Skip to main content
Log in

Strategies for cancer gene therapy using adenoviral vectors

  • Review
  • Published:
Journal of Molecular Medicine Aims and scope Submit manuscript

Abstract

Modification of tumor cells using gene transfer either to enhance host immunity or to act directly on tumor cells is being intensively studied in animal models. Remarkable results have yielded to approved clinical protocols in the treatment of cancer patients using this approach. Several methods of gene delivery have been developed. This article is particularly devoted to the interest of the use of adenoviral vectors in the different strategies of cancer gene therapy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Abbreviations

CSF :

Colony-stimulating factor

IL :

Interleukin

pfu :

plaque forming units

References

  • Aoki T, Tashiro K, Miyatake S, Kinash T, Nakano T, Oda Y, Kikuchi H, Honjo T (1992) Expression of murine interleukin 7 in a murine glioma cell line results in reduced tumorigenicity in vivo. Proc Natl Acad Sci USA 89:3850–3854

    Google Scholar 

  • Asher AL, Mulé JJ, Kasid A, Restifo NP, Salo JC, Reichert CM, Jaffe G, Fendly B, Kriegler M, Rosenberg SA (1991) Murine tumor cells transduced with the gene for tumor necrosis factor-alpha: evidence for paracrine immune effects of tumor necrosis factor against tumors. J Immunol 146:3227–3234

    Google Scholar 

  • Barba D, Hardin J, Sadelain M, Gage FH (1994) Development of antitumor immunity following thymidine kinase-mediated killing of experimental brain tumors. Proc Natl Acad Sci USA 91:4348–4352

    Google Scholar 

  • Blankenstein T, Qin Z, Uberla K, Muller W, Rosen H, Volk HD, Diamantstein T (1991) Tumor suppression after tumor cell-targeted tumor necrosis factor alpha gene transfer. J Exp Med 173:1047–1052

    Google Scholar 

  • Bonnekoh B, Greenhalgh DA, Bundman DS, Eckhardt JN, Longley MA, Chen SH, Woo SLC, Roop DR (1995) Inhibition of melanoma growth by adenoviral-mediated HSV thymidine kinase gene transfer in vivo. J Invest Dermatol 104:313–317

    Google Scholar 

  • Bubenik J, Simova J, Jandlova T (1990) Immunotherapy of cancer using local administration of lymphoid cells transformed by IL-2 cDNA and constitutively producing IL-2. Immunol Lett 23:287–292

    Google Scholar 

  • Cai DW, Mukhopadhyay T, Liu Y, Fujiwara T, Roth JA (1993) Stable expression of the wild-type p53 gene in human lung cancer cells after retrovirus-mediated gene transfer. Hum Gene Ther 4:617–624

    Google Scholar 

  • Chen L, Ashe S, Brady NA, Hellstrom I, Hellstrom KE, Ledbetter JA, McGowan P, Linsley PS (1992) Costimulation of antitumor immunity by B7 counterreceptor for the T lympocyte molecules CD28 and CTLA-4. Cell 71:1093–1102

    Google Scholar 

  • Chen SH, Shine JD, Goodman JC, Grossman RG, Woo SLC (1994) Gene therapy for brain tumors: regression of experimental gliomas by adenovirus-mediated gene transfer in vivo. Proc Natl Acad Sci USA 91:3054–3057

    Google Scholar 

  • Colombo MP, Ferrari G, Stoppacciano A, Parenza M, Rodolfo M, Mavilio F, Rodolfo M, Mavilio F, Parmiani G (1991) Granulocyte colony-stimulating factor gene transfer supresses tumorigenicity of a murine adenocarcinoma in vivo. J Exp Med 173:889–897

    Google Scholar 

  • Cordier L, Duffour MT, Sabourin JC, Lee MG, Cabannes J, Ragot T, Perricaudet M, Haddada H (1995) Complete recovery of mice from a pre-estblished tumor by direct intratumoral delivery of an adenovirus vector harboring the murine IL-2 gene. Gene Ther 2:16–21

