Skip to main content

Advertisement

Log in

Diversity of intrinsically photosensitive retinal ganglion cells: circuits and functions

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

The melanopsin-expressing, intrinsically photosensitive retinal ganglion cells (ipRGCs) are a relatively recently discovered class of atypical ganglion cell photoreceptor. These ipRGCs are a morphologically and physiologically heterogeneous population that project widely throughout the brain and mediate a wide array of visual functions ranging from photoentrainment of our circadian rhythms, to driving the pupillary light reflex to improve visual function, to modulating our mood, alertness, learning, sleep/wakefulness, regulation of body temperature, and even our visual perception. The presence of melanopsin as a unique molecular signature of ipRGCs has allowed for the development of a vast array of molecular and genetic tools to study ipRGC circuits. Given the emerging complexity of this system, this review will provide an overview of the genetic tools and methods used to study ipRGCs, how these tools have been used to dissect their role in a variety of visual circuits and behaviors in mice, and identify important directions for future study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AAV:

Adeno-associated virus

aDTA:

Attenuated version of the diphtheria toxin

AH:

Anterior hypothalamus

AP:

Alkaline phosphatase

BST:

Bed nucleus of the stria terminalis

CNO:

Clozapine N-oxide

cOPN:

Olivary pretectal nucleus core

CTB:

Cholera toxin B subunit

dLGN:

Dorsal lateral geniculate nucleus

DREADDs:

Designer receptors exclusively activated by designer drugs

DTA:

Diphtheria toxin

GABA:

Gamma-aminobutyric acid

GFP:

Green fluorescent protein

iDTR:

Inducible diphtheria toxin receptor

IGL:

Intergeniculate leaflet

IPL:

Inner plexiform layer

iPLR:

Intrinsic pupillary light reflex

ipRGC:

Intrinsically photosensitive retinal ganglion cell

LH:

Lateral hypothalamic area

LHb:

Lateral habenula

MA:

Medial amygdaloid nucleus

PACAP:

Pituitary adenylate cyclase-activating polypeptide

PAG:

Periaqueductal gray

PDE:

Phosphodiesterase

PHb:

Perihabenular nucleus

PLC:

Phospholipase C

PLR:

Pupillary light reflex

pSON:

Peri-supraoptic nucleus

R26:

Rosa26

RGC:

Retinal ganglion cell

SC:

Superior colliculus

SCN:

Suprachiasmatic nucleus

sOPN:

Olivary pretectal nucleus shell

SPZ:

Subparaventricular zone

TRPC:

Transient receptor potential channels

vLGN:

Ventral lateral geniculate nucleus

VLPO:

Ventral lateral preoptic area

X-gal:

5-Bromo- 4-chloro-3-indolyl-b-D-galactopyranoside

References

  1. Berson DM, Dunn FA, Takao M (2002) Phototransduction by retinal ganglion cells that set the circadian clock. Science 295(5557):1070–1073. https://doi.org/10.1126/science.1067262

    Article  CAS  PubMed  Google Scholar 

  2. Hattar S, Liao HW, Takao M, Berson DM, Yau KW (2002) Melanopsin-containing retinal ganglion cells: architecture, projections, and intrinsic photosensitivity. Science 295(5557):1065–1070. https://doi.org/10.1126/science.1069609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Altimus CM, Guler AD, Villa KL, McNeill DS, Legates TA, Hattar S (2008) Rods-cones and melanopsin detect light and dark to modulate sleep independent of image formation. Proc Natl Acad Sci USA 105(50):19998–20003. https://doi.org/10.1073/pnas.0808312105

    Article  PubMed  Google Scholar 

  4. LeGates TA, Fernandez DC, Hattar S (2014) Light as a central modulator of circadian rhythms, sleep and affect. Nat Rev Neurosci 15(7):443–454. https://doi.org/10.1038/nrn3743

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Schmidt TM, Alam NM, Chen S, Kofuji P, Li W, Prusky GT, Hattar S (2014) A role for melanopsin in alpha retinal ganglion cells and contrast detection. Neuron 82(4):781–788. https://doi.org/10.1016/j.neuron.2014.03.022

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Schmidt TM, Kofuji P (2009) Functional and morphological differences among intrinsically photosensitive retinal ganglion cells. J Neurosci 29(2):476–482. https://doi.org/10.1523/JNEUROSCI.4117-08.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Ecker JL, Dumitrescu ON, Wong KY, Alam NM, Chen SK, LeGates T, Renna JM, Prusky GT, Berson DM, Hattar S (2010) Melanopsin-expressing retinal ganglion-cell photoreceptors: cellular diversity and role in pattern vision. Neuron 67(1):49–60. https://doi.org/10.1016/j.neuron.2010.05.023

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Viney TJ, Balint K, Hillier D, Siegert S, Boldogkoi Z, Enquist LW, Meister M, Cepko CL, Roska B (2007) Local retinal circuits of melanopsin-containing ganglion cells identified by transsynaptic viral tracing. Curr Biol 17(11):981–988. https://doi.org/10.1016/j.cub.2007.04.058

    Article  CAS  PubMed  Google Scholar 

  9. Quattrochi LE, Stabio ME, Kim I, Ilardi MC, Michelle Fogerson P, Leyrer ML, Berson DM (2019) The M6 cell: a small-field bistratified photosensitive retinal ganglion cell. J Comp Neurol 527(1):297–311. https://doi.org/10.1002/cne.24556

    Article  CAS  PubMed  Google Scholar 

  10. Zhao X, Stafford BK, Godin AL, King WM, Wong KY (2014) Photoresponse diversity among the five types of intrinsically photosensitive retinal ganglion cells. J Physiol 592(7):1619–1636. https://doi.org/10.1113/jphysiol.2013.262782

