Skip to main content

Advertisement

Log in

Cellular consequences of arginine methylation

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Arginine methylation is a ubiquitous post-translational modification. Three predominant types of arginine-guanidino methylation occur in Eukarya: mono (Rme1/MMA), symmetric (Rme2s/SDMA), and asymmetric (Rme2a/ADMA). Arginine methylation frequently occurs at sites of protein–protein and protein–nucleic acid interactions, providing specificity for binding partners and stabilization of important biological interactions in diverse cellular processes. Each methylarginine isoform—catalyzed by members of the protein arginine methyltransferase family, Type I (PRMT1-4,6,8) and Type II (PRMT5,9)—has unique downstream consequences. Methylarginines are found in ordered domains, domains of low complexity, and in intrinsically disordered regions of proteins—the latter two of which are intimately connected with biological liquid–liquid phase separation. This review highlights discoveries illuminating how arginine methylation affects genome integrity, gene transcription, mRNA splicing and mRNP biology, protein translation and stability, and phase separation. As more proteins and processes are found to be regulated by arginine methylation, its importance for understanding cellular physiology will continue to grow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Minguez P et al (2012) Deciphering a global network of functionally associated post-translational modifications. Mol Syst Biol 8:599

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Paik WK, Kim S (1968) Protein methylase. I purification and properties of the enzyme. J Biol Chem 243(9):2108–2114

    CAS  PubMed  Google Scholar 

  3. Paik WK, Kim S (1969) Enzymatic methylation of histones. Arch Biochem Biophys 134(2):632–637

    Article  CAS  PubMed  Google Scholar 

  4. Evich M et al (2016) Effect of methylation on the side-chain pKa value of arginine. Protein Sci 25(2):479–486

    Article  CAS  PubMed  Google Scholar 

  5. Fuhrmann J, Clancy KW, Thompson PR (2015) Chemical biology of protein arginine modifications in epigenetic regulation. Chem Rev 115(11):5413–5461

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Dhar S et al (2013) Loss of the major Type I arginine methyltransferase PRMT1 causes substrate scavenging by other PRMTs. Sci Rep 3:1311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Bulau P et al (2006) Quantitative assessment of arginine methylation in free versus protein-incorporated amino acids in vitro and in vivo using protein hydrolysis and high-performance liquid chromatography. Biotechniques 40(3):305–310

    Article  CAS  PubMed  Google Scholar 

  8. Morales Y et al (2016) Biochemistry and regulation of the protein arginine methyltransferases (PRMTs). Arch Biochem Biophys 590:138–152

    Article  CAS  PubMed  Google Scholar 

  9. Niewmierzycka A, Clarke S (1999) S-Adenosylmethionine-dependent methylation in Saccharomyces cerevisiae. Identification of a novel protein arginine methyltransferase. J Biol Chem 274(2):814–824

    Article  CAS  PubMed  Google Scholar 

  10. McBride AE et al (2007) Protein arginine methylation in Candida albicans: role in nuclear transport. Eukaryot Cell 6(7):1119–1129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Larsen SC et al (2016) Proteome-wide analysis of arginine monomethylation reveals widespread occurrence in human cells. Sci Signal 9(443):9

    Article  CAS  Google Scholar 

  12. Guo A et al (2014) Immunoaffinity enrichment and mass spectrometry analysis of protein methylation. Mol Cell Proteomics 13(1):372–387

    Article  CAS  PubMed  Google Scholar 

  13. Yamaguchi A, Kitajo K (2012) The effect of PRMT1-mediated arginine methylation on the subcellular localization, stress granules, and detergent-insoluble aggregates of FUS/TLS. PLoS One 7(11):e49267

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Stopa N, Krebs JE, Shechter D (2015) The PRMT5 arginine methyltransferase: many roles in development, cancer and beyond. Cell Mol Life Sci 72(11):2041–2059

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Wooderchak WL et al (2008) Substrate profiling of PRMT1 reveals amino acid sequences that extend beyond the “RGG” paradigm. Biochemistry 47(36):9456–9466

    Article  CAS  PubMed  Google Scholar 

  16. Geoghegan V et al (2015) Comprehensive identification of arginine methylation in primary T cells reveals regulatory roles in cell signalling. Nat Commun 6:6758

    Article  CAS  PubMed  Google Scholar 

  17. Nott TJ et al (2015) Phase transition of a disordered nuage protein generates environmentally responsive membraneless organelles. Mol Cell 57(5):936–947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Uversky VN (2017) Protein intrinsic disorder-based liquid-liquid phase transitions in biological systems: complex coacervates and membrane-less organelles. Adv Colloid Interface Sci 239:97–114

    Article  CAS  PubMed  Google Scholar 

  19. Uversky VN (2017) Intrinsically disordered proteins in overcrowded milieu: membrane-less organelles, phase separation, and intrinsic disorder. Curr Opin Struct Biol 44:18–30

    Article  CAS  PubMed  Google Scholar 

  20. Duncan EM, Allis CD (2011) Errors in erasure: links between histone lysine methylation removal and disease. Prog Drug Res 67:69–90

    CAS  PubMed  Google Scholar 

  21. Bicker KL, Thompson PR (2013) The protein arginine deiminases: structure, function, inhibition, and disease. Biopolymers 99(2):155–163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Chang B et al (2007) JMJD6 is a histone arginine demethylase. Science 318(5849):444–447

    Article  CAS  PubMed  Google Scholar 

  23. Walport LJ et al (2016) Arginine demethylation is catalysed by a subset of JmjC histone lysine demethylases. Nat Commun 7:11974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Liu H et al (2017) Clipping of arginine-methylated histone tails by JMJD5 and JMJD7. Proc Natl Acad Sci USA 114(37):E7717–E7726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Di Lorenzo A, Bedford MT (2011) Histone arginine methylation. FEBS Lett 585(13):2024–2031

    Article  CAS  PubMed  Google Scholar 

  26. Gayatri S, Bedford MT (2014) Readers of histone methylarginine marks. Biochim Biophys Acta 1839(8):702–710

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Strahl BD, Allis CD (2000) The language of covalent histone modifications. Nature 403(6765):41–45