    Google Scholar 

  • Cough RB, Chanock RM, Cate TR, Lang DJ, Knight V, Huebner RJ (1963) Immunization with types 4 and 7 adenovirus by selective infection of the intestinal tract. Am Rev Resp Dis 88:394–403

    Google Scholar 

  • Culver KW, Ram Z, Wallbridge S, Ishii H, Oldfield EH, Blaese RM (1992) In vivo gene transfer with retroviral vector-producer cells for treatment of experimental brain tumors. Science 256:1550–1552

    Google Scholar 

  • Descamps V, Blumenfeld N, Perricaudet M, Beuzard Y, Kremer E (1995) Adenoviral-organoids directing systemic expression of erythropoietin in mice. Gene Ther 2:411–417

    Google Scholar 

  • Dranoff G, Jaffee E, Lazenby A, Golumbek P, Levitsky H, Brose K, Jackson V, Hamada H, Pardoll D, Mulligan RC (1993) Vaccination with irradiated tumor cells engineered to secrete murine granulocyte-macrophage colony-stimulating factor stimulates potent, specific, and longlasting anti-tumor immunity. Proc Natl Acad Sci USA 90:3539–3543

    Google Scholar 

  • Faradji A, Bohbot A, Frost H, Scmitt-Gaguel M, Siffert JC, Dufour P, Eber M, Lallot C, Wiesel ML, Bergerat JP, Obering F (1991) Phase I study of liposomal MTP-PE-activated autologous monocytes adminastrated intraperitoneally to patients with peritoneal carcinogenesis. J Clin Oncol 9:1251–1260

    Google Scholar 

  • Fearon ER, Pardoll DM, Itaya T, Golumbek P, Levitsky HI, Simons JW, Karasuyama H, Vogelstein B, Frost P (1990) Interleukin-2 production by tumor cells bypasses T helper function in the generation of an antitumor response. Cell 60:397–403

    Google Scholar 

  • Freeman SM, Abboud CN, Whartenby KA, Packman CH, Koeplin DS, Moolten FL, Abraham GN (1993) The “bystander effect:” tumor regression when a fraction of tumor mass is genetically modified. Cancer Res 53:5274–5283

    Google Scholar 

  • Gansbacher B, Bannerji R, Daniels B, Zier K, Cronin K, Gilboa E (1990a) Retroviral vector-mediated gamma-interferon gene transfer into tumor cells generates potent and long lasting anti-tumoral immunity. Cancer Res 50:7820–7825

    Google Scholar 

  • Gansbacher B, Zier K, Daniels B, Cronin K, Bannerji R, Gilbao E (1990b) Interleukin 2 gene transfer into tumor cells abrogates tumorigenicity and induces protective immunity. J Exp Med 172:1217–1224

    Google Scholar 

  • Gilardi P, Courtney M, Pavirani A, Perricaudet M (1990) Expression of human alpha-1-antitrypsin using a recombinant adenovirus vector. FEBS 267:60–62

    Google Scholar 

  • Golumbek PT, Lazenby AJ, Levitsky HI, Jaffee LM, Karasuyama H, Baker M, Pardoll DM (1991) Treatment of established renal cancer by tumor cells engineered to secrete interleukin-4. Science 254:713–716

    Google Scholar 

  • Graham FL, Smiley J, Russell WC, Nairn R (1977) Characteristics of a human cell line transformed by DNA from human adenovirus 5. J Gen Virol 36:59–72

    CAS  PubMed  Google Scholar 

  • Greber UF, Willets M, Webster P, Helenius A (1993) Stepwise dismantling of adenovirus 2 during entry into cells. Cell 75:477–486

    Google Scholar 

  • Haddada H, Vaux Saint Cyr C (1980) Suppressive and cytostatic activities in the spleen of tumor-bearing hamsters. Eur J Cancer 16:841–848