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Boycott BB, Wassle H (1974) The morphological types of ganglion cells of the domestic cat's retina. J Physiol 240(2):397–419. https://doi.org/10.1113/jphysiol.1974.sp010616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Peichl L, Buhl EH, Boycott BB (1987) Alpha ganglion cells in the rabbit retina. J Comp Neurol 263(1):25–41. https://doi.org/10.1002/cne.902630103

    Article  CAS  PubMed  Google Scholar 

  13. Huxlin KR, Goodchild AK (1997) Retinal ganglion cells in the albino rat: revised morphological classification. J Comp Neurol 385(2):309–323

    Article  CAS  Google Scholar 

  14. Berson DM, Isayama T, Pu M (1999) The Eta ganglion cell type of cat retina. J Comp Neurol 408(2):204–219

    Article  CAS  Google Scholar 

  15. Sun W, Deng Q, Levick WR, He S (2006) ON direction-selective ganglion cells in the mouse retina. J Physiol 576(Pt 1):197–202. https://doi.org/10.1113/jphysiol.2006.115857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Li JY, Schmidt TM (2018) Divergent projection patterns of M1 ipRGC subtypes. J Comp Neurol 526(13):2010–2018. https://doi.org/10.1002/cne.24469

    Article  PubMed  PubMed Central  Google Scholar 

  17. Hattar S, Kumar M, Park A, Tong P, Tung J, Yau KW, Berson DM (2006) Central projections of melanopsin-expressing retinal ganglion cells in the mouse. J Comp Neurol 497(3):326–349. https://doi.org/10.1002/cne.20970

    Article  PubMed  PubMed Central  Google Scholar 

  18. Baver SB, Pickard GE, Sollars PJ, Pickard GE (2008) Two types of melanopsin retinal ganglion cell differentially innervate the hypothalamic suprachiasmatic nucleus and the olivary pretectal nucleus. Eur J Neurosci 27(7):1763–1770. https://doi.org/10.1111/j.1460-9568.2008.06149.x

    Article  PubMed  Google Scholar 

  19. Guler AD, Ecker JL, Lall GS, Haq S, Altimus CM, Liao HW, Barnard AR, Cahill H, Badea TC, Zhao H, Hankins MW, Berson DM, Lucas RJ, Yau KW, Hattar S (2008) Melanopsin cells are the principal conduits for rod-cone input to non-image-forming vision. Nature 453(7191):102–105. https://doi.org/10.1038/nature06829

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Estevez ME, Fogerson PM, Ilardi MC, Borghuis BG, Chan E, Weng S, Auferkorte ON, Demb JB, Berson DM (2012) Form and function of the M4 cell, an intrinsically photosensitive retinal ganglion cell type contributing to geniculocortical vision. J Neurosci 32(39):13608–13620. https://doi.org/10.1523/JNEUROSCI.1422-12.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Boudard DL, Mendoza J, Hicks D (2009) Loss of photic entrainment at low illuminances in rats with acute photoreceptor degeneration. Eur J Neurosci 30(8):1527–1536. https://doi.org/10.1111/j.1460-9568.2009.06935.x

    Article  PubMed  Google Scholar 

  22. Li RS, Chen BY, Tay DK, Chan HH, Pu ML, So KF (2006) Melanopsin-expressing retinal ganglion cells are more injury-resistant in a chronic ocular hypertension model. Invest Ophthalmol Vis Sci 47(7):2951–2958. https://doi.org/10.1167/iovs.05-1295

    Article  PubMed  Google Scholar 

  23. Ostergaard J, Hannibal J, Fahrenkrug J (2007) Synaptic contact between melanopsin-containing retinal ganglion cells and rod bipolar cells. Invest Ophthalmol Vis Sci 48(8):3812–3820. https://doi.org/10.1167/iovs.06-1322

    Article  PubMed  Google Scholar 

  24. Warren EJ, Allen CN, Brown RL, Robinson DW (2006) The light-activated signaling pathway in SCN-projecting rat retinal ganglion cells. Eur J Neurosci 23(9):2477–2487. https://doi.org/10.1111/j.1460-9568.2006.04777.x

    Article  PubMed  PubMed Central  Google Scholar 

  25. Reifler AN, Chervenak AP, Dolikian ME, Benenati BA, Meyers BS, Demertzis ZD, Lynch AM, Li BY, Wachter RD, Abufarha FS, Dulka EA, Pack W, Zhao X, Wong KY (2015) The rat retina has five types of ganglion-cell photoreceptors. Exp Eye Res 130:17–28. https://doi.org/10.1016/j.exer.2014.11.010

    Article  CAS  PubMed  Google Scholar 

  26. Engelund A, Fahrenkrug J, Harrison A, Hannibal J (2010) Vesicular glutamate transporter 2 (VGLUT2) is co-stored with PACAP in projections from the rat melanopsin-containing retinal ganglion cells. Cell Tissue Res 340(2):243–255. https://doi.org/10.1007/s00441-010-0950-3

    Article  CAS  PubMed  Google Scholar 

  27. Hannibal J, Georg B, Fahrenkrug J (2013) Differential expression of melanopsin mRNA and protein in Brown Norwegian rats. Exp Eye Res 106:55–63. https://doi.org/10.1016/j.exer.2012.11.006

    Article  CAS  PubMed  Google Scholar 

  28. Ingham ES, Gunhan E, Fuller PM, Fuller CA (2009) Immunotoxin-induced ablation of melanopsin retinal ganglion cells in a non-murine mammalian model. J Comp Neurol 516(2):125–140. https://doi.org/10.1002/cne.22103

    Article  CAS  PubMed  Google Scholar 

  29. Esquiva G, Lax P, Cuenca N (2013) Impairment of intrinsically photosensitive retinal ganglion cells associated with late stages of retinal degeneration. Invest Ophthalmol Vis Sci 54(7):4605–4618. https://doi.org/10.1167/iovs.13-12120

