Skip to main content
Log in

The semiochemically mediated interactions between bacteria and insects

  • Review Paper
  • Published:
Chemoecology Aims and scope Submit manuscript

Abstract

In natural environment, semiochemicals are involved in many interactions between the different trophic levels involving insects, plants and hosts for parasitoids or prey for predators. These volatile compounds act as messengers within or between insect species, inducing particular behaviours, such as the localisation of a source of food, the orientation to an adequate oviposition site, the selection of a suitable breeding site and the localisation of hosts or prey. In this sense, bacteria have been shown to play an important role in the production of volatile compounds which ones act as semiochemicals. This review, focusing on the semiochemically mediated interactions between bacteria and insects, highlights that bacterial semiochemicals act as important messengers for insects. Indeed, in most of the studies reported here, insects respond to specific volatiles emitted by specific bacteria hosted by the insect itself (gut, mouthparts, etc.) or present in the natural environment where the insect evolves. Particularly, bacteria from the families Enterobacteriaceae, Pseudomonaceae and Bacillaceae are involved in many interactions with insects. Because semiochemicals naturally produced by bacteria could be a very interesting option for pest management, advances in this field are discussed in the context of biological control against insect pests.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Arnaud L, Detrain C, Gaspar C, Haubruge E (2003) Insectes et communication. J Ing 87:25–28

    Google Scholar 

  • Barke J, Seipke RF, Grüschow S et al (2010) A mixed community of actinomycetes produces multiple antibiotics for the fungus farming ant Acromyrmex octospinosus. BMC Biol 8:109

    Article  PubMed  Google Scholar 

  • Baumann L, Thao ML, Hess JM, Johnson MW, Baumann P (2002) The genetic properties of the primary endosymbionts of mealybugs differ from those of other endosymbionts of plant sap-sucking insects. Appl Environ Microbiol 68:3198–3205

    Article  PubMed  CAS  Google Scholar 

  • Brachmann AO, Forst S, Furgani GM, Fodor A, Bode HB (2006) Xenofuranones A and B: phenylpyruvate dimers from Xenorhabdus szentirmaii. J Nat Prod 69:1830–1832

    Article  PubMed  CAS  Google Scholar 

  • de Maagd R, Weemen-Hendriks M, Molthoff JW, Naimov S (2003) Activity of wild-type and hybrid Bacillus thuringiensis delta-endotoxins against Agrotis ipsilon. Arch Microbiol 179:363–367

    PubMed  Google Scholar 

  • DeMilo AB, Lee CJ, Moreno DS, Martinez AJ (1996) Identification of volatiles derived from Citrobacter freundii fermentation of a trypticase soy broth. J Agric Food Chem 44:607–612

    Article  CAS  Google Scholar 

  • Dickschat JS, Reichenbach H, Wagner-Döbler I, Schulz S (2005) Novel pyrazines from the myxobacterium Chondromyces crocatus and marine bacteria. Eur J Org Chem 19:4141–4153

    Article  Google Scholar 

  • Dillon RJ, Charnley K (2002) Mutualism between the desert locust Schistocerca gregaria and its gut microbiota. Res Microbiol 153:503–509

    Article  PubMed  CAS  Google Scholar 

  • Dillon RJ, Vennard CT, Charnley AK (2000) Exploitation of gut bacteria in the locust. Nature 403:851

    Article  PubMed  CAS  Google Scholar 

  • Douglas AE (2006) Phloem-sap feeding by animals: problems and solutions. J Exp Bot 57:747–754

    Article  PubMed  CAS  Google Scholar 

  • Drew RAI (1987) Behavioural strategies of fruit flies of the genus Dacus (Diptera: Tephritidae) significant in mating and host–plant relationships. Bull Entomol Res 77:73–81

    Article  Google Scholar 

  • Drew RAI, Fay HAC (1988) Comparison of the roles of ammonia and bacteria in the attraction of Dacus tryoni (Froggatt) (Queensland fruit fly) to proteinaceous suspensions. J Plant Prot Trop 5:127–130

