Skip to main content

Advertisement

Log in

Cystic fibrosis transmembrane conductance regulator—emerging regulator of cancer

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Mutations of cystic fibrosis transmembrane conductance regulator (CFTR) cause cystic fibrosis, the most common life-limiting recessive genetic disease among Caucasians. CFTR mutations have also been linked to increased risk of various cancers but remained controversial for a long time. Recent studies have begun to reveal that CFTR is not merely an ion channel but also an important regulator of cancer development and progression with multiple signaling pathways identified. In this review, we will first present clinical findings showing the correlation of genetic mutations or aberrant expression of CFTR with cancer incidence in multiple cancers. We will then focus on the roles of CFTR in fundamental cellular processes including transformation, survival, proliferation, migration, invasion and epithelial–mesenchymal transition in cancer cells, highlighting the signaling pathways involved. Finally, the association of CFTR expression levels with patient prognosis, and the potential of CFTR as a cancer prognosis indicator in human malignancies will be discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Abbreviations

ABC:

Adenosine triphosphate (ATP)-binding cassette

CF:

Cystic fibrosis

CFTR:

Cystic fibrosis transmembrane conductance regulator

EMT:

Epithelium–mesenchymal transition

Hsp:

Heat shock protein

HIF-1α:

Hypoxia induced factor-1α

MDR:

Multidrug resistance

NF-κB:

Nuclear factor kappa-light-chain-enhancer of activated B cells

NPC:

Nasopharyngeal carcinoma

NSCLC:

Non-small cell lung cancer

PTC:

Papillary thyroid cancer

SCC:

Squamous cell carcinoma

SNPs:

Single nucleotide polymorphisms

TGF-β:

Transforming growth factor-β

uPA:

Urokinase-type plasminogen activator

References

  1. Gulyas-Kovacs A (2012) Integrated analysis of residue coevolution and protein structure in ABC transporters. PLoS One 7(5):e36546. https://doi.org/10.1371/journal.pone.0036546

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Hwang TC, Kirk KL (2013) The CFTR ion channel: gating, regulation, and anion permeation. Cold Spring Harb Perspect Med 3(1):a009498. https://doi.org/10.1101/cshperspect.a009498

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  3. Sayyid ZN, Sellers ZM (2017) Technological advances shed light on left ventricular cardiac disturbances in cystic fibrosis. J Cyst Fibros 16(4):454–464. https://doi.org/10.1016/j.jcf.2017.02.013

    Article  PubMed  Google Scholar 

  4. Adam RJ, Hisert KB, Dodd JD, Grogan B, Launspach JL, Barnes JK, Gallagher CG, Sieren JP, Gross TJ, Fischer AJ, Cavanaugh JE, Hoffman EA, Singh PK, Welsh MJ, McKone EF, Stoltz DA (2016) Acute administration of ivacaftor to people with cystic fibrosis and a G551D-CFTR mutation reveals smooth muscle abnormalities. JCI Insight 1(4):e86183. https://doi.org/10.1172/jci.insight.86183

    Article  PubMed  PubMed Central  Google Scholar 

  5. Marcorelles P, Friocourt G, Uguen A, Lede F, Ferec C, Laquerriere A (2014) Cystic fibrosis transmembrane conductance regulator protein (CFTR) expression in the developing human brain: comparative immunohistochemical study between patients with normal and mutated CFTR. J Histochem Cytochem 62(11):791–801. https://doi.org/10.1369/0022155414546190

    Article  PubMed  CAS  Google Scholar 

  6. Peters W, Kusche-Vihrog K, Oberleithner H, Schillers H (2015) Cystic fibrosis transmembrane conductance regulator is involved in polyphenol-induced swelling of the endothelial glycocalyx. Nanomed Nanotechnol Biol Med 11(6):1521–1530. https://doi.org/10.1016/j.nano.2015.03.013

    Article  CAS  Google Scholar 

  7. Wang XF, Zhou CX, Shi QX, Yuan YY, Yu MK, Ajonuma LC, Ho LS, Lo PS, Tsang LL, Liu Y, Lam SY, Chan LN, Zhao WC, Chung YW, Chan HC (2003) Involvement of CFTR in uterine bicarbonate secretion and the fertilizing capacity of sperm. Nat Cell Biol 5(10):902–906. https://doi.org/10.1038/ncb1047

    Article  CAS  PubMed  Google Scholar 

  8. Perniss A, Preiss K, Nier M, Althaus M (2017) Hydrogen sulfide stimulates CFTR in Xenopus oocytes by activation of the cAMP/PKA signalling axis. Sci Rep 7(1):3517. https://doi.org/10.1038/s41598-017-03742-5

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Ratjen F, Bell SC, Rowe SM, Goss CH, Quittner AL, Bush A (2015) Cystic fibrosis. Nat Rev Dis Primers 1:15010. https://doi.org/10.1038/nrdp.2015.10

    Article  PubMed  Google Scholar 

  10. Sloane PA, Rowe SM (2010) Cystic fibrosis transmembrane conductance regulator protein repair as a therapeutic strategy in cystic fibrosis. Curr Opin Pulm Med 16(6):591–597. https://doi.org/10.1097/MCP.0b013e32833f1d00

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Quinton PM (1999) Physiological basis of cystic fibrosis: a historical perspective. Physiol Rev 79(1 Suppl):S3–S22. https://doi.org/10.1152/physrev.1999.79.1.S3

    Article  CAS  PubMed  Google Scholar 

  12. Welsh MJ, Smith AE (1993) Molecular mechanisms of CFTR chloride channel dysfunction in cystic fibrosis. Cell 73(7):1251–1254

    Article  CAS  PubMed  Google Scholar 

  13. MacKenzie T, Gifford AH, Sabadosa KA, Quinton HB, Knapp EA, Goss CH, Marshall BC (2014) Longevity of patients with cystic fibrosis in 2000 to 2010 and beyond: survival analysis of the cystic fibrosis foundation patient registry. Ann Intern Med 161(4):233–241. https://doi.org/10.7326/M13-0636

    Article  PubMed  PubMed Central  Google Scholar 

  14. Neglia JP, Fitzsimmons SC, Maisonneuve P, Schoni MH, Schoniaffolter F, Corey M, Lowenfels AB, Boyle P, Dozor AJ, Durie P (1995) The risk of cancer among patients with cystic-fibrosis. N Engl J Med 332(8):494–499. https://doi.org/10.1056/Nejm199502233320803

    Article  CAS  PubMed  Google Scholar 

  15. Schoni MH, Maisonneuve P, Schoni-Affolter F, Lowenfels AB (1996) Cancer risk in patients with cystic fibrosis: the European data. CF/CSG Group. J R Soc Med 89(Suppl 27):38–43

    PubMed  PubMed Central  Google Scholar 

  16. Wilschanski M, Durie PR (2007) Patterns of GI disease in adulthood associated with mutations in the CFTR gene. Gut 56(8):1153–1163. https://doi.org/10.1136/gut.2004.062786

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Johannesson M, Askling J, Montgomery SM, Ekbom A, Bahmanyar S (2009) Cancer risk among patients with cystic fibrosis and their first-degree relatives. Int J Cancer 125(12):2953–2956

    Article  CAS  PubMed  Google Scholar 

  18. Maisonneuve P, Marshall BC, Knapp EA, Lowenfels AB (2013) Cancer risk in cystic fibrosis: a 20-year nationwide study from the United States. J Natl Cancer Inst 105(2):122–129. https://doi.org/10.1093/jnci/djs481

    Article  CAS  PubMed  Google Scholar 

  19. Maisonneuve P, FitzSimmons SC, Neglia JP, Campbell PW 3rd, Lowenfels AB (2003) Cancer risk in nontransplanted and transplanted cystic fibrosis patients: a 10-year study. J Natl Cancer Inst 95(5):381–387

    Article  PubMed  Google Scholar 

  20. Son JW, Kim YJ, Cho HM, Lee SY, Lee SM, Kang JK, Lee JU, Lee YM, Kwon SJ, Choi E, Na MJ, Park JY, Kim DS (2011) Promoter hypermethylation of the CFTR gene and clinical/pathological features associated with non-small cell lung cancer. Respirology (Carlton, Vic) 16(8):1203–1209. https://doi.org/10.1111/j.1440-1843.2011.01994.x

    Article  Google Scholar 

  21. Ashour N, Angulo JC, Andres G, Alelu R, Gonzalez-Corpas A, Toledo MV, Rodriguez-Barbero JM, Lopez JI, Sanchez-Chapado M, Ropero S (2014) A DNA hypermethylation profile reveals new potential biomarkers for prostate cancer diagnosis and prognosis. Prostate 74(12):1171–1182. https://doi.org/10.1002/pros.22833

    Article  CAS  PubMed  Google Scholar 

  22. Yu J, Zhu T, Wang Z, Zhang H, Qian Z, Xu H, Gao B, Wang W, Gu L, Meng J, Wang J, Feng X, Li Y, Yao X, Zhu J (2007) A novel set of DNA methylation markers in urine sediments for sensitive/specific detection of bladder cancer. Clin Cancer Res 13(24):7296–7304. https://doi.org/10.1158/1078-0432.CCR-07-0861