    Article  PubMed  Google Scholar 

  30. Dacey DM, Liao HW, Peterson BB, Robinson FR, Smith VC, Pokorny J, Yau KW, Gamlin PD (2005) Melanopsin-expressing ganglion cells in primate retina signal colour and irradiance and project to the LGN. Nature 433(7027):749–754. https://doi.org/10.1038/nature03387

    Article  CAS  PubMed  Google Scholar 

  31. Jusuf PR, Lee SC, Hannibal J, Grunert U (2007) Characterization and synaptic connectivity of melanopsin-containing ganglion cells in the primate retina. Eur J Neurosci 26(10):2906–2921. https://doi.org/10.1111/j.1460-9568.2007.05924.x

    Article  PubMed  Google Scholar 

  32. Hannibal J, Christiansen AT, Heegaard S, Fahrenkrug J, Kiilgaard JF (2017) Melanopsin expressing human retinal ganglion cells: subtypes, distribution, and intraretinal connectivity. J Comp Neurol 525(8):1934–1961. https://doi.org/10.1002/cne.24181

    Article  CAS  PubMed  Google Scholar 

  33. Mure LS, Vinberg F, Hanneken A, Panda S (2019) Functional diversity of human intrinsically photosensitive retinal ganglion cells. Science 366(6470):1251–1255. https://doi.org/10.1126/science.aaz0898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Gamlin PD, McDougal DH, Pokorny J, Smith VC, Yau KW, Dacey DM (2007) Human and macaque pupil responses driven by melanopsin-containing retinal ganglion cells. Vision Res 47(7):946–954. https://doi.org/10.1016/j.visres.2006.12.015

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Gamlin PD (2006) The pretectum: connections and oculomotor-related roles. Prog Brain Res 151:379–405. https://doi.org/10.1016/S0079-6123(05)51012-4

    Article  PubMed  Google Scholar 

  36. Gamlin PD, Zhang H, Clarke RJ (1995) Luminance neurons in the pretectal olivary nucleus mediate the pupillary light reflex in the rhesus monkey. Exp Brain Res 106(1):169–176. https://doi.org/10.1007/bf00241367

    Article  CAS  PubMed  Google Scholar 

  37. Gamlin PD, Clarke RJ (1995) The pupillary light reflex pathway of the primate. J Am Optom Assoc 66(7):415–418

    CAS  PubMed  Google Scholar 

  38. Berson DM, Castrucci AM, Provencio I (2010) Morphology and mosaics of melanopsin-expressing retinal ganglion cell types in mice. J Comp Neurol 518(13):2405–2422. https://doi.org/10.1002/cne.22381

    Article  PubMed  PubMed Central  Google Scholar 

  39. Stabio ME, Sabbah S, Quattrochi LE, Ilardi MC, Fogerson PM, Leyrer ML, Kim MT, Kim I, Schiel M, Renna JM, Briggman KL, Berson DM (2018) The M5 cell: a color-opponent intrinsically photosensitive retinal ganglion cell. Neuron 97(1):251. https://doi.org/10.1016/j.neuron.2017.12.030

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Provencio I, Rollag MD, Castrucci AM (2002) Photoreceptive net in the mammalian retina. This mesh of cells may explain how some blind mice can still tell day from night. Nature 415(6871):493. https://doi.org/10.1038/415493a

    Article  CAS  PubMed  Google Scholar 

  41. Renna JM, Chellappa DK, Ross CL, Stabio ME, Berson DM (2015) Melanopsin ganglion cells extend dendrites into the outer retina during early postnatal development. Dev Neurobiol 75(9):935–946. https://doi.org/10.1002/dneu.22260

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Pires SS, Hughes S, Turton M, Melyan Z, Peirson SN, Zheng L, Kosmaoglou M, Bellingham J, Cheetham ME, Lucas RJ, Foster RG, Hankins MW, Halford S (2009) Differential expression of two distinct functional isoforms of melanopsin (Opn4) in the mammalian retina. J Neurosci 29(39):12332–12342. https://doi.org/10.1523/JNEUROSCI.2036-09.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Schmidt TM, Taniguchi K, Kofuji P (2008) Intrinsic and extrinsic light responses in melanopsin-expressing ganglion cells during mouse development. J Neurophysiol 100(1):371–384. https://doi.org/10.1152/jn.00062.2008

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Lucas JA, Schmidt TM (2019) Cellular properties of intrinsically photosensitive retinal ganglion cells during postnatal development. Neural Dev 14(1):8. https://doi.org/10.1186/s13064-019-0132-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Sexton TJ, Bleckert A, Turner MH, Van Gelder RN (2015) Type I intrinsically photosensitive retinal ganglion cells of early post-natal development correspond to the M4 subtype. Neural Dev 10:17. https://doi.org/10.1186/s13064-015-0042-x

    Article  PubMed  PubMed Central  Google Scholar 

  46. Gong S, Zheng C, Doughty ML, Losos K, Didkovsky N, Schambra UB, Nowak NJ, Joyner A, Leblanc G, Hatten ME, Heintz N (2003) A gene expression atlas of the central nervous system based on bacterial artificial chromosomes. Nature 425(6961):917–925. https://doi.org/10.1038/nature02033

    Article  CAS  PubMed  Google Scholar 

  47. Do MT, Kang SH, Xue T, Zhong H, Liao HW, Bergles DE, Yau KW (2009) Photon capture and signalling by melanopsin retinal ganglion cells. Nature 457(7227):281–287. https://doi.org/10.1038/nature07682

    Article  CAS  PubMed  Google Scholar 

  48. Jiang Z, Yue WWS, Chen L, Sheng Y, Yau KW (2018) Cyclic-nucleotide- and HCN-channel-mediated phototransduction in intrinsically photosensitive retinal ganglion cells. Cell 175(3):652–664 e612. https://doi.org/10.1016/j.cell.2018.08.055