    Google Scholar 

  • Epsky ND, Heath RR, Dueben BD, Lauzon CR, Proveaux AT, MacCollum GB (1998) Attraction of 3-methylbutanol and ammonia identified from Enterobacter agglomerans to Anastrepha suspensa. J Chem Ecol 24:1867–1880

    Article  CAS  Google Scholar 

  • Ffrench-Constant RH, Dowling A, Waterfield NR (2007) Insecticidal toxins from Photorhabdus bacteria and their potential use in agriculture. Toxicon 49:36–351

    Article  Google Scholar 

  • Fredrickson JK, Zachara JM, Balkwill et al (2004) Geomicrobiology of high-level nuclear waste-contaminated vadose sediments at the Hanford site, Washington state. Appl Environ Microbiol 70: 4230–4241

  • Grenier AM, Duport G, Pages S, Condemine G, Rahbe Y (2006) The phytopathogen Dickeya dadantii (Erwinia chrysanthemi 3937) is a pathogen of the pea aphid. Appl Environ Microbiol 72:1956–1965

    Article  PubMed  CAS  Google Scholar 

  • Haeder S, Wirth R, Herz H, Spiteller D (2009) Candicidin-producing Streptomyces support leaf-cutting ants to protect their fungus garden against the pathogenic fungus Escovopsis. Proc Natl Acad Sci USA 106:4742–4746

    Article  PubMed  CAS  Google Scholar 

  • Harada H, Ishikawa H (1997) Experimental pathogenicity of Erwinia aphidicola to pea aphid, Acyrthosiphon pisum. J Gen Appl Microbiol 43:363–367

    Article  PubMed  CAS  Google Scholar 

  • Harada H, Oyaizu H, Kosako Y, Ishikawa H (1997) Erwinia aphidicola, a new species isolated from pea aphid, Acyrthosiphon pisum. J Gen Appl Microbiol 43:349–354

    Article  PubMed  CAS  Google Scholar 

  • Hasselschwert D, Rockett CL (1988) Bacteria as oviposition attractants for Aedes aegypti (Diptera: Culicidae). Great Lakes Entomol 21:163–168

    Google Scholar 

  • Herbert EE, Goodrich-Blair H (2007) Friend and foe: the two faces of Xenorhabdus nematophila. Nat Rev Microbiol 5:634–646

    Article  PubMed  CAS  Google Scholar 

  • Huang J, Miller JR, Chen S et al (2006) Anopheles gambiae (Diptera: Culicidae) oviposition in response to agarose media and cultured bacterial volatiles. J Med Entomol 43:498–504

    Article  PubMed  Google Scholar 

  • Ikeshoji T, Saito K, Yano A (1975) Bacterial production of the ovipositional attractants for mosquitoes on fatty acid substrates. Appl Entomol Zool 10:302–308

    CAS  Google Scholar 

  • Jang EB, Nishijima KA (1990) Identification and attractancy of bacteria associated with Dacus dorsalis (Diptera: Tephritidae). Env Entomol 19:1726–1751

    Google Scholar 

  • Kaltenpoth M (2009) Actinobacteria as mutualists: general healthcare for insects? Trends Microbiol 17:529–535

    Article  PubMed  CAS  Google Scholar 

  • Lam K, Babor D, Duthie B, Babor EM, Moore M, Gries G (2007) Proliferating bacterial symbionts on house fly eggs affect oviposition behaviour of adult flies. Anim Behav 74:81–92

    Article  Google Scholar 

  • Lauzon CR, Sjogren RE, Wright SE, Prokopy RJ (1998) Attraction of Rhagoletis pomonella (Diptera: Tephritidae) flies to odor of bacteria: apparent confinement to specialized members of Enterobacteriaceae. Environ Entomol 27:853–857