    Article  CAS  PubMed  Google Scholar 

  23. Ding S, Gong BD, Yu J, Gu J, Zhang HY, Shang ZB, Fei Q, Wang P, Zhu JD (2004) Methylation profile of the promoter CpG islands of 14 “drug-resistance” genes in hepatocellular carcinoma. World J Gastroenterol 10(23):3433–3440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Kerem B, Rommens JM, Buchanan JA, Markiewicz D, Cox TK (1989) Identification of the cystic fibrosis gene: genetic analysis. Science (New York, NY) 245((4922)):1073

    Article  CAS  Google Scholar 

  25. Riordan JR, Rommens JM, Kerem B, Alon N, Rozmahel R, Grzelczak Z, Zielenski J, Lok S, Plavsic N, Chou JL et al (1989) Identification of the cystic fibrosis gene: cloning and characterization of complementary DNA. Science (New York, NY) 245(4922):1066–1073

    Article  CAS  Google Scholar 

  26. Rommens JM, Iannuzzi MC, Kerem B, Drumm ML, Melmer G, Dean M, Rozmahel R, Cole JL, Kennedy D, Hidaka N et al (1989) Identification of the cystic fibrosis gene: chromosome walking and jumping. Science (New York, NY) 245(4922):1059–1065

    Article  CAS  Google Scholar 

  27. Liu F, Zhang Z, Csanady L, Gadsby DC, Chen J (2017) Molecular structure of the human CFTR ion channel. Cell 169(1):85–95 e88. https://doi.org/10.1016/j.cell.2017.02.024

    Article  CAS  PubMed  Google Scholar 

  28. CF Genetic Analysis Consortium. http://www.genet.sickkids.on.ca/cftr/. Accessed 25 Apr 2011

  29. Rowntree RK, Harris A (2003) The phenotypic consequences of CFTR mutations. Ann Hum Genet 67(Pt 5):471–485

    Article  CAS  PubMed  Google Scholar 

  30. McWilliams RR, Petersen GM, Rabe KG, Holtegaard LM, Lynch PJ, Bishop MD, Highsmith WE Jr (2010) Cystic fibrosis transmembrane conductance regulator (CFTR) gene mutations and risk for pancreatic adenocarcinoma. Cancer 116(1):203–209. https://doi.org/10.1002/cncr.24697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Billings JL, Dunitz JM, McAllister S, Herzog T, Bobr A, Khoruts A (2014) Early colon screening of adult patients with cystic fibrosis reveals high incidence of adenomatous colon polyps. J Clin Gastroenterol 48(9):e85–88. https://doi.org/10.1097/MCG.0000000000000034

    Article  PubMed  Google Scholar 

  32. Warren N, Holmes JA, Al-Jader L, West RR, Lewis DC, Padua RA (1991) Frequency of carriers of cystic fibrosis gene among patients with myeloid malignancy and melanoma. BMJ 302(6779):760–761

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Abraham EH, Vos P, Kahn J, Grubman SA, Jefferson DM, Ding I, Okunieff P (1996) Cystic fibrosis hetero- and homozygosity is associated with inhibition of breast cancer growth. Nat Med 2(5):593–596

    Article  CAS  PubMed  Google Scholar 

  34. Padua RA, Warren N, Grimshaw D, Smith M, Lewis C, Whittaker J, Laidler P, Wright P, Douglas-Jones A, Fenaux P, Sharma A, Horgan K, West R (1997) The cystic fibrosis delta F508 gene mutation and cancer. Hum Mutat 10(1):45–48. https://doi.org/10.1002/(SICI)1098-1004(1997)10:1<45::AID-HUMU6>3.0.CO;2-L

    Article  CAS  PubMed  Google Scholar 

  35. Qiao D, Yi L, Hua L, Xu Z, Ding Y, Shi D, Ni L, Song N, Wang Y, Wu H (2008) Cystic fibrosis transmembrane conductance regulator (CFTR) gene 5T allele may protect against prostate cancer: a case–control study in Chinese Han population. J Cyst Fibros 7(3):210–214. https://doi.org/10.1016/j.jcf.2007.07.011

    Article  CAS  PubMed  Google Scholar 

  36. Li Y, Sun Z, Wu Y, Babovic-Vuksanovic D, Cunningham JM, Pankratz VS, Yang P (2010) Cystic fibrosis transmembrane conductance regulator gene mutation and lung cancer risk. Lung Cancer 70(1):14–21. https://doi.org/10.1016/j.lungcan.2010.01.005

    Article  PubMed  PubMed Central  Google Scholar 

  37. Tu Z, Chen Q, Zhang JT, Jiang X, Xia Y, Chan HC (2016) CFTR is a potential marker for nasopharyngeal carcinoma prognosis and metastasis. Oncotarget 7(47):76955–76965. https://doi.org/10.18632/oncotarget.12762

    Article  PubMed  PubMed Central  Google Scholar 

  38. Moribe T, Iizuka N, Miura T, Kimura N, Tamatsukuri S, Ishitsuka H, Hamamoto Y, Sakamoto K, Tamesa T, Oka M (2009) Methylation of multiple genes as molecular markers for diagnosis of a small, well-differentiated hepatocellular carcinoma. Int J Cancer 125(2):388–397. https://doi.org/10.1002/ijc.24394

    Article  CAS  PubMed  Google Scholar 

  39. Sun TT, Wang Y, Cheng H, Xiao HZ, Xiang JJ, Zhang JT, Yu SB, Martin TA, Ye L, Tsang LL, Jiang WG, Xiaohua J (1843) Chan HC (2014) Disrupted interaction between CFTR and AF-6/afadin aggravates malignant phenotypes of colon cancer. Biochem Biophys Acta 3:618–628. https://doi.org/10.1016/j.bbamcr.2013.12.013

    Article  CAS  Google Scholar 

  40. Than BLN, Linnekamp JF, Starr TK, Largaespada DA, Rod A, Zhang Y, Bruner V, Abrahante J, Schumann A, Luczak T, Walter J, Niemczyk A, O’Sullivan MG, Medema JP, Fijneman RJA, Meijer GA, Van den Broek E, Hodges CA, Scott PM, Vermeulen L, Cormier RT (2017) CFTR is a tumor suppressor gene in murine and human intestinal cancer. Oncogene 36(24):3504. https://doi.org/10.1038/onc.2017.3

    Article  CAS  PubMed  Google Scholar 

  41. Xie C, Jiang XH, Zhang JT, Sun TT, Dong JD, Sanders AJ, Diao RY, Wang Y, Fok KL, Tsang LL, Yu MK, Zhang XH, Chung YW, Ye L, Zhao MY, Guo JH, Xiao ZJ, Lan HY, Ng CF, Lau KM, Cai ZM, Jiang WG, Chan HC (2013) CFTR suppresses tumor progression through miR-193b targeting urokinase plasminogen activator (uPA) in prostate cancer. Oncogene 32(18):2282–2291. https://doi.org/10.1038/onc.2012.251 (2291 e2281–2287)

    Article  CAS  PubMed  Google Scholar 

  42. Tian F, Zhao J, Fan X, Kang Z (2017) Weighted gene co-expression network analysis in identification of metastasis-related genes of lung squamous cell carcinoma based on the Cancer Genome Atlas database. J Thorac Dis 9(1):42–53. https://doi.org/10.21037/jtd.2017.01.04

    Article  PubMed  PubMed Central  Google Scholar 

  43. Li J, Zhang JT, Jiang X, Shi X, Shen J, Feng F, Chen J, Liu G, He P, Jiang J, Tsang LL, Wang Y, Rosell R, Jiang L, He J, Chan HC (2015) The cystic fibrosis transmembrane conductance regulator as a biomarker in non-small cell lung cancer. Int J Oncol 46(5):2107–2115. https://doi.org/10.3892/ijo.2015.2921

    Article  CAS  PubMed  Google Scholar 

  44. Zhao Y, Guo S, Sun J, Huang Z, Zhu T, Zhang H, Gu J, He Y, Wang W, Ma K, Wang J, Yu J (2012) Methylcap-seq reveals novel DNA methylation markers for the diagnosis and recurrence prediction of bladder cancer in a Chinese population. PLoS One 7(4):e35175. https://doi.org/10.1371/journal.pone.0035175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Suh YS, Yu J, Kim BC, Choi B, Han TS, Ahn HS, Kong SH, Lee HJ, Kim WH, Yang HK (2015) Overexpression of plasminogen activator inhibitor-1 in advanced gastric cancer with aggressive lymph node metastasis. Cancer Res Treat 47(4):718–726. https://doi.org/10.4143/crt.2014.064

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Zhu LC, Hu ZH, Liu JJ, Gao J, Lin B (2015) Whole genome expression profiling analysis of metastasis and drug-resistance-related genes in epithelial ovarian cancer cells. Zhongguo yi xue ke xue yuan xue bao Acta Academiae Medicinae Sinicae 37(6):662–673. https://doi.org/10.3881/j.issn.1000-503X.2015.06.006