    Google Scholar 

  • Haddada H, Ragot T, Cordier L, Duffour MT, Perricaudet M (1993a) Adenoviral interleukin-2 gene transfer into P815 tumor abrogates tumorigenicity and induces antitumoral immunity in mice. Hum Gene Ther 4:703–711

    Google Scholar 

  • Haddada H, Lopez M, Martinache C, Ragot T, Abina MA, Perricaudet M (1993b) Efficient adenovirus-mediated gene transfer into human blood monocyte-derived macrophages. Bioch Bioph Res Com 195:1174–1183

    Google Scholar 

  • Haddada H, Ragot T, Cordier L, Duffour MT, Perricaudet M (1993) Adenoviral interleukin-2 gene transfer into P815 tumor cells abrogates tumorigenicity and induces antitumoral immunity in mice. Hum Gene Ther 4:703–711

    Google Scholar 

  • Hock H, Dorsch M, Diamantstein T, Blankenstein T (1991) Interleukin-7 induces CD4+ T cell-dependent tumor rejection. J Exp Med 174:1291–1298

    Google Scholar 

  • Hui K, Grosveld F, Festenstein H (1984) Rejection of transplantable AKR leukemia cells following MHC DNA-mediated cell transplantation. Nature 311:750–752

    Google Scholar 

  • Jicha DL, Mulé JJ, Rosenberg SA (1991) Interleukin 7 generates antitumor cytotoxic T lymphocytes against murine sarcomas with efficacy in cellular adoptive immunotherapy. J Exp Med 174:1511–1515

    Google Scholar 

  • Lee MG, Abina MA, Haddada H, Perricaudet M (1995) The constitutive expression of the immunomodulatory gp19k protein in E1-, E3-adenoviral vectors strongly reduces the host cytotoxic T cell response against the vector. Gene Ther 3:256–262

    Google Scholar 

  • Lurquin C, Van Pel A, Mariame B, De Plaen E, Szikora JP, Janssens C, Reddehase M, Lejeune J, Boon T (1989) Structure for the gene coding for tumor antigen P91A: a peptide encoded by the mutated exon is recognised with Ld by cytolytic T cells. Cell 58:293–303

    Google Scholar 

  • Luster AD, Leder P (1993) IP-10, a C-X-C chemokine, elicits a potent thymus-dependent antitumor response in vivo. J Exp Med 178:1057–1065

    Google Scholar 

  • Mantovani A, Bottazzi B, Colotta F, Sozzani S, Ruco L (1992) The origin and function of tumor-associated macrophages. Immunol Today 13:265–270

    Google Scholar 

  • McBride WH, Thacker JD, Comora S, Economou JS, Kelley D, Hogge D, Dubinett SM, Dougherty GJ (1992) Genetic modification of a murine fibrosarcoma to produce interleukin 7 stimulates host cell infiltration and tumor immunity. Cancer Res 52:3931–3937

    Google Scholar 

  • Mercer WE, Shields MT, Lin D, Appella E, Ulrich SJ (1991) Growth suppression induced iby wild-type p53 protein is accompanied by selective down-regulation of proliferating-cell nuclear antigen expression. Proc Natl Acad Sci USA 88:1958–1962

    Google Scholar 

  • Morgan DA, Ruscetti FW, Gallo RG (1976) Selective in vitro growth of T-lymphocytes from normal bone marrow. Science 193:1007–1008

    Google Scholar 

  • Mulé JJ, McIntosh JK, Jablons DM, Rosenberg SA (1990) Anti-tumor activity of recombinant interleukin 6 in mice. J Exp Med 171:629–636

    Google Scholar 

  • Mulé JJ, Custer MC, Travis WD, Rosenberg SA (1992) Cellular mechanisms of the antitumor activity of recombinant IL-6 in mice. J Immunol 148:2622–2629