    Google Scholar 

  • Lecadet MM, Frachon E, DuManoir VC, Ripouteau H, Hamon S, Laurent P, Thiery I (1999) Updating the H-antigen classification of Bacillus thuringiensis. J Appl Microbiol 86:660–672

    Article  PubMed  CAS  Google Scholar 

  • Lee CJ, DeMilo AB, Moreno DS, Martinez AJ (1995) Analyses of the volatile components of a bacterial fermentation that is attractive to the Mexican fruit fly, Anastrepha ludens. J Agric Food Chem 43:1348–1351

    Article  CAS  Google Scholar 

  • Leroy P, Wathelet B, Sabri A et al (2011) Aphid–host plant interactions: does aphid honeydew exactly reflect the host plant amino acid composition? Arthropod Plant Interact 5:1–7

    Google Scholar 

  • MacCollum GB, Lauzon CR, Weires RW, Rutkowski AA (1992) Attraction of adult apple maggot (Diptera: Tephritidae) to microbial isolates. J Econ Entomol 85:83–87

    Google Scholar 

  • Martinez AJ, Robacker DC, Garcia JA, Esau KL (1994) Laboratory and field olfactory attraction of the Mexican fruit fly (Diptera: Tephritidae) to metabolites of bacterial species. Fla Entomol 77:117–126

    Article  Google Scholar 

  • Maw MG (1970) Capric acid as a larvicide and an oviposition stimulant for mosquitoes. Nature 227:1154–1155

    Article  PubMed  CAS  Google Scholar 

  • Nakabachi A, Yamashita A, Toh H, Ishikawa H, Dunbar HE, Moran NA, Hattori M (2006) The 160-kilobase genome of the bacterial endosymbiont Carsonella. Science 314:267–267

    Google Scholar 

  • Nolte DJ, Eggers SH, May IR (1973) A locust pheromone: locustol. J Insect Physiol 19:1547–1554

    Article  CAS  Google Scholar 

  • Noorman N (2001) Pheromones of the housefly: a chemical and behavioural study. PhD Thesis, University of Groningen, The Netherlands, 127 pp

  • Nordlund DA, Lewis WJ (1976) Terminology of chemical releasing stimuli in intraspecific and interspecific interactions. J Chem Ecol 2:211–220

    Article  Google Scholar 

  • Oh DC, Poulsen M, Currie CR, Clardy J (2009a) Dentigerumycin: a bacterial mediator of an ant-fungus symbiosis. Nat Chem Biol 5:391–393

    Article  PubMed  CAS  Google Scholar 

  • Oh DC, Scott JJ, Currie CR, Clardy J (2009b) Mycangimycin, a polyene peroxide from a mutualist Streptomyces sp. Org Lett 11:633–636

    Article  PubMed  CAS  Google Scholar 

  • Oh DC, Poulsen M, Currie CR, Clardy J (2011) Sceliphrolactam, a polyene macrocyclic lactam from a wasp-associated Streptomyces sp. Org Lett 13:752–755

    Article  PubMed  CAS  Google Scholar 

  • Oliver KM, Russell JA, Moran NA, Hunter MS (2003) Facultative bacterial symbionts in aphids confer resistance to parasitic wasps. Proc Natl Acad Sci USA 100:1803–1807

    Article  PubMed  CAS  Google Scholar 

  • Oliver KM, Moran NA, Hunter MS (2005) Variation in resistance to parasitism in aphids is due to symbionts not host genotype. Proc Natl Acad Sci 102:12795–12800

    Article  PubMed  CAS  Google Scholar 

  • Oliver KM, Campos J, Moran NA, Hunter MS (2008) Population dynamics of defensive symbionts in aphids. Proc R Soc B 275:293–299

    Article  PubMed  Google Scholar 

  • Oliver KM, Degnan PH, Burke GR, Moran NA (2010) Facultative symbionts in aphids and the horizontal transfer of ecologically important traits. Ann Rev Entomol 55:247–266