    Article  CAS  PubMed  Google Scholar 

  47. Xu J, Yong M, Li J, Dong X, Yu T, Fu X, Hu L (2015) High level of CFTR expression is associated with tumor aggression and knockdown of CFTR suppresses proliferation of ovarian cancer in vitro and in vivo. Oncol Rep 33(5):2227–2234. https://doi.org/10.3892/or.2015.3829

    Article  CAS  PubMed  Google Scholar 

  48. Royse KE, Zhi D, Conner MG, Clodfelder-Miller B, Srinivasasainagendra V, Vaughan LK, Skibola CF, Crossman DK, Levy S, Shrestha S (2014) Differential gene expression landscape of co-existing cervical pre-cancer lesions using RNA-seq. Front Oncol 4:339. https://doi.org/10.3389/fonc.2014.00339

    Article  PubMed  PubMed Central  Google Scholar 

  49. Peng X, Wu Z, Yu L, Li J, Xu W, Chan HC, Zhang Y, Hu L (2012) Overexpression of cystic fibrosis transmembrane conductance regulator (CFTR) is associated with human cervical cancer malignancy, progression and prognosis. Gynecol Oncol 125(2):470–476. https://doi.org/10.1016/j.ygyno.2012.02.015

    Article  CAS  PubMed  Google Scholar 

  50. Xia X, Wang J, Liu Y, Yue M (2017) Lower cystic fibrosis transmembrane conductance regulator (CFTR) promotes the proliferation and migration of endometrial carcinoma. Med Sci Monit Int Med J Exp Clin Res 23:966–974

    CAS  Google Scholar 

  51. Huang W, Jin A, Zhang J, Wang C, Tsang LL, Cai Z, Zhou X, Chen H, Chan HC (2017) Upregulation of CFTR in patients with endometriosis and its involvement in NFkappaB-uPAR dependent cell migration. Oncotarget 8(40):66951–66959. https://doi.org/10.18632/oncotarget.16441

    Article  PubMed  PubMed Central  Google Scholar 

  52. Garg M, Ooi CY (2017) The enigmatic gut in cystic fibrosis: linking inflammation, dysbiosis, and the increased risk of malignancy. Curr Gastroenterol Rep 19(2):6. https://doi.org/10.1007/s11894-017-0546-0

    Article  PubMed  Google Scholar 

  53. Hou Y, Guan X, Yang Z, Li C (2016) Emerging role of cystic fibrosis transmembrane conductance regulator—an epithelial chloride channel in gastrointestinal cancers. World J Gastrointest Oncol 8(3):282–288. https://doi.org/10.4251/wjgo.v8.i3.282

    Article  PubMed  PubMed Central  Google Scholar 

  54. Al-Nakkash L, Iserovich P, Coca-Prados M, Yang H, Reinach PS (2004) Functional and molecular characterization of a volume-activated chloride channel in rabbit corneal epithelial cells. J Membr Biol 201(1):41–49

    Article  CAS  PubMed  Google Scholar 

  55. Sun X, Chen L, Luo H, Mao J, Zhu L, Nie S, Wang L (2012) Volume-activated chloride currents in fetal human nasopharyngeal epithelial cells. J Membr Biol 245(2):107–115. https://doi.org/10.1007/s00232-012-9419-5

    Article  CAS  PubMed  Google Scholar 

  56. Voets T, Szucs G, Droogmans G, Nilius B (1995) Blockers of volume-activated Cl currents inhibit endothelial cell proliferation. Pflug Arch 431(1):132–134

    Article  CAS  Google Scholar 

  57. Xie C, Sun X, Chen J, Ng CF, Lau KM, Cai Z, Jiang X, Chan HC (2015) Down-regulated CFTR during aging contributes to benign prostatic hyperplasia. J Cell Physiol 230(8):1906–1915. https://doi.org/10.1002/jcp.24921

    Article  CAS  PubMed  Google Scholar 

  58. Gorbatenko A, Olesen CW, Boedtkjer E, Pedersen SF (2014) Regulation and roles of bicarbonate transporters in cancer. Front Physiol 5:130. https://doi.org/10.3389/fphys.2014.00130

    Article  PubMed  PubMed Central  Google Scholar 

  59. Reshkin SJ, Greco MR, Cardone RA (2014) Role of pHi, and proton transporters in oncogene-driven neoplastic transformation. Philos Trans R Soc Lond B Biol Sci 369(1638):20130100. https://doi.org/10.1098/rstb.2013.0100

    Article  PubMed  PubMed Central  Google Scholar 

  60. Gallagher FA, Sladen H, Kettunen MI, Serrao EM, Rodrigues TB, Wright A, Gill AB, McGuire S, Booth TC, Boren J, McIntyre A, Miller JL, Lee SH, Honess D, Day SE, Hu DE, Howat WJ, Harris AL, Brindle KM (2015) Carbonic anhydrase activity monitored in vivo by hyperpolarized 13C-magnetic resonance spectroscopy demonstrates its importance for pH regulation in tumors. Can Res 75(19):4109–4118. https://doi.org/10.1158/0008-5472.CAN-15-0857

    Article  CAS  Google Scholar 

  61. Cardone RA, Casavola V, Reshkin SJ (2005) The role of disturbed pH dynamics and the Na+/H+ exchanger in metastasis. Nat Rev Cancer 5(10):786–795. https://doi.org/10.1038/nrc1713

    Article  CAS  PubMed  Google Scholar 

  62. Walker NM, Liu J, Stein SR, Stefanski CD, Strubberg AM, Clarke LL (2016) Cellular chloride and bicarbonate retention alters intracellular pH regulation in Cftr KO crypt epithelium. Am J Physiol Gastrointest Liver Physiol 310(2):G70–80. https://doi.org/10.1152/ajpgi.00236.2015

    Article  PubMed  Google Scholar 

  63. Xia D, Qu L, Li G, Hongdu B, Xu C, Lin X, Lou Y, He Q, Ma D, Chen Y (2016) MARCH2 regulates autophagy by promoting CFTR ubiquitination and degradation and PIK3CA-AKT-MTOR signaling. Autophagy 12(9):1614–1630. https://doi.org/10.1080/15548627.2016.1192752

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Reilly R, Mroz MS, Dempsey E, Wynne K, Keely SJ, McKone EF, Hiebel C, Behl C, Coppinger JA (2017) Targeting the PI3K/Akt/mTOR signalling pathway in cystic fibrosis. Sci Rep 7(1):7642. https://doi.org/10.1038/s41598-017-06588-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Hay ED (2005) EMT concept and examples from the vertebrate embryo. In: Savagner P (ed) Rise and fall of epithelial phenotype. Springer, Boston, MA, pp 1–11

  66. Yilmaz M, Christofori G (2009) EMT, the cytoskeleton, and cancer cell invasion. Cancer Metastasis Rev 28(1–2):15–33. https://doi.org/10.1007/s10555-008-9169-0

    Article  PubMed  Google Scholar 

  67. Ozdamar B, Bose R, Barrios-Rodiles M, Wang H-R, Zhang Y, Wrana JL (2005) Regulation of the polarity protein Par6 by TGFβ receptors controls epithelial cell plasticity. Science (New York, NY) 307(5715):1603–1609

    Article  CAS  Google Scholar 

  68. Etienne-Manneville S (2008) Polarity proteins in migration and invasion. Oncogene 27(55):6970–6980. https://doi.org/10.1038/onc.2008.347

    Article  CAS  PubMed  Google Scholar 

  69. Viloria-Petit AM, David L, Jia JY, Erdemir T, Bane AL, Pinnaduwage D, Roncari L, Narimatsu M, Bose R, Moffat J, Wong JW, Kerbel RS, O’Malley FP, Andrulis IL, Wrana JL (2009) A role for the TGFbeta-Par6 polarity pathway in breast cancer progression. Proc Natl Acad Sci USA 106(33):14028–14033. https://doi.org/10.1073/pnas.0906796106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Dow LE, Elsum IA, King CL, Kinross KM, Richardson HE, Humbert PO (2008) Loss of human Scribble cooperates with H-Ras to promote cell invasion through deregulation of MAPK signalling. Oncogene 27(46):5988–6001. https://doi.org/10.1038/onc.2008.219

    Article  CAS  PubMed  Google Scholar 

  71. Moreno-Bueno G, Portillo F, Cano A (2008) Transcriptional regulation of cell polarity in EMT and cancer. Oncogene 27(55):6958–6969. https://doi.org/10.1038/onc.2008.346

    Article  CAS  PubMed  Google Scholar 

  72. Ellenbroek SI, Iden S, Collard JG (2012) Cell polarity proteins and cancer. Semin Cancer Biol 22(3):208–215. https://doi.org/10.1016/j.semcancer.2012.02.012