    Google Scholar 

  • Pardoll DM (1993) Cancer vaccines. Immunology Today 14:310–316

    Google Scholar 

  • Porgador A, Tzehoval E, Katz A, Vadal E, Revel M, Feldman M, Eisenbach L (1992) Interleukin 6 gene transfection into Lewis lung carcinoma tumor cells suppresses the malignant phenotype and confers immunotherapeutic competence against parental metastatic cells. Cancer Res 52:3679–3686

    Google Scholar 

  • Rollins BJ, Sunday ME (1991) Suppression of tumor formation in vivo by reversion of the JE gene in malignant cells. Mol Cell Biol 11:3125–3131

    Google Scholar 

  • Rosenberg SA (1992) The immunotherapy and gene therapy of cancer. J Clin Oncol 10:180–199

    Google Scholar 

  • Rosenfeld MA, Siegried W, Yoshimura K, Yoneyama K, Fukayama M, Siter LE, Paakko P, Gilardi P, Stratford-Perricaudet LD, Perricaudet M, Pavirani A, Lecocq JP, Crystal RG (1991) Adenovirus-mediated transfer of a recombinant alpha-1-antitrypsin gene to the lung epithelium in vivo. Science 252:431–434

    Google Scholar 

  • Rosenfeld MA, Yoshimura K, Trapnell BC, Yoneyama K, Rosenthal ER, Dalemans W, Fukayama M, Bargon J, Stier LE, Stratford-Perricaudet L, Perricaudet M, Guggino WB, Pavirani A, Lecocq JP, Crystal RG (1992) In vivo transfer of the human cystic fibrosis transmembrane conductance regulator gene to the airway epithelium. Cell 68:143–155

    Google Scholar 

  • Rüssel SJ, Eccles SA, Flemming CL, Johnson CA, Collins MK (1991) Decreased tumorigenicity of a transplantable rat sarcoma following transfer and expression of an IL-2 cDNA. Int J Cancer 47:244–251

    Google Scholar 

  • Spergel JM, Hsu W, Akira S, Thimmappaya B, Kishimoto T, Chen-Kiang S (1992) NF-IL6, a member of the C/EBP family, regulates E1a responsive promoters in absence of E1a. J Virol 66:1021–1030

    Google Scholar 

  • Stratford-Perricaudet LD, Makeh I, Perricaudet M, Briand P (1992) Widespread long-term gene transfer to mouse skeletal muscles and heart. J Clin Invest 90:626–630

    Google Scholar 

  • Tahara H, Lotze MT (1995) Antitumoral effects of interleukin-12 (IL-12): applications for the immunotherapy and gene therapy of cancer. Gene Ther 2:96–106

    Google Scholar 

  • Teng MN, Park BH, Koeppen HK, Tracey KJ, Fendly BM, Schreiber H (1991) Long-term inhibition of tumor growth by tumor necrosis factor in the absence of cachexia or T-cell immunity. Proc Natl Acad Sci USA 88:3535–3539

    Google Scholar 

  • Tepper RI (1992) The tumor-cytokine transplantation assay and the antitumor activity of interleukin-4. Bone Marrow Transpl 9 [Suppl 1]:177–181

    Google Scholar 

  • Tepper RI, Pattengale PK, Leder P (1989) Murine interleukin-4 displays potent anti-tumor activity in vivo. Cell 57:503–512

    Google Scholar 

  • Tominaga O, Hamelin R, Remvikos Y, Salmon RJ, Thomas G (1992) p53 from basic research to clinical applications. Crit Rev Oncog 3:257–282

    Google Scholar 

  • Top FH, Buescher EL, Bancroft WH, Russell PK (1971) Immunization with live types 7 and 4 adenovirus vaccines. II. Antibody response and protective effect against acute respiratory disease due to adenovirus type 7. J Infect Dis 124:155–160