    Article  CAS  PubMed  Google Scholar 

  28. Rothbart SB, Strahl BD (2014) Interpreting the language of histone and DNA modifications. Biochim Biophys Acta 1839(8):627–643

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Lee JS, Smith E, Shilatifard A (2010) The language of histone crosstalk. Cell 142(5):682–685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Taverna SD et al (2007) How chromatin-binding modules interpret histone modifications: lessons from professional pocket pickers. Nat Struct Mol Biol 14(11):1025–1040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Lee YH, Stallcup MR (2009) Minireview: protein arginine methylation of nonhistone proteins in transcriptional regulation. Mol Endocrinol 23(4):425–433

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Raposo AE, Piller SC (2018) Protein arginine methylation: an emerging regulator of the cell cycle. Cell Div 13:3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Ghaleb AM, Yang VW (2017) Krüppel-like factor 4 (KLF4): what we currently know. Gene 611:27–37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Hu D et al (2015) Interplay between arginine methylation and ubiquitylation regulates KLF4-mediated genome stability and carcinogenesis. Nat Commun 6:8419

    Article  CAS  PubMed  Google Scholar 

  35. Gamper AM et al (2012) Regulation of KLF4 turnover reveals an unexpected tissue-specific role of pVHL in tumorigenesis. Mol Cell 45(2):233–243

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Schuetz A et al (2011) The structure of the Klf4 DNA-binding domain links to self-renewal and macrophage differentiation. Cell Mol Life Sci 68(18):3121–3131

    Article  CAS  PubMed  Google Scholar 

  37. Liu Y et al (2014) Structural basis for Klf4 recognition of methylated DNA. Nucleic Acids Res 42(8):4859–4867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Yang Y, Bedford MT (2013) Protein arginine methyltransferases and cancer. Nat Rev Cancer 13(1):37–50

    Article  CAS  PubMed  Google Scholar 

  39. van Schaijik B et al (2018) Subcellular localisation of the stem cell markers OCT4, SOX2, NANOG, KLF4 and c-MYC in cancer: a review. J Clin Pathol 71(1):88–91

    Article  CAS  PubMed  Google Scholar 

  40. Ceccaldi R, Rondinelli B, D’Andrea AD (2016) Repair pathway choices and consequences at the double-strand break. Trends Cell Biol 26(1):52–64

    Article  CAS  PubMed  Google Scholar 

  41. Auclair Y, Richard S (2013) The role of arginine methylation in the DNA damage response. DNA Repair (Amst) 12(7):459–465

    Article  CAS  Google Scholar 

  42. Boisvert FM et al (2005) The GAR motif of 53BP1 is arginine methylated by PRMT1 and is necessary for 53BP1 DNA binding activity. Cell Cycle 4(12):1834–1841

    Article  CAS  PubMed  Google Scholar 

  43. Boisvert FM et al (2005) Arginine methylation of MRE11 by PRMT1 is required for DNA damage checkpoint control. Genes Dev 19(6):671–676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Yu Z et al (2012) The MRE11 GAR motif regulates DNA double-strand break processing and ATR activation. Cell Res 22(2):305–320

    Article  CAS  PubMed  Google Scholar 

  45. Guendel I et al (2010) Methylation of the tumor suppressor protein, BRCA1, influences its transcriptional cofactor function. PLoS One 5(6):e11379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Jha S, Shibata E, Dutta A (2008) Human Rvb1/Tip49 is required for the histone acetyltransferase activity of Tip60/NuA4 and for the downregulation of phosphorylation on H2AX after DNA damage. Mol Cell Biol 28(8):2690–2700

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Clarke TL et al (2017) PRMT5-Dependent Methylation of the TIP60 Coactivator RUVBL1 Is a Key Regulator of Homologous Recombination. Mol Cell 65(5):900–916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Matias PM et al (2006) Crystal structure of the human AAA + protein RuvBL1. J Biol Chem 281(50):38918–38929

    Article  CAS  PubMed  Google Scholar 

  49. Gorynia S et al (2011) Structural and functional insights into a dodecameric molecular machine - the RuvBL1/RuvBL2 complex. J Struct Biol 176(3):279–291

    Article  CAS  PubMed  Google Scholar 

  50. Krawczyk C et al (2014) Reversible Top1 cleavage complexes are stabilized strand-specifically at the ribosomal replication fork barrier and contribute to ribosomal DNA stability. Nucleic Acids Res 42(8):4985–4995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Hevener K et al (2018) Recent developments in topoisomerase-targeted cancer chemotherapy. Acta Pharm Sin B 8(6):844–861

    Article  PubMed  PubMed Central  Google Scholar 

  52. Pommier Y et al (2016) Roles of eukaryotic topoisomerases in transcription, replication and genomic stability. Nat Rev Mol Cell Biol 17(11):703–721

    Article  CAS  PubMed  Google Scholar 

  53. Interthal H et al (2005) SCAN1 mutant Tdp1 accumulates the enzyme–DNA intermediate and causes camptothecin hypersensitivity. EMBO J 24(12):2224–2233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Gao R et al (2014) Epigenetic and genetic inactivation of tyrosyl-DNA-phosphodiesterase 1 (TDP1) in human lung cancer cells from the NCI-60 panel. DNA Repair (Amst) 13:1–9

    Article  CAS  Google Scholar 

  55. Rehman I et al (2018) PRMT5-mediated arginine methylation of TDP1 for the repair of topoisomerase I covalent complexes. Nucleic Acids Res 46(11):5601–5617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Siaw GE et al (2016) DNA and RNA topoisomerase activities of Top3β are promoted by mediator protein Tudor domain-containing protein 3. Proc Natl Acad Sci USA 113(38):E5544–E5551

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Yang Y et al (2014) Arginine methylation facilitates the recruitment of TOP3B to chromatin to prevent R loop accumulation. Mol Cell 53(3):484–497

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Sollier J, Cimprich KA (2015) Breaking bad: r-loops and genome integrity. Trends Cell Biol 25(9):514–522

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Xu D et al (2013) Top3beta is an RNA topoisomerase that works with fragile X syndrome protein to promote synapse formation. Nat Neurosci 16(9):1238–1247