  49. Hatori M, Le H, Vollmers C, Keding SR, Tanaka N, Buch T, Waisman A, Schmedt C, Jegla T, Panda S (2008) Inducible ablation of melanopsin-expressing retinal ganglion cells reveals their central role in non-image forming visual responses. PLoS ONE 3(6):e2451. https://doi.org/10.1371/journal.pone.0002451

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Fernandez DC, Chang YT, Hattar S, Chen SK (2016) Architecture of retinal projections to the central circadian pacemaker. Proc Natl Acad Sci USA 113(21):6047–6052. https://doi.org/10.1073/pnas.1523629113

    Article  CAS  PubMed  Google Scholar 

  51. Wang Q, Yue WWS, Jiang Z, Xue T, Kang SH, Bergles DE, Mikoshiba K, Offermanns S, Yau KW (2017) Synergistic signaling by light and acetylcholine in mouse iris sphincter muscle. Curr Biol 27(12):1791–1800 e1795. https://doi.org/10.1016/j.cub.2017.05.022

  52. Delwig A, Larsen DD, Yasumura D, Yang CF, Shah NM, Copenhagen DR (2016) Retinofugal projections from melanopsin-expressing retinal ganglion cells revealed by intraocular injections of Cre-dependent virus. PLoS ONE 11(2):e0149501. https://doi.org/10.1371/journal.pone.0149501

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Chew KS, Renna JM, McNeill DS, Fernandez DC, Keenan WT, Thomsen MB, Ecker JL, Loevinsohn GS, VanDunk C, Vicarel DC, Tufford A, Weng S, Gray PA, Cayouette M, Herzog ED, Zhao H, Berson DM, Hattar S (2017) A subset of ipRGCs regulates both maturation of the circadian clock and segregation of retinogeniculate projections in mice. Elife. https://doi.org/10.7554/eLife.22861

    Article  PubMed  PubMed Central  Google Scholar 

  54. Goz D, Studholme K, Lappi DA, Rollag MD, Provencio I, Morin LP (2008) Targeted destruction of photosensitive retinal ganglion cells with a saporin conjugate alters the effects of light on mouse circadian rhythms. PLoS ONE 3(9):e3153. https://doi.org/10.1371/journal.pone.0003153

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Sonoda T, Lee SK, Birnbaumer L, Schmidt TM (2018) Melanopsin phototransduction is repurposed by ipRGC subtypes to shape the function of distinct visual circuits. Neuron 99(4):754–767 e754. https://doi.org/10.1016/j.neuron.2018.06.032

  56. Milosavljevic N, Cehajic-Kapetanovic J, Procyk CA, Lucas RJ (2016) Chemogenetic activation of melanopsin retinal ganglion cells induces signatures of arousal and/or anxiety in Mice. Curr Biol 26(17):2358–2363. https://doi.org/10.1016/j.cub.2016.06.057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Milosavljevic N, Storchi R, Eleftheriou CG, Colins A, Petersen RS, Lucas RJ (2018) Photoreceptive retinal ganglion cells control the information rate of the optic nerve. Proc Natl Acad Sci USA 115(50):E11817–E11826. https://doi.org/10.1073/pnas.1810701115

    Article  CAS  PubMed  Google Scholar 

  58. Keenan WT, Fernandez DC, Shumway LJ, Zhao H, Hattar S (2017) Eye-drops for activation of DREADDs. Front Neural Circuits 11:93. https://doi.org/10.3389/fncir.2017.00093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Rupp AC, Ren M, Altimus CM, Fernandez DC, Richardson M, Turek F, Hattar S, Schmidt TM (2019) Distinct ipRGC subpopulations mediate light's acute and circadian effects on body temperature and sleep. Elife. https://doi.org/10.7554/eLife.44358

    Article  PubMed  PubMed Central  Google Scholar 

  60. Storchi R, Milosavljevic N, Eleftheriou CG, Martial FP, Orlowska-Feuer P, Bedford RA, Brown TM, Montemurro MA, Petersen RS, Lucas RJ (2015) Melanopsin-driven increases in maintained activity enhance thalamic visual response reliability across a simulated dawn. Proc Natl Acad Sci USA 112(42):E5734–5743. https://doi.org/10.1073/pnas.1505274112

    Article  CAS  PubMed  Google Scholar 

  61. Fernandez DC, Fogerson PM, Lazzerini Ospri L, Thomsen MB, Layne RM, Severin D, Zhan J, Singer JH, Kirkwood A, Zhao H, Berson DM, Hattar S (2018) light affects mood and learning through distinct retina-brain pathways. Cell 175(1):71–84 e18. https://doi.org/10.1016/j.cell.2018.08.004

  62. Bhandari A, Smith JC, Zhang Y, Jensen AA, Reid L, Goeser T, Fan S, Ghate D, Van Hook MJ (2019) Early-stage ocular hypertension alters retinal ganglion cell synaptic transmission in the visual thalamus. Front Cell Neurosci 13:426. https://doi.org/10.3389/fncel.2019.00426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Sonoda T, Li JY, Hayes NW, Chan JC, Okabe Y, Belin S, Nawabi H, Schmidt TM (2020) A noncanonical inhibitory circuit dampens behavioral sensitivity to light. Science 368(6490):527–531. https://doi.org/10.1126/science.aay3152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Lin CI, Chiao CC (2019) Blue light promotes neurite outgrowth of retinal explants in postnatal ChR2 Mice. eNeuro. https://doi.org/10.1523/ENEURO.0391-18.2019

    Article  PubMed  PubMed Central  Google Scholar 

  65. Jones KA, Hatori M, Mure LS, Bramley JR, Artymyshyn R, Hong SP, Marzabadi M, Zhong H, Sprouse J, Zhu Q, Hartwick AT, Sollars PJ, Pickard GE, Panda S (2013) Small-molecule antagonists of melanopsin-mediated phototransduction. Nat Chem Biol 9(10):630–635. https://doi.org/10.1038/nchembio.1333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Keenan WT, Rupp AC, Ross RA, Somasundaram P, Hiriyanna S, Wu Z, Badea TC, Robinson PR, Lowell BB, Hattar SS (2016) A visual circuit uses complementary mechanisms to support transient and sustained pupil constriction. Elife. https://doi.org/10.7554/eLife.15392