    Google Scholar 

  • Townsend S, Allison J (1993) Tumor rejection after direct costimulation of CD8+ T cells by B7-transfected melanoma cells. Science 259:368–72

    Google Scholar 

  • Van der Bruggen P, Traversari C, Chomez P, Lurquin C, De Plaen E, Van der Eynde B, Knuth A, Boon T (1991) A gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma. Science 254:1643–1647

    PubMed  Google Scholar 

  • Vile RG, Hart IR (1993) Use of tissue-specific expression of the herpes simplex virus thymidine kinase gene to inhibit growth of established murine melanomas following direct intratumoral injection of DNA. Cancer Res 53:3860–3864

    Google Scholar 

  • Vile RG, Nelson JA, Castlden S, Chong H, Hart IR (1994) Systemic therapy of murine melanoma using tissue specific expression of the HSVtk gene involves an immune component. Cancer Res 54:6228–6234

    Google Scholar 

  • Wallich R, Bulbuc N, Hammerling G, Katzav S, Segal S, Feldman M (1985) Aberration of metastatic properties of tumor cells by de novo expression of H-2 K antigens following H-2 gene transfection. Nature 315:301–305

    Google Scholar 

  • Wang J, Bucana CD, Roth JA, Zhang WW (1995) Apoptosis induced in human osteosarcoma cells is one of the mechanisms for the cytocidal effect of Ad5CMV-p53. Cancer Gene Ther 2:9–17

    Google Scholar 

  • Watanabe B, Kuribayashi K, Miyatake S, Nishihara K, Nakayama EI, Taniyama T, Sakata TA (1989) Exogenous expression of mouse interferon-gamma cDNA in mouse neuroblastoma C1300 cells results in reduced tumorigenicity by augmented anti-tumor immunity. Proc Natl Acad Sci USA 86:9456–9460

    Google Scholar 

  • Wilson C, Kay MA (1995) Immunomodulation to enhance gene therapy. Nature Med 1:887–889

    Google Scholar 

  • Yang Y, Nunes FA, Berncsi K, Furth EE, Gönczöl E, Wilson JM (1994a) Cellular immunity to viral antigens limits E1-deleted adenoviruses for gene therapy. Proc Natl Acad Sci USA 91:4407–4411

    Google Scholar 

  • Yang Y, Erth HCJ, Wilson JM (1994b) MHC class I restricted cytotoxic T lymphocytes to viral antigens destroy hepatocytes in mice infected with E1 deleted recombinant adenoviruses. Immunity 1:433–442

    Google Scholar 

  • Yang Y, Nunes FA, Berncsi K, Furth EE, Gönczöl E, Engelhardt JF, Wilson JM (1994c) Inactivation of E2a in recombinant adenoviruses limits cellular immunity and improves the prospect for gene therapy of cystic fibrosis. Nature Genet 7:363–369

    Google Scholar 

  • Yang Y, Trinchieri G, Wilson JM (1995a) Recombinant IL-12 prevents formation of blocking IgA antibodies to recombinant adenovirus and allows repeated gene therapy to mouse lung. Nature Med 1:890–893

    Google Scholar 

  • Yang Y, Xiang Z, Erth HCJ, Wilson JM (1995b) Upregulation of class I major histocompatibility complex antigens by interferon gamma is necessary for T-cell-mediated elimination of recombinant adenovirus-infected hepatocytes in vivo. Proc Natl Acad Sci USA 92:7257–7261

    Google Scholar 

  • Zhang WW, Fang X, Mazur W, French BA, Georges RN, Roth JA (1994) High-efficiency gene transfer and high-level expression of wild-type p53 in human lung cancer cells mediated by recombinant adenovirus. Cancer Gene Ther 1:5–13

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Descamps, V., Duffour, M.T., Mathieu, M.C. et al. Strategies for cancer gene therapy using adenoviral vectors. J Mol Med 74, 183–189 (1996). https://doi.org/10.1007/BF00204748

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00204748

Key words

Navigation