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Huang L et al (2018) Arginine methylation of the C-terminus RGG motif promotes TOP3B topoisomerase activity and stress granule localization. Nucleic Acids Res 46(6):3061–3074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Freitag M, Selker EU (2005) Controlling DNA methylation: many roads to one modification. Curr Opin Genet Dev 15(2):191–199

    Article  CAS  PubMed  Google Scholar 

  62. Klose RJ, Bird AP (2006) Genomic DNA methylation: the mark and its mediators. Trends Biochem Sci 31(2):89–97

    Article  CAS  PubMed  Google Scholar 

  63. Bostick M et al (2007) UHRF1 plays a role in maintaining DNA methylation in mammalian cells. Science 317(5845):1760–1764

    Article  CAS  PubMed  Google Scholar 

  64. Rothbart SB et al (2012) Association of UHRF1 with methylated H3K9 directs the maintenance of DNA methylation. Nat Struct Mol Biol 19(11):1155–1160

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Rajakumara E et al (2011) PHD finger recognition of unmodified histone H3R2 links UHRF1 to regulation of euchromatic gene expression. Mol Cell 43(2):275–284

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Veland N et al (2017) The arginine methyltransferase PRMT6 regulates DNA methylation and contributes to global DNA hypomethylation in cancer. Cell Rep 21(12):3390–3397

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Pan R et al (2018) Significant association of PRMT6 hypomethylation with colorectal cancer. J Clin Lab Anal 32(9):e22590

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Baylin SB, Jones PA (2016) Epigenetic determinants of cancer. Cold Spring Harb Perspect Biol 8:9

    Article  CAS  Google Scholar 

  69. Zhao Q et al (2009) PRMT5-mediated methylation of histone H4R3 recruits DNMT3A, coupling histone and DNA methylation in gene silencing. Nat Struct Mol Biol 16(3):304–311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Otani J et al (2009) Structural basis for recognition of H3K4 methylation status by the DNA methyltransferase 3A ATRX-DNMT3-DNMT3L domain. EMBO Rep 10(11):1235–1241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Zhang Y et al (2010) Chromatin methylation activity of Dnmt3a and Dnmt3a/3L is guided by interaction of the ADD domain with the histone H3 tail. Nucleic Acids Res 38(13):4246–4253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Migliori V et al (2012) Symmetric dimethylation of H3R2 is a newly identified histone mark that supports euchromatin maintenance. Nat Struct Mol Biol 19(2):136–144

    Article  CAS  PubMed  Google Scholar 

  73. Hsin JP, Manley JL (2012) The RNA polymerase II CTD coordinates transcription and RNA processing. Genes Dev 26(19):2119–2137

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Bowman EA, Kelly WG (2014) RNA polymerase II transcription elongation and Pol II CTD Ser2 phosphorylation: a tail of two kinases. Nucleus 5(3):224–236

    Article  PubMed  PubMed Central  Google Scholar 

  75. Shah N et al (2018) Tyrosine-1 of RNA polymerase II CTD controls global termination of gene transcription in mammals. Mol Cell 69(1):48–61

    Article  CAS  PubMed  Google Scholar 

  76. Fong N et al (2017) RNA Pol II dynamics modulate co-transcriptional chromatin modification, CTD phosphorylation, and transcriptional direction. Mol Cell 66(4):546–557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Jeronimo C, Bataille AR, Robert F (2013) The writers, readers, and functions of the RNA polymerase II C-terminal domain code. Chem Rev 113(11):8491–8522

    Article  CAS  PubMed  Google Scholar 

  78. Sims RJ 3rd et al (2011) The C-terminal domain of RNA polymerase II is modified by site-specific methylation. Science 332(6025):99–103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Zhao DY et al (2016) SMN and symmetric arginine dimethylation of RNA polymerase II C-terminal domain control termination. Nature 529(7584):48–53

    Article  CAS  PubMed  Google Scholar 

  80. Skourti-Stathaki K, Proudfoot NJ, Gromak N (2011) Human senataxin resolves RNA/DNA hybrids formed at transcriptional pause sites to promote Xrn2-dependent termination. Mol Cell 42(6):794–805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Suraweera A et al (2009) Functional role for senataxin, defective in ataxia oculomotor apraxia type 2, in transcriptional regulation. Hum Mol Genet 18(18):3384–3396

    Article  CAS  PubMed  Google Scholar 

  82. Sharma P et al (2019) Arginine citrullination at the C-terminal domain controls RNA polymerase II transcription. Mol Cell 73(1):84–96

    Article  CAS  PubMed  Google Scholar 

  83. Lai F et al (2013) Activating RNAs associate with mediator to enhance chromatin architecture and transcription. Nature 494(7438):497–501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Hsieh CL et al (2014) Enhancer RNAs participate in androgen receptor-driven looping that selectively enhances gene activation. Proc Natl Acad Sci USA 111(20):7319–7324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Papadopoulou T et al (2016) Dual role of Med12 in PRC1-dependent gene repression and ncRNA-mediated transcriptional activation. Cell Cycle 15(11):1479–1493

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Jeronimo C, Robert F (2017) The mediator complex: at the nexus of RNA polymerase II transcription. Trends Cell Biol 27(10):765–783

    Article  CAS  PubMed  Google Scholar 

  87. Harper TM, Taatjes DJ (2018) The complex structure and function of Mediator. J Biol Chem 293(36):13778–13785

    Article  CAS  PubMed  Google Scholar 

  88. Wang L et al (2015) MED12 methylation by CARM1 sensitizes human breast cancer cells to chemotherapy drugs. Sci Adv 1(9):e1500463

    Article  PubMed  PubMed Central  Google Scholar 

  89. Shishkova E et al (2017) Global mapping of CARM1 substrates defines enzyme specificity and substrate recognition. Nat Commun 8:15571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Cheng D et al (2018) CARM1 methylates MED12 to regulate its RNA-binding ability. Life Sci Alliance 1(5):e201800117

    Article  PubMed  PubMed Central  Google Scholar 

  91. Gao WW et al (2018) JMJD6 licenses ERalpha-dependent enhancer and coding gene activation by modulating the recruitment of the CARM1/MED12 co-activator complex. Mol Cell 70(2):340–357

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Nagulapalli M et al (2016) Evolution of disorder in mediator complex and its functional relevance. Nucleic Acids Res 44(4):1591–1612