    Article  CAS  PubMed  Google Scholar 

  73. Moyer BD, Denton J, Karlson KH, Reynolds D, Wang SS, Mickle JE, Milewski H, Cutting GR, Guggino WB, Li M, Stanton BA (1999) A PDZ-interacting domain in CFTR is an apical membrane polarization signal. J Clin Investig 104(10):1353–1361. https://doi.org/10.1172/Jci7453

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Nilsson HE, Dragomir A, Lazorova L, Johannesson M, Roomans GM (2010) CFTR and tight junctions in cultured bronchial epithelial cells. Exp Mol Pathol 88(1):118–127. https://doi.org/10.1016/j.yexmp.2009.09.018

    Article  CAS  PubMed  Google Scholar 

  75. Castellani S, Favia M, Guerra L, Carbone A, Abbattiscianni AC, Di Gioia S, Casavola V, Conese M (2017) Emerging relationship between CFTR, actin and tight junction organization in cystic fibrosis airway epithelium. Histol Histopathol 32(5):445–459. https://doi.org/10.14670/Hh-11-842

    Article  PubMed  Google Scholar 

  76. Zhang JT, Jiang XH, Xie C, Cheng H, Da Dong J, Wang Y, Fok KL, Zhang XH, Sun TT, Tsang LL, Chen H, Sun XJ, Chung YW, Cai ZM, Jiang WG (1833) Chan HC (2013) Downregulation of CFTR promotes epithelial-to-mesenchymal transition and is associated with poor prognosis of breast cancer. Biochem Biophys Acta 12:2961–2969. https://doi.org/10.1016/j.bbamcr.2013.07.021

    Article  CAS  Google Scholar 

  77. Xu J, Lin L, Yong M, Dong X, Yu T, Hu L (2016) Adenovirusmediated overexpression of cystic fibrosis transmembrane conductance regulator enhances invasiveness and motility of serous ovarian cancer cells. Mol Med Rep 13(1):265–272. https://doi.org/10.3892/mmr.2015.4509

    Article  CAS  PubMed  Google Scholar 

  78. Ratcliffe P, Koivunen P, Myllyharju J, Ragoussis J, Bovee JV, Batinic-Haberle I, Vinatier C, Trichet V, Robriquet F, Oliver L, Gardie B (2017) Update on hypoxia-inducible factors and hydroxylases in oxygen regulatory pathways: from physiology to therapeutics. Hypoxia (Auckland, NZ) 5:11–20. https://doi.org/10.2147/hp.s127042

    Article  Google Scholar 

  79. Kao SH, Wu KJ, Lee WH (2016) Hypoxia, epithelial-mesenchymal transition, and TET-mediated epigenetic changes. J Clin Med. https://doi.org/10.3390/jcm5020024

    Article  PubMed  PubMed Central  Google Scholar 

  80. Gao T, Li JZ, Lu Y, Zhang CY, Li Q, Mao J, Li LH (2016) The mechanism between epithelial mesenchymal transition in breast cancer and hypoxia microenvironment. Biomed Pharmacother (Biomedecine pharmacotherapie) 80:393–405. https://doi.org/10.1016/j.biopha.2016.02.044

    Article  CAS  Google Scholar 

  81. Guimbellot JS, Fortenberry JA, Siegal GP, Moore B, Wen H, Venglarik C, Chen YF, Oparil S, Sorscher EJ, Hong JS (2008) Role of oxygen availability in CFTR expression and function. Am J Respir Cell Mol Biol 39(5):514–521. https://doi.org/10.1165/rcmb.2007-0452OC

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Zheng W, Kuhlicke J, Jackel K, Eltzschig HK, Singh A, Sjoblom M, Riederer B, Weinhold C, Seidler U, Colgan SP, Karhausen J (2009) Hypoxia inducible factor-1 (HIF-1)-mediated repression of cystic fibrosis transmembrane conductance regulator (CFTR) in the intestinal epithelium. FASEB J 23(1):204–213. https://doi.org/10.1096/fj.08-110221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Zaidi T, Mowrey-McKee M, Pier GB (2004) Hypoxia increases corneal cell expression of CFTR leading to increased Pseudomonas aeruginosa binding, internalization, and initiation of inflammation. Investig Ophthalmol Vis Sci 45(11):4066–4074. https://doi.org/10.1167/iovs.04-0627

    Article  Google Scholar 

  84. Uramoto H, Takahashi N, Dutta AK, Sabirov RZ, Ando-Akatsuka Y, Morishima S, Okada Y (2003) Ischemia-induced enhancement of CFTR expression on the plasma membrane in neonatal rat ventricular myocytes. Jpn J Physiol 53(5):357–365

    Article  CAS  PubMed  Google Scholar 

  85. Mairbaurl H, Wodopia R, Eckes S, Schulz S, Bartsch P (1997) Impairment of cation transport in A549 cells and rat alveolar epithelial cells by hypoxia. Am J Physiol 273(4 Pt 1):L797–806

    CAS  PubMed  Google Scholar 

  86. Clerici C, Matthay MA (2000) Hypoxia regulates gene expression of alveolar epithelial transport proteins. J Appl Physiol (Bethesda, Md: 1985) 88(5):1890–1896. https://doi.org/10.1152/jappl.2000.88.5.1890

    Article  CAS  Google Scholar 

  87. Mairbaurl H, Mayer K, Kim KJ, Borok Z, Bartsch P, Crandall ED (2002) Hypoxia decreases active Na transport across primary rat alveolar epithelial cell monolayers. Am J Physiol Lung Cell Mol Physiol 282(4):L659–665. https://doi.org/10.1152/ajplung.00355.2001

    Article  CAS  PubMed  Google Scholar 

  88. Karle C, Gehrig T, Wodopia R, Hoschele S, Kreye VA, Katus HA, Bartsch P, Mairbaurl H (2004) Hypoxia-induced inhibition of whole cell membrane currents and ion transport of A549 cells. Am J Physiol Lung Cell Mol Physiol 286(6):L1154–1160. https://doi.org/10.1152/ajplung.00403.2002

    Article  CAS  PubMed  Google Scholar 

  89. Howe KL, Wang A, Hunter MM, Stanton BA, McKay DM (2004) TGFbeta down-regulation of the CFTR: a means to limit epithelial chloride secretion. Exp Cell Res 298(2):473–484. https://doi.org/10.1016/j.yexcr.2004.04.026

    Article  CAS  PubMed  Google Scholar 

  90. Prulière-Escabasse V, Fanen P, Dazy AC, Lechapt-Zalcman E, Rideau D, Edelman A, Escudier E, Coste A (2005) TGF-β1 downregulates CFTR expression and function in nasal polyps of non-CF patients. Am J Physiol Lung Cell Mol Physiol 288(1):L77–L83

    Article  PubMed  CAS  Google Scholar 

  91. Gauthier TW, Grunwell JR, Ping XD, Harris FL, Brown LA (2017) Impaired defenses of neonatal mouse alveolar macrophage with cftr deletion are modulated by glutathione and TGFbeta1. Physiol Rep. https://doi.org/10.14814/phy2.13086

    Article  PubMed  PubMed Central  Google Scholar 

  92. Mishra L, Derynck R, Mishra B (2005) Transforming growth factor-β signaling in stem cells and cancer. Science (New York, NY) 310(5745):68–71

    Article  CAS  Google Scholar 

  93. Miyazono K, Suzuki H, Imamura T (2003) Regulation of TGF-beta signaling and its roles in progression of tumors. Cancer Sci 94(3):230–234

    Article  CAS  PubMed  Google Scholar 

  94. Chaikuad A, Bullock AN (2016) Structural basis of intracellular TGF-beta signaling: receptors and smads. Cold Spring Harb Perspect Biol. https://doi.org/10.1101/cshperspect.a022111

    Article  PubMed  Google Scholar 

  95. Bodas M, Silverberg D, Walworth K, Brucia K, Vij N (2017) Augmentation of S-nitrosoglutathione controls cigarette smoke-induced inflammatory-oxidative stress and chronic obstructive pulmonary disease-emphysema pathogenesis by restoring cystic fibrosis transmembrane conductance regulator function. Antioxid Redox Signal 27(7):433–451. https://doi.org/10.1089/ars.2016.6895

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Brown MB, Hunt WR, Noe JE, Rush NI, Schweitzer KS, Leece TC, Moldobaeva A, Wagner EM, Dudek SM, Poirier C, Presson RG Jr, Gulbins E, Petrache I (2014) Loss of cystic fibrosis transmembrane conductance regulator impairs lung endothelial cell barrier function and increases susceptibility to microvascular damage from cigarette smoke. Pulm Circ 4(2):260–268. https://doi.org/10.1086/675989