    Article  CAS  Google Scholar 

  • Pavlovich SG, Rockett CL (2000) Color, bacteria, and mosquito eggs as ovipositional attractants for Aedes aegypti and Aedes albopictus (Diptera: Culicidae). Great Lakes Entomol 33:141–153

    Google Scholar 

  • Piel J, Höfer I, Hui D (2004) Evidence for a symbiosis island involved in horizontal acquisition of pederin biosynthetic capabilities by the bacterial symbiont of Paederus fuscipes beetles. J Bact 186:1280–1286

    Article  PubMed  CAS  Google Scholar 

  • Ponnusamy L, Xu N, Nojima S, Wesson DM, Schal C, Apperson CS (2008) Identification of bacteria and bacteria-associated chemical cues that mediate oviposition site preferences by Aedes aegypti. PNAS 105:9262–9267

    Article  PubMed  CAS  Google Scholar 

  • Poonam S, Paily KP, Balaraman K (2002) Oviposition attractancy of bacterial culture filtrates response of Culex quinquefasciatus. Mem Inst Oswaldo Cruz 97:359–362

    Article  PubMed  CAS  Google Scholar 

  • Riba G, Silvy C (1989) Combattre les ravageurs des cultures enjeux et perspectives. INRA, Paris

    Google Scholar 

  • Robacker DC, Barlet RJ (1997) Chemicals attractive to Mexican fruit fly from Klebsiella pneumoniae and Citrobacter freundii cultures sampled by solid-phase microextraction. J Chem Ecol 23:2897–2915

    Article  CAS  Google Scholar 

  • Robacker DC, Flath RA (1995) Attractants from Staphylococcus aureus cultures for the Mexican fruit fly, Anastrepha ludens. J Chem Ecol 21:1861–1874

    Article  CAS  Google Scholar 

  • Robacker DC, Garcia JA (1993) Effects of age, time of day, feeding history, and gamma irradiation on attraction of Mexican fruit flies (Diptera: Tephritidae), to bacterial odor in laboratory experiments. Environ Entomol 22:1367–1374

    Google Scholar 

  • Robacker DC, Lauzon CR (2002) Purine metabolizing capability of Enterobacter agglomerans affects volatiles production and attractiveness to Mexican fruit fly. J Chem Ecol 28:1549–1563

    Article  PubMed  CAS  Google Scholar 

  • Robacker DC, Moreno DS (1995) Protein feeding attenuates attraction of Mexican fruit flies (Diptera: Tephritidae) to volatile bacterial metabolites. Fla Entomol 78:62–69

    Article  CAS  Google Scholar 

  • Robacker DC, Garcia JA, Martinez AJ, Kaufman MG (1991) Strain of Staphylococcus attractive to laboratory strain Anastrepha ludens (Diptera: Tephritidae). Ann Entomol Soc Am 84:555–559

    Google Scholar 

  • Robacker DC, Warfield WC, Albach RF (1993) Partial characterization and HPLC isolation of bacteria-produced attractants for the Mexican fruit fly, Anastrepha ludens. J Chem Ecol 19:543–557

    Article  CAS  Google Scholar 

  • Robacker DC, DeMilo AB, Voaden DJ (1997) Mexican fruit fly attractants: effects of 1-pyrroline and other amines on attractiveness of a mixture of ammonia, methylamine, and putrescine. J Chem Ecol 23:1263–1280

    Article  CAS  Google Scholar 

  • Robacker DC, Martinez AJ, Garcia JA, Barlet RJ (1998) Volatiles attractive to the Mexican fruit fly (Diptera: Tephritidae) from eleven bacteria taxa. Fla Entomol 81:497–508

    Article  CAS  Google Scholar 

  • Robacker DC, Lauzon CR, He X (2004) Volatiles production and attractiveness to the Mexican fruit fly of Enterobacter agglomerans isolated from apple maggot and Mexican fruit flies. J Chem Ecol 30:1329–1347