    Article  PubMed  Google Scholar 

  93. Yuan CC et al (2012) Histone H3R2 symmetric dimethylation and histone H3K4 trimethylation are tightly correlated in eukaryotic genomes. Cell Rep 1(2):83–90

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Hyllus D et al (2007) PRMT6-mediated methylation of R2 in histone H3 antagonizes H3 K4 trimethylation. Genes Dev 21(24):3369–3380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Ikushima H, Miyazono K (2010) TGFbeta signalling: a complex web in cancer progression. Nat Rev Cancer 10(6):415–424

    Article  CAS  PubMed  Google Scholar 

  96. Chen H et al (2017) A TGFbeta-PRMT5-MEP50 axis regulates cancer cell invasion through histone H3 and H4 arginine methylation coupled transcriptional activation and repression. Oncogene 36(3):373–386

    Article  CAS  PubMed  Google Scholar 

  97. Ramón-Maiques S et al (2007) The plant homeodomain finger of RAG2 recognizes histone H3 methylated at both lysine-4 and arginine-2. Proc Natl Acad Sci USA 104(48):18993–18998

    Article  PubMed  PubMed Central  Google Scholar 

  98. Gao Y et al (2005) Spindlin1, a novel nuclear protein with a role in the transformation of NIH3T3 cells. Biochem Biophys Res Commun 335(2):343–350

    Article  CAS  PubMed  Google Scholar 

  99. Janecki DM et al (2018) SPIN1 is a proto-oncogene and SPIN3 is a tumor suppressor in human seminoma. Oncotarget 9(65):32466–32477

    Article  PubMed  PubMed Central  Google Scholar 

  100. Fang Z et al (2018) SPIN1 promotes tumorigenesis by blocking the uL18 (universal large ribosomal subunit protein 18)-MDM2-p53 pathway in human cancer. Elife 7:6

    Google Scholar 

  101. Yang N et al (2012) Distinct mode of methylated lysine-4 of histone H3 recognition by tandem tudor-like domains of Spindlin1. Proc Natl Acad Sci USA 109(44):17954–17959

    Article  PubMed  PubMed Central  Google Scholar 

  102. Su X et al (2014) Molecular basis underlying histone H3 lysine-arginine methylation pattern readout by Spin/Ssty repeats of Spindlin1. Genes Dev 28(6):622–636

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Wang C et al (2018) Spindlin-1 recognizes methylations of K20 and R23 of histone H4 tail. FEBS Lett 592(24):4098–4110

    Article  CAS  PubMed  Google Scholar 

  104. Saha K, Adhikary G, Eckert RL (2016) MEP50/PRMT5 reduces gene expression by histone arginine methylation and this is reversed by PKCdelta/p38delta signaling. J Invest Dermatol 136(1):214–224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Chew YC et al (2013) Protein kinase C δ increases Kruppel-like factor 4 protein, which drives involucrin gene transcription in differentiating keratinocytes. J Biol Chem 288(24):17759–17768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Fulton MD, Brown T, Zheng YG (2018) Mechanisms and inhibitors of histone arginine methylation. Chem Rec 18(12):1792–1807

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Daujat S et al (2002) Crosstalk between CARM1 methylation and CBP acetylation on histone H3. Curr Biol 12(24):2090–2097

    Article  CAS  PubMed  Google Scholar 

  108. Zhang Z et al (2017) Crosstalk between histone modifications indicates that inhibition of arginine methyltransferase CARM1 activity reverses HIV latency. Nucleic Acids Res 45(16):9348–9360

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. An W, Kim J, Roeder RG (2004) Ordered cooperative functions of PRMT1, p300, and CARM1 in transcriptional activation by p53. Cell 117(6):735–748

    Article  CAS  PubMed  Google Scholar 

  110. Rezai-Zadeh N et al (2003) Targeted recruitment of a histone H4-specific methyltransferase by the transcription factor YY1. Genes Dev 17(8):1019–1029

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Fulton MD et al (2017) Intricate effects of alpha-amino and lysine modifications on arginine methylation of the N-terminal tail of histone H4. Biochemistry 56(28):3539–3548

    Article  CAS  PubMed  Google Scholar 

  112. Singh G et al (2015) The clothes make the mRNA: past and present trends in mRNP fashion. Annu Rev Biochem 84:325–354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Blackwell E, Ceman S (2012) Arginine methylation of RNA-binding proteins regulates cell function and differentiation. Mol Reprod Dev 79(3):163–175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Yu MC (2011) The role of protein arginine methylation in mRNP dynamics. Mol Biol Int 2011:163827

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Gomes E, Shorter J (2018) The molecular language of membraneless organelles. J Biol Chem 18:7115–7127

    Google Scholar 

  116. Qamar S et al (2018) FUS phase separation is modulated by a molecular chaperone and methylation of arginine cation-pi interactions. Cell 173(3):720–734

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  117. Hofweber M et al (2018) Phase separation of FUS is suppressed by its nuclear import receptor and arginine methylation. Cell 173(3):706–719

    Article  CAS  PubMed  Google Scholar 

  118. Boeynaems S et al (2018) Protein phase separation: a new phase in cell biology. Trends Cell Biol 28(6):420–435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Hofweber M, Dormann D (2018) Friend or foe—post-translational modifications as regulators of phase separation and RNP granule dynamics. J Biol Chem 294:7137–7150

    Article  PubMed  PubMed Central  Google Scholar 

  120. Strom AR et al (2017) Phase separation drives heterochromatin domain formation. Nature 547(7662):241–245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Buchan JR (2014) mRNP granules. Assembly, function, and connections with disease. RNA Biol 11(8):1019–1030

    Article  PubMed  PubMed Central  Google Scholar 

  122. Trcek T, Lehmann R (2017) All about the RNA after all. Elife 6:5

    Article  Google Scholar 

  123. Luo Y, Na Z, Slavoff SA (2018) P-Bodies: composition, properties, and functions. Biochemistry 57(17):2424–2431

    Article  CAS  PubMed  Google Scholar 

  124. Protter DSW, Parker R (2016) Principles and properties of stress granules. Trends Cell Biol 26(9):668–679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Aguzzi A, Altmeyer M (2016) Phase separation: linking cellular compartmentalization to disease. Trends Cell Biol 26(7):547–558