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  97. Rab A, Rowe SM, Raju SV, Bebok Z, Matalon S, Collawn JF (2013) Cigarette smoke and CFTR: implications in the pathogenesis of COPD. Am J Physiol Lung Cell Mol Physiol 305(8):L530–541. https://doi.org/10.1152/ajplung.00039.2013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Raju SV, Jackson PL, Courville CA, McNicholas CM, Sloane PA, Sabbatini G, Tidwell S, Tang LP, Liu B, Fortenberry JA, Jones CW, Boydston JA, Clancy JP, Bowen LE, Accurso FJ, Blalock JE, Dransfield MT, Rowe SM (2013) Cigarette smoke induces systemic defects in cystic fibrosis transmembrane conductance regulator function. Am J Respir Crit Care Med 188(11):1321–1330. https://doi.org/10.1164/rccm.201304-0733OC

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Xu X, Balsiger R, Tyrrell J, Boyaka PN, Tarran R, Cormet-Boyaka E (2015) Cigarette smoke exposure reveals a novel role for the MEK/ERK1/2 MAPK pathway in regulation of CFTR. Biochem Biophys Acta 1850(6):1224–1232. https://doi.org/10.1016/j.bbagen.2015.02.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Buser MC, Scinicariello F (2017) Cadmium, lead, and depressive symptoms: analysis of National Health and Nutrition Examination Survey 2011–2012. J Clin Psychiatry 78(5):e515–e521. https://doi.org/10.4088/JCP.15m10383

    Article  PubMed  Google Scholar 

  101. Rennolds J, Butler S, Maloney K, Boyaka PN, Davis IC, Knoell DL, Parinandi NL, Cormet-Boyaka E (2010) Cadmium regulates the expression of the CFTR chloride channel in human airway epithelial cells. Toxicol Sci 116(1):349–358. https://doi.org/10.1093/toxsci/kfq101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Li C, Schuetz JD, Naren AP (2010) Tobacco carcinogen NNK transporter MRP2 regulates CFTR function in lung epithelia: implications for lung cancer. Cancer Lett 292(2):246–253. https://doi.org/10.1016/j.canlet.2009.12.009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Maouche K, Medjber K, Zahm JM, Delavoie F, Terryn C, Coraux C, Pons S, Cloez-Tayarani I, Maskos U, Birembaut P, Tournier JM (2013) Contribution of alpha7 nicotinic receptor to airway epithelium dysfunction under nicotine exposure. Proc Natl Acad Sci USA 110(10):4099–4104. https://doi.org/10.1073/pnas.1216939110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Rochwerger L, Buchwald M (1993) Stimulation of the cystic fibrosis transmembrane regulator expression by estrogen in vivo. Endocrinology 133(2):921–930. https://doi.org/10.1210/endo.133.2.7688293

    Article  CAS  PubMed  Google Scholar 

  105. Tsang LL, Chan LN, Liu CQ, Chan HC (2001) Effect of phenol red and steroid hormones on cystic fibrosis transmembrane conductance regulator in mouse endometrial epithelial cells. Cell Biol Int 25(10):1021–1024. https://doi.org/10.1006/cbir.2001.0752

    Article  CAS  PubMed  Google Scholar 

  106. Rochwerger L, Dho S, Parker L, Foskett JK, Buchwald M (1994) Estrogen-dependent expression of the cystic fibrosis transmembrane regulator gene in a novel uterine epithelial cell line. J Cell Sci 107(Pt 9):2439–2448

    CAS  PubMed  Google Scholar 

  107. Dumesic DA, Lobo RA (2013) Cancer risk and PCOS. Steroids 78(8):782–785. https://doi.org/10.1016/j.steroids.2013.04.004

    Article  CAS  PubMed  Google Scholar 

  108. Gibson DA, Saunders PT (2012) Estrogen dependent signaling in reproductive tissues—a role for estrogen receptors and estrogen related receptors. Mol Cell Endocrinol 348(2):361–372. https://doi.org/10.1016/j.mce.2011.09.026

    Article  CAS  PubMed  Google Scholar 

  109. Felix AS, Weissfeld JL, Stone RA, Bowser R, Chivukula M, Edwards RP, Linkov F (2010) Factors associated with type I and type II endometrial cancer. Cancer Causes Control 21(11):1851–1856. https://doi.org/10.1007/s10552-010-9612-8

    Article  PubMed  PubMed Central  Google Scholar 

  110. Guo Y, Xing Y (2016) Weighted gene co-expression network analysis of pneumocytes under exposure to a carcinogenic dose of chloroprene. Life Sci 151:339–347. https://doi.org/10.1016/j.lfs.2016.02.074

    Article  CAS  PubMed  Google Scholar 

  111. Govindan R, Ding L, Griffith M, Subramanian J, Dees ND, Kanchi KL, Maher CA, Fulton R, Fulton L, Wallis J, Chen K, Walker J, McDonald S, Bose R, Ornitz D, Xiong D, You M, Dooling DJ, Watson M, Mardis ER, Wilson RK (2012) Genomic landscape of non-small cell lung cancer in smokers and never-smokers. Cell 150(6):1121–1134. https://doi.org/10.1016/j.cell.2012.08.024

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Gray MA (2004) Bicarbonate secretion: it takes two to tango. Nat Cell Biol 6(4):292–294. https://doi.org/10.1038/ncb0404-292

    Article  CAS  PubMed  Google Scholar 

  113. Ko SB, Shcheynikov N, Choi JY, Luo X, Ishibashi K, Thomas PJ, Kim JY, Kim KH, Lee MG, Naruse S, Muallem S (2002) A molecular mechanism for aberrant CFTR-dependent HCO(3)(−) transport in cystic fibrosis. EMBO J 21(21):5662–5672

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Park HW, Nam JH, Kim JY, Namkung W, Yoon JS, Lee JS, Kim KS, Venglovecz V, Gray MA, Kim KH, Lee MG (2010) Dynamic regulation of CFTR bicarbonate permeability by [Cl]i and its role in pancreatic bicarbonate secretion. Gastroenterology 139(2):620–631. https://doi.org/10.1053/j.gastro.2010.04.004

    Article  CAS  PubMed  Google Scholar 

  115. Saint-Criq V, Gray MA (2017) Role of CFTR in epithelial physiology. Cell Mol Life Sci 74(1):93–115. https://doi.org/10.1007/s00018-016-2391-y

    Article  CAS  PubMed  Google Scholar 

  116. Wang Y, Soyombo AA, Shcheynikov N, Zeng W, Dorwart M, Marino CR, Thomas PJ, Muallem S (2006) Slc26a6 regulates CFTR activity in vivo to determine pancreatic duct HCO3 secretion: relevance to cystic fibrosis. EMBO J 25(21):5049–5057. https://doi.org/10.1038/sj.emboj.7601387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Steward MC, Ishiguro H, Case RM (2005) Mechanisms of bicarbonate secretion in the pancreatic duct. Annu Rev Physiol 67:377–409. https://doi.org/10.1146/annurev.physiol.67.031103.153247

    Article  CAS  PubMed  Google Scholar 

  118. Poulsen JH, Fischer H, Illek B, Machen TE (1994) Bicarbonate conductance and pH regulatory capability of cystic fibrosis transmembrane conductance regulator. Proc Natl Acad Sci USA 91(12):5340–5344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Johansen PG, Anderson CM, Hadorn B (1968) Cystic fibrosis of the pancreas. A generalised disturbance of water and electrolyte movement in exocrine tissues. Lancet (London, England) 1(7540):455–460

    Article  Google Scholar 

  120. Patel S (2017) Stressor-driven extracellular acidosis as tumor inducer via aberrant enzyme activation: a review on the mechanisms and possible prophylaxis. Gene 626:209–214. https://doi.org/10.1016/j.gene.2017.05.043

    Article  CAS  PubMed  Google Scholar 

  121. Lu YC, Chen H, Fok KL, Tsang LL, Yu MK, Zhang XH, Chen J, Jiang X, Chung YW, Ma AC, Leung AY, Huang HF, Chan HC (2012) CFTR mediates bicarbonate-dependent activation of miR-125b in preimplantation embryo development. Cell Res 22(10):1453–1466. https://doi.org/10.1038/cr.2012.88

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Chen H, Guo JH, Zhang XH, Chan HC (2015) Defective CFTR-regulated granulosa cell proliferation in polycystic ovarian syndrome. Reproduction (Cambridge, England) 149(5):393–401. https://doi.org/10.1530/REP-14-0368

    Article  CAS  Google Scholar 

  123. Trezise AE, Linder CC, Grieger D, Thompson EW, Meunier H, Griswold MD, Buchwald M (1993) CFTR expression is regulated during both the cycle of the seminiferous epithelium and the oestrous cycle of rodents. Nat Genet 3(2):157–164

    Article  CAS  PubMed  Google Scholar 

  124. Chan LN, Tsang LL, Rowlands DK, Rochelle LG, Boucher RC, Liu CQ, Chan HC (2002) Distribution and regulation of ENaC subunit and CFTR mRNA expression in murine female reproductive tract. J Membr Biol 185(2):165–176. https://doi.org/10.1007/s00232-001-0117-y