    Article  PubMed  PubMed Central  Google Scholar 

  67. Chen SK, Chew KS, McNeill DS, Keeley PW, Ecker JL, Mao BQ, Pahlberg J, Kim B, Lee SC, Fox MA, Guido W, Wong KY, Sampath AP, Reese BE, Kuruvilla R, Hattar S (2013) Apoptosis regulates ipRGC spacing necessary for rods and cones to drive circadian photoentrainment. Neuron 77(3):503–515. https://doi.org/10.1016/j.neuron.2012.11.028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Rodgers J, Peirson SN, Hughes S, Hankins MW (2018) Functional characterisation of naturally occurring mutations in human melanopsin. Cell Mol Life Sci 75(19):3609–3624. https://doi.org/10.1007/s00018-018-2813-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Mure LS, Hatori M, Zhu Q, Demas J, Kim IM, Nayak SK, Panda S (2016) Melanopsin-encoded response properties of intrinsically photosensitive retinal ganglion cells. Neuron 90(5):1016–1027. https://doi.org/10.1016/j.neuron.2016.04.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Somasundaram P, Wyrick GR, Fernandez DC, Ghahari A, Pinhal CM, Simmonds Richardson M, Rupp AC, Cui L, Wu Z, Brown RL, Badea TC, Hattar S, Robinson PR (2017) C-terminal phosphorylation regulates the kinetics of a subset of melanopsin-mediated behaviors in mice. Proc Natl Acad Sci USA 114(10):2741–2746. https://doi.org/10.1073/pnas.1611893114

    Article  CAS  PubMed  Google Scholar 

  71. Lupi D, Oster H, Thompson S, Foster RG (2008) The acute light-induction of sleep is mediated by OPN4-based photoreception. Nat Neurosci 11(9):1068–1073. https://doi.org/10.1038/nn.2179

    Article  CAS  PubMed  Google Scholar 

  72. Keeler CE (1927) Iris movements in blind Mice. Am J Physiol 81(1):107–112. https://doi.org/10.1152/ajplegacy.1927.81.1.107

    Article  Google Scholar 

  73. Freedman MS, Lucas RJ, Soni B, von Schantz M, Munoz M, David-Gray Z, Foster R (1999) Regulation of mammalian circadian behavior by non-rod, non-cone, ocular photoreceptors. Science 284(5413):502–504. https://doi.org/10.1126/science.284.5413.502

    Article  CAS  PubMed  Google Scholar 

  74. Lucas RJ, Freedman MS, Munoz M, Garcia-Fernandez JM, Foster RG (1999) Regulation of the mammalian pineal by non-rod, non-cone, ocular photoreceptors. Science 284(5413):505–507. https://doi.org/10.1126/science.284.5413.505

    Article  CAS  PubMed  Google Scholar 

  75. Czeisler CA, Shanahan TL, Klerman EB, Martens H, Brotman DJ, Emens JS, Klein T, Rizzo JF 3rd (1995) Suppression of melatonin secretion in some blind patients by exposure to bright light. N Engl J Med 332(1):6–11. https://doi.org/10.1056/NEJM199501053320102

    Article  CAS  PubMed  Google Scholar 

  76. Panda S, Sato TK, Castrucci AM, Rollag MD, DeGrip WJ, Hogenesch JB, Provencio I, Kay SA (2002) Melanopsin (Opn4) requirement for normal light-induced circadian phase shifting. Science 298(5601):2213–2216. https://doi.org/10.1126/science.1076848

    Article  CAS  PubMed  Google Scholar 

  77. Ruby NF, Brennan TJ, Xie X, Cao V, Franken P, Heller HC, O'Hara BF (2002) Role of melanopsin in circadian responses to light. Science 298(5601):2211–2213. https://doi.org/10.1126/science.1076701

    Article  CAS  PubMed  Google Scholar 

  78. Altimus CM, Guler AD, Alam NM, Arman AC, Prusky GT, Sampath AP, Hattar S (2010) Rod photoreceptors drive circadian photoentrainment across a wide range of light intensities. Nat Neurosci 13(9):1107–1112. https://doi.org/10.1038/nn.2617

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Kofuji P, Mure LS, Massman LJ, Purrier N, Panda S, Engeland WC (2016) Intrinsically photosensitive retinal ganglion cells (ipRGCs) are necessary for light entrainment of peripheral clocks. PLoS ONE 11(12):e0168651. https://doi.org/10.1371/journal.pone.0168651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Lall GS, Revell VL, Momiji H, Al Enezi J, Altimus CM, Guler AD, Aguilar C, Cameron MA, Allender S, Hankins MW, Lucas RJ (2010) Distinct contributions of rod, cone, and melanopsin photoreceptors to encoding irradiance. Neuron 66(3):417–428. https://doi.org/10.1016/j.neuron.2010.04.037

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Trejo LJ, Cicerone CM (1984) Cells in the pretectal olivary nucleus are in the pathway for the direct light reflex of the pupil in the rat. Brain Res 300(1):49–62. https://doi.org/10.1016/0006-8993(84)91340-4

    Article  CAS  PubMed  Google Scholar 

  82. Young MJ, Lund RD (1994) The anatomical substrates subserving the pupillary light reflex in rats: origin of the consensual pupillary response. Neuroscience 62(2):481–496. https://doi.org/10.1016/0306-4522(94)90381-6

    Article  CAS  PubMed  Google Scholar 

  83. Distler C, Hoffmann KP (1989) The pupillary light reflex in normal and innate microstrabismic cats, II: Retinal and cortical input to the nucleus praetectalis olivaris. Vis Neurosci 3(2):139–153. https://doi.org/10.1017/s0952523800004454