    Article  CAS  PubMed  Google Scholar 

  126. Ryan VH et al (2018) Mechanistic view of hnRNPA2 low-complexity domain structure, interactions, and phase separation altered by mutation and arginine methylation. Mol Cell 69(3):465–479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Blechingberg J et al (2012) Gene expression responses to FUS, EWS, and TAF15 reduction and stress granule sequestration analyses identifies FET-protein non-redundant functions. PLoS One 7(9):e46251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Pellizzoni L, Yong J, Dreyfuss G (2002) Essential role for the SMN complex in the specificity of snRNP assembly. Science 298(5599):1775–1779

    Article  CAS  PubMed  Google Scholar 

  129. Singh RN et al (2017) Diverse role of survival motor neuron protein. Biochim Biophys Acta Gene Regul Mech 1860(3):299–315

    Article  CAS  PubMed  Google Scholar 

  130. Friesen WJ et al (2001) The methylosome, a 20S complex containing JBP1 and pICln, produces dimethylarginine-modified Sm proteins. Mol Cell Biol 21(24):8289–8300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Cote J, Richard S (2005) Tudor domains bind symmetrical dimethylated arginines. J Biol Chem 280(31):28476–28483

    Article  CAS  PubMed  Google Scholar 

  132. Bezzi M et al (2013) Regulation of constitutive and alternative splicing by PRMT5 reveals a role for Mdm4 pre-mRNA in sensing defects in the spliceosomal machinery. Genes Dev 27(17):1903–1916

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Hamard PJ et al (2018) PRMT5 regulates DNA repair by controlling the alternative splicing of histone-modifying enzymes. Cell Rep 24(10):2643–2657

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Tan DQ et al (2019) PRMT5 modulates splicing for genome integrity and preserves proteostasis of hematopoietic stem cells. Cell Rep 26(9):2316–2328

    Article  CAS  PubMed  Google Scholar 

  135. Akpinar M et al (2017) TDRD6 mediates early steps of spliceosome maturation in primary spermatocytes. PLoS Genet 13(3):e1006660

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Vasileva A et al (2009) Tdrd6 is required for spermiogenesis, chromatoid body architecture, and regulation of miRNA expression. Curr Biol 19(8):630–639

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  137. Braun CJ et al (2017) Coordinated splicing of regulatory detained introns within oncogenic transcripts creates an exploitable vulnerability in malignant glioma. Cancer Cell 32(4):411–426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Tan EM, Kunkel HG (1966) Characteristics of a soluble nuclear antigen precipitating with sera of patients with systemic lupus erythematosus. J Immunol 96(3):464–471

    CAS  PubMed  Google Scholar 

  139. Lerner MR, Steitz JA (1979) Antibodies to small nuclear RNAs complexed with proteins are produced by patients with systemic lupus erythematosus. Proc Natl Acad Sci USA 76(11):5495–5499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  140. Luhrmann R (1990) Functions of U-snRNPs. Mol Biol Rep 14(2–3):183–192

    Article  CAS  PubMed  Google Scholar 

  141. Friesen WJ, Dreyfuss G (2000) Specific sequences of the Sm and Sm-like (Lsm) proteins mediate their interaction with the spinal muscular atrophy disease gene product (SMN). J Biol Chem 275(34):26370–26375

    Article  CAS  PubMed  Google Scholar 

  142. Brahms H et al (2000) The C-terminal RG dipeptide repeats of the spliceosomal Sm proteins D1 and D3 contain symmetrical dimethylarginines, which form a major B-cell epitope for anti-Sm autoantibodies. J Biol Chem 275(22):17122–17129

    Article  CAS  PubMed  Google Scholar 

  143. Brahms H et al (2001) Symmetrical dimethylation of arginine residues in spliceosomal Sm protein B/B’ and the Sm-like protein LSm4, and their interaction with the SMN protein. RNA 7(11):1531–1542

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  144. Mahler M, Fritzler MJ, Bluthner M (2005) Identification of a SmD3 epitope with a single symmetrical dimethylation of an arginine residue as a specific target of a subpopulation of anti-Sm antibodies. Arthritis Res Ther 7(1):R19–R29

    Article  CAS  PubMed  Google Scholar 

  145. Miranda TB et al (2004) Spliceosome Sm proteins D1, D3, and B/B’ are asymmetrically dimethylated at arginine residues in the nucleus. Biochem Biophys Res Commun 323(2):382–387

    Article  CAS  PubMed  Google Scholar 

  146. Tripsianes K et al (2011) Structural basis for dimethylarginine recognition by the Tudor domains of human SMN and SPF30 proteins. Nat Struct Mol Biol 18(12):1414–1420

    Article  CAS  PubMed  Google Scholar 

  147. Dormann D et al (2012) Arginine methylation next to the PY-NLS modulates Transportin binding and nuclear import of FUS. EMBO J 31(22):4258–4275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Araya N et al (2005) Transcriptional down-regulation through nuclear exclusion of EWS methylated by PRMT1. Biochem Biophys Res Commun 329(2):653–660

    Article  CAS  PubMed  Google Scholar 

  149. Jobert L, Argentini M, Tora L (2009) PRMT1 mediated methylation of TAF15 is required for its positive gene regulatory function. Exp Cell Res 315(7):1273–1286

    Article  CAS  PubMed  Google Scholar 

  150. Friend LR et al (2013) Arginine methylation of hnRNP A2 does not directly govern its subcellular localization. PLoS One 8(9):e75669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Rogelj B et al (2012) Widespread binding of FUS along nascent RNA regulates alternative splicing in the brain. Sci Rep 2:603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Lee YJ, Wang Q, Rio DC (2018) Coordinate regulation of alternative pre-mRNA splicing events by the human RNA chaperone proteins hnRNPA1 and DDX5. Genes Dev 32(15–16):1060–1074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  153. Wall ML, Lewis SM (2017) Methylarginines within the RGG-Motif Region of hnRNP A1 affect its IRES trans-acting factor activity and are required for hnRNP A1 stress granule localization and formation. J Mol Biol 429(2):295–307