    Article  PubMed  CAS  Google Scholar 

  • Rockett CL (1987) Bacteria as ovipositional attractants for Culex pipiens (Diptera: Culicidae). Great Lakes Entomol 20:151–155

    Google Scholar 

  • Romero A, Broce A, Zurek L (2006) Role of bacteria in the oviposition behaviour and larval development of stable flies. Med Vet Entomol 20:115–121

    Article  PubMed  CAS  Google Scholar 

  • Sabri A, Leroy P, Haubruge E et al (2010) Isolation, pure culture and characterization of Serratia symbiotica, the R-type of secondary endosymbionts of the black bean aphid Aphis fabae. Int J Syst Evol Microbiol (in press)

  • Scarborough CL, Ferrari J, Godfray HC (2005) Aphid protected from pathogen by endosymbiont. Science 310:1781

    Article  PubMed  CAS  Google Scholar 

  • Schnepf E, Crickmore N, Van Rie J, Lereclus D, Baum J, Feitelson J, Zeigler DR, Dean DH (1998) Bacillus thuringiensis and its pesticidal crystal proteins. Microbiol Mol Biol Rev 62:775–806

    PubMed  CAS  Google Scholar 

  • Schoenian I, Spiteller M, Ghaste M, Wirth R, Herz H, Spiteller D (2011) Chemical basis of the synergism and antagonism in microbial communities in the nests of leaf-cutting ants. Proc Natl Acad Sci USA 108:1955–1960

    Article  PubMed  CAS  Google Scholar 

  • Schulz S, Dickschat JS (2007) Bacterial volatiles: the smell of small organisms. Nat Prod Rep 24:814–842

    Article  PubMed  CAS  Google Scholar 

  • Scott JJ, Oh DC, Cetin Yuceer M, Klepzig KD, Clardy J, Currie CR (2008) Bacterial protection of beetle–fungus mutualism. Science 322:63

    Article  PubMed  CAS  Google Scholar 

  • Thao ML, Baumann P (2004) Evolutionary relationships of primary prokaryotic endosymbionts of whiteflies and their hosts. Appl Environ Microbiol 70:3401–3406

    Article  PubMed  CAS  Google Scholar 

  • Thibout E, Guillot JF, Auger J (1993) Microorganisms are involved in the production of volatile kairomones affecting the host seeking behaviour of Diadromus pulchellus, a parasitoid of Acrolepiopsis assectella. Physiol Entomol 18:176–182

    Article  CAS  Google Scholar 

  • Thibout E, Guillot JF, Ferary S, Limouzin P, Auger J (1995) Origin and identification of bacteria which produce kairomones in the frass of Acrolepiopsis assectella (Lep., Hyponomeutoidea). Experientia 51:1073–1075

    Article  PubMed  CAS  Google Scholar 

  • Trexler JD, Apperson CS, Zurek L, Gemeno C, Schal C, Kaufman M, Walker E, Watson DW, Wallace L (2003) Role of bacteria in mediating the oviposition responses of Aedes albopictus (Diptera: Culicidae). J Med Entomol 40:841–848

    Article  PubMed  Google Scholar 

  • Whitman WB, Coleman DC, Wiebe WJ (1998) Prokaryotes: the unseen majority. PNAS 95:6578–6583

    Article  PubMed  CAS  Google Scholar 

  • Zilkowski BW, Bartelt RJ, Blumberg D, James DG, Weaver DKJ (1999) Identification of host-related volatiles attractive to pineapple beetle Carpophilus humeralis. J Chem Ecol 25:229–252

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pascal D. Leroy.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Leroy, P.D., Sabri, A., Verheggen, F.J. et al. The semiochemically mediated interactions between bacteria and insects. Chemoecology 21, 113–122 (2011). https://doi.org/10.1007/s00049-011-0074-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00049-011-0074-6

Keywords

Navigation