    Article  CAS  PubMed  Google Scholar 

  125. Xu WM, Shi QX, Chen WY, Zhou CX, Ni Y, Rowlands DK, Liu GY, Zhu H, Ma ZG, Wang XF, Chen ZH, Zhou SC, Dong HS, Zhang XH, Chung YW, Yuan YY, Yang WX, Chan HC (2007) Cystic fibrosis transmembrane conductance regulator is vital to sperm fertilizing capacity and male fertility. Proc Natl Acad Sci USA 104(23):9816–9821. https://doi.org/10.1073/pnas.0609253104

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  126. Chen H, Ruan YC, Xu WM, Chen J, Chan HC (2012) Regulation of male fertility by CFTR and implications in male infertility. Hum Reprod Update 18(6):703–713. https://doi.org/10.1093/humupd/dms027

    Article  CAS  PubMed  Google Scholar 

  127. Chen H, Chan HC (2017) Amplification of FSH signalling by CFTR and nuclear soluble adenylyl cyclase in the ovary. Clin Exp Pharmacol Physiol 44(Suppl 1):78–85. https://doi.org/10.1111/1440-1681.12756

    Article  CAS  PubMed  Google Scholar 

  128. Schildkraut JM, Schwingl PJ, Bastos E, Evanoff A, Hughes C (1996) Epithelial ovarian cancer risk among women with polycystic ovary syndrome. Obstet Gynecol 88(4):554–559. https://doi.org/10.1016/0029-7844(96)00226-8

    Article  CAS  PubMed  Google Scholar 

  129. Kunzelmann K (2001) CFTR: interacting with everything? News Physiol Sci Int J Physiol Prod Jointly Int Union Physiol Sci Am Physiol Soc 16:167–170

    CAS  Google Scholar 

  130. Gabriel SE, Clarke LL, Boucher RC, Stutts MJ (1993) CFTR and outward rectifying chloride channels are distinct proteins with a regulatory relationship. Nature 363(6426):263–268. https://doi.org/10.1038/363263a0

    Article  CAS  PubMed  Google Scholar 

  131. Schwiebert EM, Egan ME, Hwang TH, Fulmer SB, Allen SS, Cutting GR, Guggino WB (1995) Cftr regulates outwardly rectifying chloride channels through an autocrine mechanism involving Atp. Cell 81(7):1063–1073. https://doi.org/10.1016/S0092-8674(05)80011-X

    Article  CAS  PubMed  Google Scholar 

  132. Stutts MJ, Canessa CM, Olsen JC, Hamrick M, Cohn JA, Rossier BC, Boucher RC (1995) Cftr as a camp-dependent regulator of sodium-channels. Science (New York, NY) 269(5225):847–850. https://doi.org/10.1126/science.7543698

    Article  CAS  Google Scholar 

  133. Kim JA, Kang YS, Lee SH, Lee EH, Yoo BH, Lee YS (1999) Glibenclamide induces apoptosis through inhibition of cystic fibrosis transmembrane conductance regulator (CFTR) Cl(−) channels and intracellular Ca(2+) release in HepG2 human hepatoblastoma cells. Biochem Biophys Res Commun 261(3):682–688. https://doi.org/10.1006/bbrc.1999.1108

    Article  CAS  PubMed  Google Scholar 

  134. Kim JA, Kang YS, Lee SH, Lee EH, Lee YS (2001) Role of pertussis toxin-sensitive G-proteins in intracellular Ca2+ release and apoptosis induced by inhibiting cystic fibrosis transmembrane conductance regulator (CFTR) Cl channels in HepG2 human hepatoblastoma cells. J Cell Biochem 81(1):93–101

    Article  CAS  PubMed  Google Scholar 

  135. Bodas M, Vij N (2010) The NFκB signaling in cystic fibrosis lung disease: pathophysiology and therapeutic potential. Discov Med 9(47):346

    PubMed  PubMed Central  Google Scholar 

  136. Rottner M, Kunzelmann C, Mergey M, Freyssinet JM, Martinez MC (2007) Exaggerated apoptosis and NF-kappaB activation in pancreatic and tracheal cystic fibrosis cells. FASEB J 21(11):2939–2948. https://doi.org/10.1096/fj.06-7614com

    Article  PubMed  Google Scholar 

  137. Hunter MJ, Treharne KJ, Winter AK, Cassidy DM, Land S, Mehta A (2010) Expression of wild-type CFTR suppresses NF-kappaB-driven inflammatory signalling. PLoS One 5(7):e11598. https://doi.org/10.1371/journal.pone.0011598

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  138. Kowalski MP, Pier GB (2004) Localization of cystic fibrosis transmembrane conductance regulator to lipid rafts of epithelial cells is required for Pseudomonas aeruginosa-induced cellular activation. J Immunol 172(1):418–425. https://doi.org/10.4049/jimmunol.172.1.418

    Article  CAS  PubMed  Google Scholar 

  139. Chen J, Jiang XH, Chen H, Guo JH, Tsang LL, Yu MK, Xu WM, Chan HC (2012) CFTR negatively regulates cyclooxygenase-2-PGE2 positive feedback loop in inflammation. J Cell Physiol 227(6):2759–2766

    Article  CAS  PubMed  Google Scholar 

  140. Chen J, Fok KL, Chen H, Zhang XH, Xu WM, Chan HC (2012) Cryptorchidism-induced CFTR down-regulation results in disruption of testicular tight junctions through up-regulation of NF-κB/COX-2/PGE2. Hum Reprod 27(9):2585–2597

    Article  CAS  PubMed  Google Scholar 

  141. Ferguson L, Agoulnik AI (2013) Testicular cancer and cryptorchidism. Front Endocrinol (Lausanne) 4:32. https://doi.org/10.3389/fendo.2013.00032

    Article  Google Scholar 

  142. Singh AP, Chauhan SC, Andrianifahanana M, Moniaux N, Meza JL, Copin MC, van Seuningen I, Hollingsworth MA, Aubert JP, Batra SK (2007) MUC4 expression is regulated by cystic fibrosis transmembrane conductance regulator in pancreatic adenocarcinoma cells via transcriptional and post-translational mechanisms. Oncogene 26(1):30–41. https://doi.org/10.1038/sj.onc.1209764

    Article  CAS  PubMed  Google Scholar 

  143. Wu Z, Peng X, Li J, Zhang Y, Hu L (2013) Constitutive activation of nuclear factor kappaB contributes to cystic fibrosis transmembrane conductance regulator expression and promotes human cervical cancer progression and poor prognosis. Int J Gynecol Cancer 23(5):906–915. https://doi.org/10.1097/IGC.0b013e318292da82

    Article  PubMed  Google Scholar 

  144. Fiorotto R, Villani A, Kourtidis A, Scirpo R, Amenduni M, Geibel PJ, Cadamuro M, Spirli C, Anastasiadis PZ, Strazzabosco M (2016) The cystic fibrosis transmembrane conductance regulator controls biliary epithelial inflammation and permeability by regulating Src tyrosine kinase activity. Hepatology (Baltimore, Md) 64(6):2118–2134. https://doi.org/10.1002/hep.28817

    Article  CAS  Google Scholar 

  145. Wang H, Cebotaru L, Lee HW, Yang Q, Pollard BS, Pollard HB, Guggino WB (2016) CFTR controls the activity of NF-kappaB by enhancing the degradation of TRADD. Cell Physiol Biochem Int J Exp Cell Physiol Biochem Pharmacol 40(5):1063–1078. https://doi.org/10.1159/000453162

    Article  CAS  Google Scholar 

  146. Liu K, Zhang X, Zhang JT, Tsang LL, Jiang X, Chan HC (2016) Defective CFTR-β-catenin interaction promotes NF-κB nuclear translocation and intestinal inflammation in cystic fibrosis. Oncotarget 7(39):64030–64042

    PubMed  PubMed Central  Google Scholar 

  147. Nusse R, Clevers H (2017) Wnt/beta-catenin signaling, disease, and emerging therapeutic modalities. Cell 169(6):985–999. https://doi.org/10.1016/j.cell.2017.05.016

    Article  CAS  PubMed  Google Scholar 

  148. Pankow S, Bamberger C, Calzolari D, Martinez-Bartolome S, Lavallee-Adam M, Balch WE, Yates JR 3rd (2015) F508 CFTR interactome remodelling promotes rescue of cystic fibrosis. Nature 528(7583):510–516. https://doi.org/10.1038/nature15729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  149. Plog S, Mundhenk L, Bothe MK, Klymiuk N, Gruber AD (2010) Tissue and cellular expression patterns of porcine CFTR: similarities to and differences from human CFTR. J Histochem Cytochem 58(9):785–797. https://doi.org/10.1369/jhc.2010.955377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Liu Z, Guo J, Wang Y, Weng Z, Huang B, Yu MK, Zhang X, Yuan P, Zhao H, Chan WY, Jiang X, Chan HC (2017) CFTR-beta-catenin interaction regulates mouse embryonic stem cell differentiation and embryonic development. Cell Death Differ 24(1):98–110. https://doi.org/10.1038/cdd.2016.118