    Article  CAS  PubMed  Google Scholar 

  154. Chook YM, Süel KE (2011) Nuclear import by karyopherin-βs: recognition and inhibition. Biochim Biophys Acta 1813(9):1593–1606

    Article  CAS  PubMed  Google Scholar 

  155. Chau BL et al (2016) RGG boxes within the TET/FET family of RNA-binding proteins are functionally distinct. Transcription 7(4):141–151

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Svetoni F, Frisone P, Paronetto MP (2016) Role of FET proteins in neurodegenerative disorders. RNA Biol 13(11):1089–1102

    Article  PubMed  PubMed Central  Google Scholar 

  157. Kamemura K (2017) O-GlcNAc glycosylation stoichiometry of the FET protein family: only EWS is glycosylated with a high stoichiometry. Biosci Biotechnol Biochem 81(3):541–546

    Article  CAS  PubMed  Google Scholar 

  158. Rhoads SN et al (2018) The role of post-translational modifications on prion-like aggregation and liquid-phase separation of FUS. Int J Mol Sci 19:3

    Article  CAS  Google Scholar 

  159. Dichmann DS, Harland RM (2012) fus/TLS orchestrates splicing of developmental regulators during gastrulation. Genes Dev 26(12):1351–1363

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Rappsilber J et al (2003) Detection of arginine dimethylated peptides by parallel precursor ion scanning mass spectrometry in positive ion mode. Anal Chem 75(13):3107–3114

    Article  CAS  PubMed  Google Scholar 

  161. Scaramuzzino C et al (2013) Protein arginine methyltransferase 1 and 8 interact with FUS to modify its sub-cellular distribution and toxicity in vitro and in vivo. PLoS One 8(4):e61576

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  162. Tradewell ML et al (2012) Arginine methylation by PRMT1 regulates nuclear-cytoplasmic localization and toxicity of FUS/TLS harbouring ALS-linked mutations. Hum Mol Genet 21(1):136–149

    Article  CAS  PubMed  Google Scholar 

  163. Suarez-Calvet M et al (2016) Monomethylated and unmethylated FUS exhibit increased binding to Transportin and distinguish FTLD-FUS from ALS-FUS. Acta Neuropathol 131(4):587–604

    Article  CAS  PubMed  Google Scholar 

  164. Deng H, Gao K, Jankovic J (2014) The role of FUS gene variants in neurodegenerative diseases. Nat Rev Neurol 10(6):337–348

    Article  CAS  PubMed  Google Scholar 

  165. Molliex A et al (2015) Phase separation by low complexity domains promotes stress granule assembly and drives pathological fibrillization. Cell 163(1):123–133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Burke KA et al (2015) Residue-by-residue view of in vitro FUS granules that bind the C-terminal domain of RNA polymerase II. Mol Cell 60(2):231–241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  167. Geuens T, Bouhy D, Timmerman V (2016) The hnRNP family: insights into their role in health and disease. Hum Genet 135(8):851–867

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  168. Lemieux B et al (2015) A Function for the hnRNP A1/A2 Proteins in Transcription Elongation. PLoS One 10(5):e0126654

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  169. Purice MD, Taylor JP (2018) Linking hnRNP Function to ALS and FTD Pathology. Front Neurosci 12:326

    Article  PubMed  PubMed Central  Google Scholar 

  170. Boffa LC et al (1977) Distribution of NG, NG,-dimethylarginine in nuclear protein fractions. Biochem Biophys Res Commun 74(3):969–976

    Article  CAS  PubMed  Google Scholar 

  171. Rajpurohit R et al (1994) Enzymatic methylation of recombinant heterogeneous nuclear RNP protein A1. Dual substrate specificity for S-adenosylmethionine histone-arginine N-methyltransferase. J Biol Chem 269(2):1075–1082

    CAS  PubMed  Google Scholar 

  172. Gao G, Dhar S, Bedford MT (2017) PRMT5 regulates IRES-dependent translation via methylation of hnRNP A1. Nucleic Acids Res 45(8):4359–4369

    CAS  PubMed  PubMed Central  Google Scholar 

  173. Guil S, Long JC, Caceres JF (2006) hnRNP A1 relocalization to the stress granules reflects a role in the stress response. Mol Cell Biol 26(15):5744–5758

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  174. Hsu MC et al (2018) Protein arginine methyltransferase 3 enhances chemoresistance in pancreatic cancer by methylating hnRNPA1 to increase ABCG2 expression. Cancers (Basel) 11:1

    Article  Google Scholar 

  175. Pan MR et al (2016) The histone methyltransferase G9a as a therapeutic target to override gemcitabine resistance in pancreatic cancer. Oncotarget 7(38):61136–61151

    Article  PubMed  PubMed Central  Google Scholar 

  176. Ghosh M, Singh M (2018) RGG-box in hnRNPA1 specifically recognizes the telomere G-quadruplex DNA and enhances the G-quadruplex unfolding ability of UP1 domain. Nucleic Acids Res 46(19):10246–10261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  177. Zhang QS et al (2006) hnRNP A1 associates with telomere ends and stimulates telomerase activity. RNA 12(6):1116–1128

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Ong SE, Mittler G, Mann M (2004) Identifying and quantifying in vivo methylation sites by heavy methyl SILAC. Nat Methods 1(2):119–126

    Article  CAS  PubMed  Google Scholar 

  179. Nichols RC et al (2000) The RGG domain in hnRNP A2 affects subcellular localization. Exp Cell Res 256(2):522–532

    Article  CAS  PubMed  Google Scholar 

  180. Kim HJ et al (2013) Mutations in prion-like domains in hnRNPA2B1 and hnRNPA1 cause multisystem proteinopathy and ALS. Nature 495(7442):467–473

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  181. Dammer EB et al (2012) Coaggregation of RNA-binding proteins in a model of TDP-43 proteinopathy with selective RGG motif methylation and a role for RRM1 ubiquitination. PLoS One 7(6):e38658

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  182. Patel A et al (2015) A liquid-to-solid phase transition of the ALS protein FUS accelerated by disease mutation. Cell 162(5):1066–1077