    Article  CAS  PubMed  Google Scholar 

  84. Distler C, Hoffmann KP (1989) The pupillary light reflex in normal and innate microstrabismic cats, I: Behavior and receptive-field analysis in the nucleus praetectalis olivaris. Vis Neurosci 3(2):127–138. https://doi.org/10.1017/s0952523800004442

    Article  CAS  PubMed  Google Scholar 

  85. Lucas RJ, Douglas RH, Foster RG (2001) Characterization of an ocular photopigment capable of driving pupillary constriction in mice. Nat Neurosci 4(6):621–626. https://doi.org/10.1038/88443

    Article  CAS  PubMed  Google Scholar 

  86. Lucas RJ, Hattar S, Takao M, Berson DM, Foster RG, Yau KW (2003) Diminished pupillary light reflex at high irradiances in melanopsin-knockout mice. Science 299(5604):245–247. https://doi.org/10.1126/science.1077293

    Article  CAS  PubMed  Google Scholar 

  87. Barr L, Alpern M (1963) Photosensitivity of the Frog Iris. J Gen Physiol 46:1249–1265. https://doi.org/10.1085/jgp.46.6.1249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Seliger HH (1962) Direct action of light in naturally pigmented muscle fibers. I. Action spectrum for contraction in eel iris sphincter. J Gen Physiol 46:333–342. https://doi.org/10.1085/jgp.46.2.333

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Tu DC, Batten ML, Palczewski K, Van Gelder RN (2004) Nonvisual photoreception in the chick iris. Science 306(5693):129–131. https://doi.org/10.1126/science.1101484

    Article  CAS  PubMed  Google Scholar 

  90. Bito LZ, Turansky DG (1975) Photoactivation of pupillary constriction in the isolated in vitro iris of a mammal (Mesocricetus auratus). Comp Biochem Physiol A Comp Physiol 50(2):407–413. https://doi.org/10.1016/0300-9629(75)90034-1

    Article  CAS  PubMed  Google Scholar 

  91. Lau KC, So KF, Campbell G, Lieberman AR (1992) Pupillary constriction in response to light in rodents, which does not depend on central neural pathways. J Neurol Sci 113(1):70–79. https://doi.org/10.1016/0022-510x(92)90267-o

    Article  CAS  PubMed  Google Scholar 

  92. Xue T, Do MT, Riccio A, Jiang Z, Hsieh J, Wang HC, Merbs SL, Welsbie DS, Yoshioka T, Weissgerber P, Stolz S, Flockerzi V, Freichel M, Simon MI, Clapham DE, Yau KW (2011) Melanopsin signalling in mammalian iris and retina. Nature 479(7371):67–73. https://doi.org/10.1038/nature10567

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Semo M, Gias C, Ahmado A, Vugler A (2014) A role for the ciliary marginal zone in the melanopsin-dependent intrinsic pupillary light reflex. Exp Eye Res 119:8–18. https://doi.org/10.1016/j.exer.2013.11.013

    Article  CAS  PubMed  Google Scholar 

  94. Foster RG, Wulff K (2005) The rhythm of rest and excess. Nat Rev Neurosci 6(5):407–414. https://doi.org/10.1038/nrn1670

    Article  CAS  PubMed  Google Scholar 

  95. Fonken LK, Finy MS, Walton JC, Weil ZM, Workman JL, Ross J, Nelson RJ (2009) Influence of light at night on murine anxiety- and depressive-like responses. Behav Brain Res 205(2):349–354. https://doi.org/10.1016/j.bbr.2009.07.001

    Article  PubMed  Google Scholar 

  96. Ma WP, Cao J, Tian M, Cui MH, Han HL, Yang YX, Xu L (2007) Exposure to chronic constant light impairs spatial memory and influences long-term depression in rats. Neurosci Res 59(2):224–230. https://doi.org/10.1016/j.neures.2007.06.1474

    Article  PubMed  Google Scholar 

  97. LeGates TA, Altimus CM, Wang H, Lee HK, Yang S, Zhao H, Kirkwood A, Weber ET, Hattar S (2012) Aberrant light directly impairs mood and learning through melanopsin-expressing neurons. Nature 491(7425):594–598. https://doi.org/10.1038/nature11673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Huang L, Xi Y, Peng Y, Yang Y, Huang X, Fu Y, Tao Q, Xiao J, Yuan T, An K, Zhao H, Pu M, Xu F, Xue T, Luo M, So KF, Ren C (2019) A visual circuit related to habenula underlies the antidepressive effects of light therapy. Neuron 102(1):128–142 e128. https://doi.org/10.1016/j.neuron.2019.01.037

  99. Chen SK, Badea TC, Hattar S (2011) Photoentrainment and pupillary light reflex are mediated by distinct populations of ipRGCs. Nature 476(7358):92–95. https://doi.org/10.1038/nature10206

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Wong KY (2012) A retinal ganglion cell that can signal irradiance continuously for 10 hours. J Neurosci 32(33):11478–11485. https://doi.org/10.1523/JNEUROSCI.1423-12.2012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Perez-Leighton CE, Schmidt TM, Abramowitz J, Birnbaumer L, Kofuji P (2011) Intrinsic phototransduction persists in melanopsin-expressing ganglion cells lacking diacylglycerol-sensitive TRPC subunits. Eur J Neurosci 33(5):856–867. https://doi.org/10.1111/j.1460-9568.2010.07583.x

    Article  PubMed  PubMed Central  Google Scholar 

  102. Schroeder MM, Harrison KR, Jaeckel ER, Berger HN, Zhao X, Flannery MP, St Pierre EC, Pateqi N, Jachimska A, Chervenak AP, Wong KY (2018) The roles of rods, cones, and melanopsin in photoresponses of M4 intrinsically photosensitive retinal ganglion cells (ipRGCs) and optokinetic visual behavior. Front Cell Neurosci 12:203. https://doi.org/10.3389/fncel.2018.00203