    Article  CAS  PubMed  Google Scholar 

  151. Zhang JT, Wang Y, Chen JJ, Zhang XH, Dong JD, Tsang LL, Huang XR, Cai Z, Lan HY, Jiang XH, Chan HC (2017) Defective CFTR leads to aberrant beta-catenin activation and kidney fibrosis. Sci Rep 7(1):5233. https://doi.org/10.1038/s41598-017-05435-5

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  152. Lukacs GL, Mohamed A, Kartner N, Chang XB, Riordan JR, Grinstein S (1994) Conformational maturation of CFTR but not its mutant counterpart (delta F508) occurs in the endoplasmic reticulum and requires ATP. EMBO J 13(24):6076–6086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Wang X, Venable J, LaPointe P, Hutt DM, Koulov AV, Coppinger J, Gurkan C, Kellner W, Matteson J, Plutner H, Riordan JR, Kelly JW, Yates JR 3rd, Balch WE (2006) Hsp90 cochaperone Aha1 downregulation rescues misfolding of CFTR in cystic fibrosis. Cell 127(4):803–815. https://doi.org/10.1016/j.cell.2006.09.043

    Article  CAS  PubMed  Google Scholar 

  154. Rosenberg MF, O’Ryan LP, Hughes G, Zhao Z, Aleksandrov LA, Riordan JR, Ford RC (2011) The cystic fibrosis transmembrane conductance regulator (CFTR): three-dimensional structure and localization of a channel gate. J Biol Chem 286(49):42647–42654. https://doi.org/10.1074/jbc.M111.292268

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Zhang Z, Chen J (2016) Atomic structure of the cystic fibrosis transmembrane conductance regulator. Cell 167(6):1586–1597 e1589. https://doi.org/10.1016/j.cell.2016.11.014

    Article  CAS  PubMed  Google Scholar 

  156. Li C, Naren AP (2011) Analysis of CFTR interactome in the macromolecular complexes. Methods Mol Biol (Clifton, NJ) 741:255–270. https://doi.org/10.1007/978-1-61779-117-8_17

    Article  CAS  Google Scholar 

  157. Estell K, Braunstein G, Tucker T, Varga K, Collawn JF, Schwiebert LM (2003) Plasma membrane CFTR regulates RANTES expression via its C-terminal PDZ-interacting motif. Mol Cell Biol 23(2):594–606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Trzcinska-Daneluti AM, Nguyen L, Jiang C, Fladd C, Uehling D, Prakesch M, Al-awar R, Rotin D (2012) Use of kinase inhibitors to correct DeltaF508-CFTR function. Mol Cell Proteom 11(9):745–757. https://doi.org/10.1074/mcp.M111.016626

    Article  CAS  Google Scholar 

  159. Ruan YC, Wang Y, Da Silva N, Kim B, Diao RY, Hill E, Brown D, Chan HC, Breton S (2014) CFTR interacts with ZO-1 to regulate tight junction assembly and epithelial differentiation through the ZONAB pathway. J Cell Sci 127(20):4396–4408. https://doi.org/10.1242/jcs.148098

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Jayagopal A, Yang JL, Haselton FR, Chang MS (2011) Tight junction-associated signaling pathways modulate cell proliferation in uveal melanoma. Investig Ophthalmol Vis Sci 52(1):588–593. https://doi.org/10.1167/iovs.10-5746

    Article  CAS  Google Scholar 

  161. Jimenez-Salazar JE, Posadas-Rodriguez P, Lazzarini-Lechuga RC, Luna-Lopez A, Zentella-Dehesa A, Gomez-Quiroz LE, Konigsberg M, Dominguez-Gomez G, Damian-Matsumura P (2014) Membrane-initiated estradiol signaling of epithelial-mesenchymal transition-associated mechanisms through regulation of tight junctions in human breast cancer cells. Horm Cancer 5(3):161–173. https://doi.org/10.1007/s12672-014-0180-3

    Article  CAS  PubMed  Google Scholar 

  162. Yang Y, Janich S, Cohn JA, Wilson JM (1993) The common variant of cystic fibrosis transmembrane conductance regulator is recognized by hsp70 and degraded in a pre-Golgi nonlysosomal compartment. Proc Natl Acad Sci USA 90(20):9480–9484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Loo MA, Jensen TJ, Cui L, Hou Y, Chang XB, Riordan JR (1998) Perturbation of Hsp90 interaction with nascent CFTR prevents its maturation and accelerates its degradation by the proteasome. EMBO J 17(23):6879–6887. https://doi.org/10.1093/emboj/17.23.6879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Gumus M, Ozgur A, Tutar L, Disli A, Koca I, Tutar Y (2016) Design, synthesis, and evaluation of heat shock protein 90 inhibitors in human breast cancer and its metastasis. Curr Pharm Biotechnol 17(14):1231–1245

    Article  CAS  PubMed  Google Scholar 

  165. Esfahani K, Cohen V (2016) HSP90 as a novel molecular target in non-small-cell lung cancer. Lung Cancer (Auckland, NZ) 7:11–17. https://doi.org/10.2147/lctt.s60344

    Article  CAS  Google Scholar 

  166. Jiang X, Zhang JT, Chan HC (2012) Ion channels/transporters as epigenetic regulators?—A microRNA perspective. Sci China Life Sci 55(9):753–760. https://doi.org/10.1007/s11427-012-4369-9

    Article  CAS  PubMed  Google Scholar 

  167. Xu WM, Hui C, Yu SSB, Jing C, Chan HC (2011) MicroRNAs and cystic fibrosis—an epigenetic perspective. Cell Biol Int 35(5):463–466. https://doi.org/10.1042/Cbi20100664

    Article  PubMed  Google Scholar 

  168. Bhattacharyya S, Balakathiresan NS, Dalgard C, Gutti U, Armistead D, Jozwik C, Srivastava M, Pollard HB, Biswas R (2011) Elevated miR-155 promotes inflammation in cystic fibrosis by driving hyperexpression of interleukin-8. J Biol Chem 286(13):11604–11615. https://doi.org/10.1074/jbc.M110.198390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Megiorni F, Cialfi S, Cimino G, De Biase RV, Dominici C, Quattrucci S, Pizzuti A (2013) Elevated levels of miR-145 correlate with SMAD3 down-regulation in cystic fibrosis patients. J Cyst Fibros 12(6):797–802. https://doi.org/10.1016/j.jcf.2013.03.007

    Article  CAS  PubMed  Google Scholar 

  170. Kimura H, Kawasaki H, Taira K (2004) Mouse microRNA-23b regulates expression of Hes1 gene in P19 cells. Nucleic Acids Symp Ser 48:213–214. https://doi.org/10.1093/nass/48.1.213

    Article  Google Scholar 

  171. Redova M, Svoboda M, Slaby O (2011) MicroRNAs and their target gene networks in renal cell carcinoma. Biochem Biophys Res Commun 405(2):153–156. https://doi.org/10.1016/j.bbrc.2011.01.019

    Article  CAS  PubMed  Google Scholar 

  172. Montanini L, Smerieri A, Gulli M, Cirillo F, Pisi G, Sartori C, Amarri S, Bernasconi S, Marmiroli N, Street ME (2016) miR-146a, miR-155, miR-370, and miR-708 Are CFTR-dependent, predicted FOXO1 regulators and change at onset of CFRDs. J Clin Endocrinol Metab 101(12):4955–4963. https://doi.org/10.1210/jc.2016-2431

    Article  PubMed  CAS  Google Scholar 

  173. Zhang PX, Cheng J, Zou S, D’Souza AD, Koff JL, Lu J, Lee PJ, Krause DS, Egan ME, Bruscia EM (2015) Pharmacological modulation of the AKT/microRNA-199a-5p/CAV1 pathway ameliorates cystic fibrosis lung hyper-inflammation. Nat Commun 6:6221. https://doi.org/10.1038/ncomms7221

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Zhou X, Mao Y, Zhu J, Meng F, Chen Q, Tao L, Li R, Fu F, Liu C, Hu Y, Wang W, Zhang H, Hua D, Chen W, Zhang X (2016) TGF-beta1 promotes colorectal cancer immune escape by elevating B7-H3 and B7-H4 via the miR-155/miR-143 axis. Oncotarget 7(41):67196–67211. https://doi.org/10.18632/oncotarget.11950

    Article  PubMed  PubMed Central  Google Scholar 

  175. Zhang D, Cui Y, Li B, Luo X, Li B, Tang Y (2016) miR-155 regulates high glucose-induced cardiac fibrosis via the TGF-beta signaling pathway. Mol BioSyst 13(1):215–224. https://doi.org/10.1039/c6mb00649c