    Article  CAS  PubMed  Google Scholar 

  183. Tanikawa C et al (2018) Citrullination of RGG motifs in FET proteins by PAD4 regulates protein aggregation and ALS susceptibility. Cell Rep 22(6):1473–1483

    Article  CAS  PubMed  Google Scholar 

  184. Parte SC et al (2017) Ovarian cancer stem cells: unraveling a germline connection. Stem Cells Dev 26(24):1781–1803

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  185. Kim KH et al (2014) DDX4 (DEAD box polypeptide 4) colocalizes with cancer stem cell marker CD133 in ovarian cancers. Biochem Biophys Res Commun 447(2):315–322

    Article  CAS  PubMed  Google Scholar 

  186. Lin Y et al (2015) Formation and maturation of phase-separated liquid droplets by rna-binding proteins. Mol Cell 60(2):208–219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  187. Rouhana L et al (2012) PRMT5 and the role of symmetrical dimethylarginine in chromatoid bodies of planarian stem cells. Development 139(6):1083–1094

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  188. Kirino Y et al (2010) Arginine methylation of vasa protein is conserved across phyla. J Biol Chem 285(11):8148–8154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  189. Beggs JD (2005) Lsm proteins and RNA processing. Biochem Soc Trans 33(Pt 3):433–438

    Article  CAS  PubMed  Google Scholar 

  190. Sharif H, Conti E (2013) Architecture of the Lsm1-7-Pat1 complex: a conserved assembly in eukaryotic mRNA turnover. Cell Rep 5(2):283–291

    Article  CAS  PubMed  Google Scholar 

  191. Arribas-Layton M et al (2016) The C-terminal RGG domain of human Lsm4 promotes processing body formation stimulated by arginine dimethylation. Mol Cell Biol 36(17):2226–2235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  192. Kato M et al (2012) Cell-free formation of RNA granules: low complexity sequence domains form dynamic fibers within hydrogels. Cell 149(4):753–767

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  193. Goulet I et al (2008) TDRD3, a novel tudor domain-containing protein, localizes to cytoplasmic stress granules. Hum Mol Genet 17(19):3055–3074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  194. Bikkavilli RK, Malbon CC (2011) Arginine methylation of G3BP1 in response to Wnt3a regulates beta-catenin mRNA. J Cell Sci 124(Pt 13):2310–2320

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  195. Tourrière H et al (2003) The RasGAP-associated endoribonuclease G3BP assembles stress granules. J Cell Biol 160(6):823–831

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  196. Aulas A et al (2015) G3BP1 promotes stress-induced RNA granule interactions to preserve polyadenylated mRNA. J Cell Biol 209(1):73–84

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Tsai WC et al (2016) Arginine demethylation of G3BP1 promotes stress granule assembly. J Biol Chem 291(43):22671–22685

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Tsai WC et al (2017) Histone arginine demethylase JMJD6 is linked to stress granule assembly through demethylation of the stress granule-nucleating protein G3BP1. J Biol Chem 292(46):18886–18896

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  199. Inoue M et al (2018) Arginine methylation controls the strength of gammac-family cytokine signaling in T cell maintenance. Nat Immunol 19(11):1265–1276

    Article  CAS  PubMed  Google Scholar 

  200. Park JY, Park JH (2018) Remote control of gammac expression by arginine methylation. Nat Immunol 19(11):1152–1154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Lu L, Barbi J, Pan F (2017) The regulation of immune tolerance by FOXP3. Nat Rev Immunol 17(11):703–717

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Kagoya Y et al (2018) Arginine methylation of FOXP3 is crucial for the suppressive function of regulatory T cells. J Autoimmun 97:10–21

    Article  CAS  PubMed  Google Scholar 

  203. Litzler LC et al (2019) PRMT5 is essential for B cell development and germinal center dynamics. Nat Commun 10(1):22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  204. Hou W et al (2018) Arginine methylation by PRMT2 controls the functions of the actin nucleator Cobl. Dev Cell 45(2):262–275

    Article  CAS  PubMed  Google Scholar 

  205. Jiao Y et al (2014) Mutagenetic and electron microscopy analysis of actin filament severing by Cordon-Bleu, a WH2 domain protein. Cytoskeleton (Hoboken) 71(3):170–183

    Article  CAS  Google Scholar 

  206. Warburg O (1956) On the origin of cancer cells. Science 123(3191):309–314

    Article  CAS  PubMed  Google Scholar 

  207. Yu L et al (2017) The glycolytic switch in tumors: how many players are involved? J Cancer 8(17):3430–3440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Liu K et al (2017) Glyceraldehyde-3-phosphate dehydrogenase promotes cancer growth and metastasis through upregulation of SNAIL expression. Int J Oncol 50(1):252–262

    Article  CAS  PubMed  Google Scholar 

  209. Zhong XY et al (2018) CARM1 methylates GAPDH to regulate glucose metabolism and is suppressed in liver cancer. Cell Rep 24(12):3207–3223

    Article  CAS  PubMed  Google Scholar 

  210. Singh CK et al (2018) The role of sirtuins in antioxidant and redox signaling. Antioxid Redox Signal 28(8):643–661

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  211. Yan WW et al (2018) Arginine methylation of SIRT7 couples glucose sensing with mitochondria biogenesis. EMBO Rep 19:12

    Google Scholar 

  212. Mohrin M et al (2015) Stem cell aging. A mitochondrial UPR-mediated metabolic checkpoint regulates hematopoietic stem cell aging. Science 347(6228):1374–1377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  213. Friedrich S et al (2016) Arginine methylation enhances the RNA chaperone activity of the West Nile virus host factor AUF1 p45. RNA 22(10):1574–1591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  214. Strahan RC et al (2017) KSHV encoded ORF59 modulates histone arginine methylation of the viral genome to promote viral reactivation. PLoS Pathog 13(7):e1006482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  215. Borysova L, Burdyga T (2015) Evidence that NO/cGMP/PKG signalling cascade mediates endothelium dependent inhibition of IP3R mediated Ca2+ oscillations in myocytes and pericytes of ureteric microvascular network in situ. Cell Calcium 58(6):535–540

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  216. Matsuoka H et al (1997) Asymmetrical dimethylarginine, an endogenous nitric oxide synthase inhibitor, in experimental hypertension. Hypertension 29(1 Pt 2):242–247