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Denman DJ, Siegle JH, Koch C, Reid RC, Blanche TJ (2017) Spatial organization of chromatic pathways in the mouse dorsal lateral geniculate nucleus. J Neurosci 37(5):1102–1116. https://doi.org/10.1523/JNEUROSCI.1742-16.2016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  104. Jacobs GH, Williams GA, Fenwick JA (2004) Influence of cone pigment coexpression on spectral sensitivity and color vision in the mouse. Vision Res 44(14):1615–1622. https://doi.org/10.1016/j.visres.2004.01.016

    Article  CAS  PubMed  Google Scholar 

  105. Rhim I, Coello-Reyes G, Ko HK, Nauhaus I (2017) Maps of cone opsin input to mouse V1 and higher visual areas. J Neurophysiol 117(4):1674–1682. https://doi.org/10.1152/jn.00849.2016

    Article  PubMed  PubMed Central  Google Scholar 

  106. Sonoda T, Okabe Y, Schmidt TM (2020) Overlapping morphological and functional properties between M4 and M5 intrinsically photosensitive retinal ganglion cells. J Comp Neurol 528(6):1028–1040. https://doi.org/10.1002/cne.24806

    Article  CAS  PubMed  Google Scholar 

  107. Do MT, Yau KW (2013) Adaptation to steady light by intrinsically photosensitive retinal ganglion cells. Proc Natl Acad Sci USA 110(18):7470–7475. https://doi.org/10.1073/pnas.1304039110

    Article  PubMed  Google Scholar 

  108. Do MTH (2019) Melanopsin and the intrinsically photosensitive retinal ganglion cells: biophysics to behavior. Neuron 104(2):205–226. https://doi.org/10.1016/j.neuron.2019.07.016

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Milner ES, Do MTH (2017) A population representation of absolute light intensity in the mammalian retina. Cell 171(4):865–876 e816. https://doi.org/10.1016/j.cell.2017.09.005

  110. Emanuel AJ, Kapur K, Do MTH (2017) Biophysical variation within the M1 type of ganglion cell photoreceptor. Cell Rep 21(4):1048–1062. https://doi.org/10.1016/j.celrep.2017.09.095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Lee SK, Sonoda T, Schmidt TM (2019) M1 intrinsically photosensitive retinal ganglion cells integrate rod and melanopsin inputs to signal in low light. Cell Rep 29(11):3349–3355 e3342. https://doi.org/10.1016/j.celrep.2019.11.024

  112. Sekaran S, Lupi D, Jones SL, Sheely CJ, Hattar S, Yau KW, Lucas RJ, Foster RG, Hankins MW (2005) Melanopsin-dependent photoreception provides earliest light detection in the mammalian retina. Curr Biol 15(12):1099–1107. https://doi.org/10.1016/j.cub.2005.05.053

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  113. Zhang XM, Chen BY, Ng AH, Tanner JA, Tay D, So KF, Rachel RA, Copeland NG, Jenkins NA, Huang JD (2005) Transgenic mice expressing Cre-recombinase specifically in retinal rod bipolar neurons. Invest Ophthalmol Vis Sci 46(10):3515–3520. https://doi.org/10.1167/iovs.04-1201

    Article  PubMed  Google Scholar 

  114. McNeill DS, Sheely CJ, Ecker JL, Badea TC, Morhardt D, Guido W, Hattar S (2011) Development of melanopsin-based irradiance detecting circuitry. Neural Dev 6:8. https://doi.org/10.1186/1749-8104-6-8

    Article  PubMed  PubMed Central  Google Scholar 

  115. Hoon M, Okawa H, Della Santina L, Wong RO (2014) Functional architecture of the retina: development and disease. Prog Retin Eye Res 42:44–84. https://doi.org/10.1016/j.preteyeres.2014.06.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Tian N, Copenhagen DR (2003) Visual stimulation is required for refinement of ON and OFF pathways in postnatal retina. Neuron 39(1):85–96. https://doi.org/10.1016/s0896-6273(03)00389-1

    Article  CAS  PubMed  Google Scholar 

  117. Sernagor E, Eglen SJ, Wong RO (2001) Development of retinal ganglion cell structure and function. Prog Retin Eye Res 20(2):139–174. https://doi.org/10.1016/s1350-9462(00)00024-0

    Article  CAS  PubMed  Google Scholar 

  118. Osterhout JA, El-Danaf RN, Nguyen PL, Huberman AD (2014) Birthdate and outgrowth timing predict cellular mechanisms of axon target matching in the developing visual pathway. Cell Rep 8(4):1006–1017. https://doi.org/10.1016/j.celrep.2014.06.063

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Rao S, Chun C, Fan J, Kofron JM, Yang MB, Hegde RS, Ferrara N, Copenhagen DR, Lang RA (2013) A direct and melanopsin-dependent fetal light response regulates mouse eye development. Nature 494(7436):243–246. https://doi.org/10.1038/nature11823

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Renna JM, Weng S, Berson DM (2011) Light acts through melanopsin to alter retinal waves and segregation of retinogeniculate afferents. Nat Neurosci 14(7):827–829. https://doi.org/10.1038/nn.2845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Tufford AR, Onyak JR, Sondereker KB, Lucas JA, Earley AM, Mattar P, Hattar S, Schmidt TM, Renna JM, Cayouette M (2018) Melanopsin retinal ganglion cells regulate cone photoreceptor lamination in the mouse retina. Cell Rep 23(8):2416–2428. https://doi.org/10.1016/j.celrep.2018.04.086

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Caval-Holme F, Zhang Y, Feller MB (2019) Gap junction coupling shapes the encoding of light in the developing retina. Curr Biol 29(23):4024–4035 e4025. https://doi.org/10.1016/j.cub.2019.10.025