    Article  PubMed  Google Scholar 

  176. Gray MA (2010) CFTR is a mechanosensitive anion channel: a real stretch? Cellscience 7(1):1

    PubMed  PubMed Central  Google Scholar 

  177. Garcia MA, Yang N, Quinton PM (2009) Normal mouse intestinal mucus release requires cystic fibrosis transmembrane regulator-dependent bicarbonate secretion. J Clin Investig 119(9):2613–2622. https://doi.org/10.1172/JCI38662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Gelfond D, Heltshe S, Ma C, Rowe SM, Frederick C, Uluer A, Sicilian L, Konstan M, Tullis E, Roach RN, Griffin K, Joseloff E, Borowitz D (2017) Impact of CFTR Modulation on intestinal pH, motility, and clinical outcomes in patients with cystic fibrosis and the G551D mutation. Clin Transl Gastroenterol 8(3):e81. https://doi.org/10.1038/ctg.2017.10

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  179. Dorsey J, Gonska T (2017) Bacterial overgrowth, dysbiosis, inflammation, and dysmotility in the cystic fibrosis intestine. J Cyst Fibros 16(Suppl 2):S14–S23. https://doi.org/10.1016/j.jcf.2017.07.014

    Article  PubMed  Google Scholar 

  180. Balkwill F, Mantovani A (2001) Inflammation and cancer: back to Virchow? Lancet (London, England) 357(9255):539–545. https://doi.org/10.1016/s0140-6736(00)04046-0

    Article  CAS  Google Scholar 

  181. Lin WW, Karin M (2007) A cytokine-mediated link between innate immunity, inflammation, and cancer. J Clin Investig 117(5):1175–1183. https://doi.org/10.1172/JCI31537

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Richards J, Greenlee MM, Jeffers LA, Cheng KY, Guo L, Eaton DC, Gumz ML (2012) Inhibition of alphaENaC expression and ENaC activity following blockade of the circadian clock-regulatory kinases CK1delta/epsilon. Am J Physiol Ren Physiol 303(7):F918–927. https://doi.org/10.1152/ajprenal.00678.2011

    Article  CAS  Google Scholar 

  183. Southey MC, Batten L, Andersen CR, McCredie MR, Giles GG, Dite G, Hopper JL, Venter DJ (1998) CFTR deltaF508 carrier status, risk of breast cancer before the age of 40 and histological grading in a population-based case–control study. Int J Cancer 79(5):487–489

    Article  CAS  PubMed  Google Scholar 

  184. Liu H, Wu W, Liu Y, Zhang C, Zhou Z (2014) Predictive value of cystic fibrosis transmembrane conductance regulator (CFTR) in the diagnosis of gastric cancer. Clin Investig Med 37(4):E226–232

    Article  CAS  Google Scholar 

  185. Eng L, Ibrahim-zada I, Jarjanazi H, Savas S, Meschian M, Pritchard KI, Ozcelik H (2011) Bioinformatic analyses identifies novel protein-coding pharmacogenomic markers associated with paclitaxel sensitivity in NCI60 cancer cell lines. BMC Med Genom 4:18. https://doi.org/10.1186/1755-8794-4-18

    Article  CAS  Google Scholar 

  186. Deeken JF, Cormier T, Price DK, Sissung TM, Steinberg SM, Tran K, Liewehr DJ, Dahut WL, Miao X, Figg WD (2010) A pharmacogenetic study of docetaxel and thalidomide in patients with castration-resistant prostate cancer using the DMET genotyping platform. Pharmacogenom J 10(3):191–199. https://doi.org/10.1038/tpj.2009.57

    Article  CAS  Google Scholar 

  187. Ma T, Thiagarajah JR, Yang H, Sonawane ND, Folli C, Galietta LJ, Verkman AS (2002) Thiazolidinone CFTR inhibitor identified by high-throughput screening blocks cholera toxin-induced intestinal fluid secretion. J Clin Investig 110(11):1651–1658. https://doi.org/10.1172/JCI16112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Claustres M, Theze C, des Georges M, Baux D, Girodon E, Bienvenu T, Audrezet MP, Dugueperoux I, Ferec C, Lalau G, Pagin A, Kitzis A, Thoreau V, Gaston V, Bieth E, Malinge MC, Reboul MP, Fergelot P, Lemonnier L, Mekki C, Fanen P, Bergougnoux A, Sasorith S, Raynal C, Bareil C (2017) CFTR-France, a national relational patient database for sharing genetic and phenotypic data associated with rare CFTR variants. Human mutation 38(10):1297–1315. https://doi.org/10.1002/humu.23276

    Article  CAS  PubMed  Google Scholar 

  189. Jung Y, Ha H, Jung S-H, Lee MG, Lee H-W, Yoon J, Choi J-W, Yeh B-Il (2001) F508 amino acid deletion mutation of CFTR gene in Korean lung cancer patients. Exp Mol Med 33(1):29–31

    Article  CAS  PubMed  Google Scholar 

  190. Oh I-H, Oh C, Yoon T-Y, Choi J-M, Kim SK, Park HJ, Eun YG, Chung DH, Kwon KH, Choe B-K (2012) Association of CFTR gene polymorphisms with papillary thyroid cancer. Oncol Lett 3(2):455–461

    Article  CAS  PubMed  Google Scholar 

  191. Gharahkhani P, Fitzgerald RC, Vaughan TL, Palles C, Gockel I, Tomlinson I, Buas MF, May A, Gerges C, Anders M, Becker J, Kreuser N, Noder T, Venerito M, Veits L, Schmidt T, Manner H, Schmidt C, Hess T, Böhmer AC, Izbicki JR, Hölscher AH, Lang H, Lorenz D, Schumacher B, Hackelsberger A, Mayershofer R, Pech O, Vashist Y, Ott K, Vieth M, Weismüller J, Nöthen MM, Attwood S, Barr H, Chegwidden L, de Caestecker J, Harrison R, Love SB, MacDonald D, Moayyedi P, Prenen H, Watson RGP, Iyer PG, Anderson LA, Bernstein L, Chow W-H, Hardie LJ, Lagergren J, Liu G, Risch HA, Wu AH, Ye W, Bird NC, Shaheen NJ, Gammon MD, Corley DA, Caldas C, Moebus S, Knapp M, Peters WHM, Neuhaus H, Rösch T, Ell C, MacGregor S, Pharoah P, Whiteman DC, Jankowski J, Schumacher J (2016) Genome-wide association studies in oesophageal adenocarcinoma and Barrett's oesophagus: a large-scale meta-analysis. Lancet Oncol 17(10):1363–1373

    Article  PubMed  PubMed Central  Google Scholar 

  192. Malats N, Casals T, Porta M, Guarner L, Estivill X, Real FX (2001) Cystic fibrosis transmembrane regulator (CFTR) DeltaF508 mutation and 5T allele in patients with chronic pancreatitis and exocrine pancreatic cancer. PANKRAS II Study Group. Gut 48(1):70–74

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Matsubayashi H, Fukushima N, Sato N, Brune K, Canto M, Yeo CJ, Hruban RH, Kern SE, Goggins M (2003) Polymorphisms of SPINK1 N34S and CFTR in patients with sporadic and familial pancreatic cancer. Cancer Biol Ther 2(6):652–655

    Article  CAS  PubMed  Google Scholar 

  194. Piepoli A (2006) Lack of association between and gene polymorphisms and pancreatic cancer in Italian patients. World J Gastroenterol 12(39):6343

    Article  PubMed  PubMed Central  Google Scholar 

  195. Schubert S, Traub F, Brakensiek K, von Kopylow K, Marohn B, Maelzer M, Gaedcke J, Kreipe H, Stuhrmann M (2014) CFTR, SPINK1, PRSS1, and CTRC mutations are not associated with pancreatic cancer in German patients. Pancreas 43(7):1078–1082. https://doi.org/10.1097/MPA.0000000000000166

    Article  CAS  PubMed  Google Scholar 

  196. McWilliams R (2005) Cystic fibrosis transmembrane regulator gene carrier status is a risk factor for young onset pancreatic adenocarcinoma. Gut 54(11):1661–1662

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Hamoir C, Pepermans X, Piessevaux H, Jouret-Mourin A, Weynand B, Habyalimana J-B, Leal T, Geubel A, Gigot J-F, Deprez PH (2013) Clinical and morphological characteristics of sporadic genetically determined pancreatitis as compared to idiopathic pancreatitis: higher risk of pancreatic cancer in CFTR variants. Digestion 87(4):229–239

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The work was supported in parts by National 973 Project (2013CB967404, 2013CB967401, 2013CB967403), Research Grant Council of Hong Kong (CUHK 466413, CUHK14119516), National Natural Science Foundation of China (81571390), the Focused Investment Scheme of the Chinese University of Hong Kong and L.K.S Foundation.

Author information

Authors and Affiliations

Authors

Contributions

JZ and YW have contributed to data collection and manuscript written. Prof. XJ and Prof. HCC have contributed to write and finalize the paper.

Corresponding authors

Correspondence to Xiaohua Jiang or Hsiao Chang Chan.

Ethics declarations

Conflict of interest

None of the authors have any conflict of interests to declare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Wang, Y., Jiang, X. et al. Cystic fibrosis transmembrane conductance regulator—emerging regulator of cancer. Cell. Mol. Life Sci. 75, 1737–1756 (2018). https://doi.org/10.1007/s00018-018-2755-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-018-2755-6

Keywords

Navigation