    Article  CAS  PubMed  Google Scholar 

  217. Di Franco M et al (2018) Asymmetric dimethyl arginine as a biomarker of atherosclerosis in rheumatoid arthritis. Mediators Inflamm 2018:3897295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  218. Hnisz D et al (2017) A phase separation model for transcriptional control. Cell 169(1):13–23

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  219. Boija A et al (2018) Transcription factors activate genes through the phase-separation capacity of their activation domains. Cell 175(7):1842–1855

    Article  CAS  PubMed  Google Scholar 

  220. Sabari BR et al (2018) Coactivator condensation at super-enhancers links phase separation and gene control. Science 361:6400

    Article  CAS  Google Scholar 

  221. Boehning M et al (2018) RNA polymerase II clustering through carboxy-terminal domain phase separation. Nat Struct Mol Biol 25(9):833–840

    Article  CAS  PubMed  Google Scholar 

  222. Mowen KA et al (2001) Arginine methylation of STAT1 modulates IFNalpha/beta-induced transcription. Cell 104(5):731–741

    Article  CAS  PubMed  Google Scholar 

  223. Zheng S et al (2013) Arginine methylation-dependent reader-writer interplay governs growth control by E2F-1. Mol Cell 52(1):37–51

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  224. Girardot M et al (2014) PRMT5-mediated histone H4 arginine-3 symmetrical dimethylation marks chromatin at G + C-rich regions of the mouse genome. Nucleic Acids Res 42(1):235–248

    Article  CAS  PubMed  Google Scholar 

  225. Guccione E et al (2007) Methylation of histone H3R2 by PRMT6 and H3K4 by an MLL complex are mutually exclusive. Nature 449(7164):933–937

    Article  CAS  PubMed  Google Scholar 

  226. Karkhanis V et al (2012) Protein arginine methyltransferase 7 regulates cellular response to DNA damage by methylating promoter histones H2A and H4 of the polymerase delta catalytic subunit gene, POLD1. J Biol Chem 287(35):29801–29814

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  227. Waldmann T et al (2011) Methylation of H2AR29 is a novel repressive PRMT6 target. Epigenet Chromatin 4:11

    Article  CAS  Google Scholar 

  228. Tan M et al (2011) Identification of 67 histone marks and histone lysine crotonylation as a new type of histone modification. Cell 146(6):1016–1028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  229. Cosgrove MS, Boeke JD, Wolberger C (2004) Regulated nucleosome mobility and the histone code. Nat Struct Mol Biol 11(11):1037–1043

    Article  CAS  PubMed  Google Scholar 

  230. Feng Y et al (2013) Mammalian protein arginine methyltransferase 7 (PRMT7) specifically targets RXR sites in lysine- and arginine-rich regions. J Biol Chem 288(52):37010–37025

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  231. Dong F et al (2018) PRMT2 links histone H3R8 asymmetric dimethylation to oncogenic activation and tumorigenesis of glioblastoma. Nat Commun 9(1):4552

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  232. Pal S et al (2004) Human SWI/SNF-associated PRMT5 methylates histone H3 arginine 8 and negatively regulates expression of ST7 and NM23 tumor suppressor genes. Mol Cell Biol 24(21):9630–9645

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  233. Frietze S et al (2008) CARM1 regulates estrogen-stimulated breast cancer growth through up-regulation of E2F1. Cancer Res 68(1):301–306

    Article  CAS  PubMed  Google Scholar 

  234. Jacques SL et al (2016) CARM1 preferentially methylates H3R17 over H3R26 through a random kinetic mechanism. Biochemistry 55(11):1635–1644

    Article  CAS  PubMed  Google Scholar 

  235. Casadio F et al (2013) H3R42me2a is a histone modification with positive transcriptional effects. Proc Natl Acad Sci USA 110(37):14894–14899

    Article  PubMed  PubMed Central  Google Scholar 

  236. Strahl BD et al (2001) Methylation of histone H4 at arginine 3 occurs in vivo and is mediated by the nuclear receptor coactivator PRMT1. Curr Biol 11(12):996–1000

    Article  CAS  PubMed  Google Scholar 

  237. Li QQ et al (2017) Proteomic analysis of proteome and histone post-translational modifications in heat shock protein 90 inhibition-mediated bladder cancer therapeutics. Sci Rep 7(1):201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  238. Jansson M et al (2008) Arginine methylation regulates the p53 response. Nat Cell Biol 10(12):1431–1439

    Article  CAS  PubMed  Google Scholar 

  239. Meister G et al (2001) Methylation of Sm proteins by a complex containing PRMT5 and the putative U snRNP assembly factor pICln. Curr Biol 11(24):1990–1994

    Article  CAS  PubMed  Google Scholar 

  240. Belyanskaya LL, Gehrig PM, Gehring H (2001) Exposure on cell surface and extensive arginine methylation of ewing sarcoma (EWS) protein. J Biol Chem 276(22):18681–18687

    Article  CAS  PubMed  Google Scholar 

  241. Albrecht LV et al (2018) Arginine methylation is required for canonical Wnt signaling and endolysosomal trafficking. Proc Natl Acad Sci U S A 115(23):E5317–E5325

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  242. Xu J et al (2013) Arginine methylation initiates BMP-induced smad signaling. Mol Cell 51(1):5–19

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  243. Katsuno Y et al (2018) Arginine methylation of SMAD7 by PRMT1 in TGF-beta-induced epithelial-mesenchymal transition and epithelial stem-cell generation. J Biol Chem 293(34):13059–13072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  244. Cho JH et al (2012) Arginine methylation-dependent regulation of ASK1 signaling by PRMT1. Cell Death Differ 19(5):859–870

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank all the investigators who contributed work we cited, and those whom we were unable to include due to space limitations. Our work was supported by The SAS Foundation for Cancer Research (HHS-0007-16SF), The American Lung Association (LCD-564723), and NIH Grant R01GM108646 (to D.S.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Shechter.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lorton, B.M., Shechter, D. Cellular consequences of arginine methylation. Cell. Mol. Life Sci. 76, 2933–2956 (2019). https://doi.org/10.1007/s00018-019-03140-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-019-03140-2

Keywords

Navigation