  123. Muller LP, Do MT, Yau KW, He S, Baldridge WH (2010) Tracer coupling of intrinsically photosensitive retinal ganglion cells to amacrine cells in the mouse retina. J Comp Neurol 518(23):4813–4824. https://doi.org/10.1002/cne.22490

    Article  PubMed  PubMed Central  Google Scholar 

  124. Reifler AN, Chervenak AP, Dolikian ME, Benenati BA, Li BY, Wachter RD, Lynch AM, Demertzis ZD, Meyers BS, Abufarha FS, Jaeckel ER, Flannery MP, Wong KY (2015) All spiking, sustained ON displaced amacrine cells receive gap-junction input from melanopsin ganglion cells. Curr Biol 25(21):2763–2773. https://doi.org/10.1016/j.cub.2015.09.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Arroyo DA, Feller MB (2016) Spatiotemporal features of retinal waves instruct the wiring of the visual circuitry. Front Neural Circuits 10:54. https://doi.org/10.3389/fncir.2016.00054

    Article  PubMed  PubMed Central  Google Scholar 

  126. Fernandez DC, Komal R, Langel J, Ma J, Duy PQ, Penzo MA, Zhao H, Hattar S (2020) Retinal innervation tunes circuits that drive nonphotic entrainment to food. Nature. https://doi.org/10.1038/s41586-020-2204-1

    Article  PubMed  PubMed Central  Google Scholar 

  127. Zaidi FH, Hull JT, Peirson SN, Wulff K, Aeschbach D, Gooley JJ, Brainard GC, Gregory-Evans K, Rizzo JF 3rd, Czeisler CA, Foster RG, Moseley MJ, Lockley SW (2007) Short-wavelength light sensitivity of circadian, pupillary, and visual awareness in humans lacking an outer retina. Curr Biol 17(24):2122–2128. https://doi.org/10.1016/j.cub.2007.11.034

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Mure LS, Cornut PL, Rieux C, Drouyer E, Denis P, Gronfier C, Cooper HM (2009) Melanopsin bistability: a fly's eye technology in the human retina. PLoS ONE 4(6):e5991. https://doi.org/10.1371/journal.pone.0005991

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Hankins MW, Lucas RJ (2002) The primary visual pathway in humans is regulated according to long-term light exposure through the action of a nonclassical photopigment. Curr Biol 12(3):191–198. https://doi.org/10.1016/s0960-9822(02)00659-0

    Article  CAS  PubMed  Google Scholar 

  130. Brown TM, Tsujimura S, Allen AE, Wynne J, Bedford R, Vickery G, Vugler A, Lucas RJ (2012) Melanopsin-based brightness discrimination in mice and humans. Curr Biol 22(12):1134–1141. https://doi.org/10.1016/j.cub.2012.04.039

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Vandewalle G, van Ackeren MJ, Daneault V, Hull JT, Albouy G, Lepore F, Doyon J, Czeisler CA, Dumont M, Carrier J, Lockley SW, Collignon O (2018) Light modulates oscillatory alpha activity in the occipital cortex of totally visually blind individuals with intact non-image-forming photoreception. Sci Rep 8(1):16968. https://doi.org/10.1038/s41598-018-35400-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Allen AE, Martial FP, Lucas RJ (2019) Form vision from melanopsin in humans. Nat Commun 10(1):2274. https://doi.org/10.1038/s41467-019-10113-3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Noseda R, Kainz V, Jakubowski M, Gooley JJ, Saper CB, Digre K, Burstein R (2010) A neural mechanism for exacerbation of headache by light. Nat Neurosci 13(2):239–245. https://doi.org/10.1038/nn.2475

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Vandewalle G, Maquet P, Dijk DJ (2009) Light as a modulator of cognitive brain function. Trends Cogn Sci 13(10):429–438. https://doi.org/10.1016/j.tics.2009.07.004

    Article  PubMed  Google Scholar 

  135. Dhande OS, Stafford BK, Franke K, El-Danaf R, Percival KA, Phan AH, Li P, Hansen BJ, Nguyen PL, Berens P, Taylor WR, Callaway E, Euler T, Huberman AD (2019) Molecular fingerprinting of On-Off direction-selective retinal ganglion cells across species and relevance to primate visual circuits. J Neurosci 39(1):78–95. https://doi.org/10.1523/JNEUROSCI.1784-18.2018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Graham DM, Wong KY, Shapiro P, Frederick C, Pattabiraman K, Berson DM (2008) Melanopsin ganglion cells use a membrane-associated rhabdomeric phototransduction cascade. J Neurophysiol 99(5):2522–2532. https://doi.org/10.1152/jn.01066.2007

    Article  CAS  PubMed  Google Scholar 

  137. Hartwick AT, Bramley JR, Yu J, Stevens KT, Allen CN, Baldridge WH, Sollars PJ, Pickard GE (2007) Light-evoked calcium responses of isolated melanopsin-expressing retinal ganglion cells. J Neurosci 27(49):13468–13480. https://doi.org/10.1523/JNEUROSCI.3626-07.2007

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  138. Johnson J, Wu V, Donovan M, Majumdar S, Renteria RC, Porco T, Van Gelder RN, Copenhagen DR (2010) Melanopsin-dependent light avoidance in neonatal mice. Proc Natl Acad Sci USA 107(40):17374–17378. https://doi.org/10.1073/pnas.1008533107

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was funded by Sloan Research Fellowship to T.M.S. and NIH grant 1DP2EY022584 to T.M.S. We would like to thank Schmidt Lab members Kayla Miguel, Ely Contreras, and Jarildy Javier for helpful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tiffany M. Schmidt.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aranda, M.L., Schmidt, T.M. Diversity of intrinsically photosensitive retinal ganglion cells: circuits and functions. Cell. Mol. Life Sci. 78, 889–907 (2021). https://doi.org/10.1007/s00018-020-03641-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-020-03641-5

Keywords

Navigation