, Porter DL, Mineishi S, McCarty JM, Khan SP, Anderlini P, Bensinger WI, Leitman SF, Rowley SD, Bredeson C, Carter SL, Horowitz MM, Confer DL, Blood Marrow Transplant, Clinical Trials N (2012) Peripheral-blood stem cells versus bone marrow from unrelated donors. N Engl J Med 367(16):1487–1496. https://doi.org/10.1056/NEJMoa1203517

    Article  CAS  PubMed  Google Scholar 

  91. Bernitz JM, Daniel MG, Fstkchyan YS, Moore K (2017) Granulocyte colony-stimulating factor mobilizes dormant hematopoietic stem cells without proliferation in mice. Blood 129(14):1901–1912. https://doi.org/10.1182/blood-2016-11-752923

    Article  CAS  PubMed  Google Scholar 

  92. Boettcher S, Gerosa RC, Radpour R, Bauer J, Ampenberger F, Heikenwalder M, Kopf M, Manz MG (2014) Endothelial cells translate pathogen signals into G-CSF-driven emergency granulopoiesis. Blood 124(9):1393–1403. https://doi.org/10.1182/blood-2014-04-570762

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Ushach I, Zlotnik A (2016) Biological role of granulocyte macrophage colony-stimulating factor (GM-CSF) and macrophage colony-stimulating factor (M-CSF) on cells of the myeloid lineage. J Leukoc Biol 100(3):481–489. https://doi.org/10.1189/jlb.3RU0316-144R

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Jones CV, Ricardo SD (2013) Macrophages and CSF-1: implications for development and beyond. Organogenesis 9(4):249–260. https://doi.org/10.4161/org.25676

    Article  PubMed  PubMed Central  Google Scholar 

  95. Dai XM, Ryan GR, Hapel AJ, Dominguez MG, Russell RG, Kapp S, Sylvestre V, Stanley ER (2002) Targeted disruption of the mouse colony-stimulating factor 1 receptor gene results in osteopetrosis, mononuclear phagocyte deficiency, increased primitive progenitor cell frequencies, and reproductive defects. Blood 99(1):111–120

    Article  CAS  PubMed  Google Scholar 

  96. Sarrazin S, Mossadegh-Keller N, Fukao T, Aziz A, Mourcin F, Vanhille L, Kelly Modis L, Kastner P, Chan S, Duprez E, Otto C, Sieweke MH (2009) MafB restricts M-CSF-dependent myeloid commitment divisions of hematopoietic stem cells. Cell 138(2):300–313. https://doi.org/10.1016/j.cell.2009.04.057

    Article  CAS  PubMed  Google Scholar 

  97. Till JE, McCulloch EA, Siminovitch L (1964) A stochastic model of stem cell proliferation, based on the growth of spleen colony-forming cells. Proc Natl Acad Sci USA 51:29–36

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Mossadegh-Keller N, Sarrazin S, Kandalla PK, Espinosa L, Stanley ER, Nutt SL, Moore J, Sieweke MH (2013) M-CSF instructs myeloid lineage fate in single haematopoietic stem cells. Nature 497(7448):239–243. https://doi.org/10.1038/nature12026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Kandalla PK, Sarrazin S, Molawi K, Berruyer C, Redelberger D, Favel A, Bordi C, de Bentzmann S, Sieweke MH (2016) M-CSF improves protection against bacterial and fungal infections after hematopoietic stem/progenitor cell transplantation. J Exp Med 213(11):2269–2279. https://doi.org/10.1084/jem.20151975

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Dinarello CA, van der Meer JW (2013) Treating inflammation by blocking interleukin-1 in humans. Semin Immunol 25(6):469–484. https://doi.org/10.1016/j.smim.2013.10.008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Cullinan EB, Kwee L, Nunes P, Shuster DJ, Ju G, McIntyre KW, Chizzonite RA, Labow MA (1998) IL-1 receptor accessory protein is an essential component of the IL-1 receptor. J Immunol 161(10):5614–5620

    CAS  PubMed  Google Scholar 

  102. Dinarello CA, Simon A, van der Meer JW (2012) Treating inflammation by blocking interleukin-1 in a broad spectrum of diseases. Nat Rev Drug Discov 11(8):633–652. https://doi.org/10.1038/nrd3800

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Hestdal K, Ruscetti FW, Chizzonite R, Ortiz M, Gooya JM, Longo DL, Keller JR (1994) Interleukin-1 (IL-1) directly and indirectly promotes hematopoietic cell growth through type I IL-1 receptor. Blood 84(1):125–132

    CAS  PubMed  Google Scholar 

  104. Morrissey P, Charrier K, Bressler L, Alpert A (1988) The influence of IL-1 treatment on the reconstitution of the hemopoietic and immune systems after sublethal radiation. J Immunol 140(12):4204–4210

    CAS  PubMed  Google Scholar 

  105. Damia G, Komschlies KL, Futami H, Back T, Gruys ME, Longo DL, Keller JR, Ruscetti FW, Wiltrout RH (1992) Prevention of acute chemotherapy-induced death in mice by recombinant human interleukin 1: protection from hematological and nonhematological toxicities. Cancer Res 52(15):4082–4089

    CAS  PubMed  Google Scholar 

  106. Smith MA, Knight SM, Maddison PJ, Smith JG (1992) Anaemia of chronic disease in rheumatoid arthritis: effect of the blunted response to erythropoietin and of interleukin 1 production by marrow macrophages. Ann Rheum Dis 51(6):753–757

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Dinarello CA (2005) Blocking IL-1 in systemic inflammation. J Exp Med 201(9):1355–1359. https://doi.org/10.1084/jem.20050640

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Cain D, Kondo M, Chen H, Kelsoe G (2009) Effects of acute and chronic inflammation on B-cell development and differentiation. J Invest Dermatol 129(2):266–277. https://doi.org/10.1038/jid.2008.286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Pietras EM, Mirantes-Barbeito C, Fong S, Loeffler D, Kovtonyuk LV, Zhang S, Lakshminarasimhan R, Chin CP, Techner JM, Will B, Nerlov C, Steidl U, Manz MG, Schroeder T, Passegue E (2016) Chronic interleukin-1 exposure drives haematopoietic stem cells towards precocious myeloid differentiation at the expense of self-renewal. Nat Cell Biol 18(6):607–618. https://doi.org/10.1038/ncb3346

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Jovcic G, Ivanovic Z, Biljanovic-Paunovic L, Bugarski D, Stosic-Grujicic S, Milenkovic P (1996) The effect of IL-1 receptor antagonist on the proliferation of hematopoietic progenitor cells in regenerating bone marrow. Leukemia 10(3):564–569

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This study was supported in part by a Grant-in-aid and the Private University Strategic Research Based Support Project from the Ministry of Education, Culture, Sports, Science, and Technology, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takayuki Yoshimoto.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chiba, Y., Mizoguchi, I., Hasegawa, H. et al. Regulation of myelopoiesis by proinflammatory cytokines in infectious diseases. Cell. Mol. Life Sci. 75, 1363–1376 (2018). https://doi.org/10.1007/s00018-017-2724-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-017-2724-5

Keywords

Navigation