Skip to main content
Log in

Size determines antennal sensitivity and behavioral threshold to odors in bumblebee workers

  • Original Paper
  • Published:
Naturwissenschaften Aims and scope Submit manuscript

Abstract

The eusocial bumblebees exhibit pronounced size variation among workers of the same colony. Differently sized workers engage in different tasks (alloethism); large individuals are found to have a higher probability to leave the colony and search for food, whereas small workers tend to stay inside the nest and attend to nest duties. We investigated the effect of size variation on morphology and physiology of the peripheral olfactory system and the behavioral response thresholds to odors in workers of Bombus terrestris. Number and density of olfactory sensilla on the antennae correlate significantly with worker size. Consistent with these morphological changes, we found that antennal sensitivity to odors increases with body size. Antennae of large individuals show higher electroantennogram responses to a given odor concentration than those of smaller nestmates. This finding indicates that large antennae exhibit an increased capability to catch odor molecules and thus are more sensitive to odors than small antennae. We confirmed this prediction in a dual choice behavioral experiment showing that large workers indeed are able to respond correctly to much lower odor concentrations than small workers. Learning performance in these experiments did not differ between small and large bumblebees. Our results clearly show that, in the social bumblebees, variation in olfactory sensilla number due to size differences among workers strongly affects individual odor sensitivity. We speculate that superior odor sensitivity of large workers has favored size-related division of labor in bumblebee colonies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Agren L, Hallberg E (1996) Flagellar sensilla of bumble bee males (Hymenoptera, Apidae, Bombus). Apidologie 27:433–444

    Google Scholar 

  • Beshers SN, Fewell JH (2001) Models of division of labor in social insects. Annu Rev Entomol 46:413–440

    Article  PubMed  CAS  Google Scholar 

  • Beshers SN, Robinson GE, Mittenthal JE (1999) Response thresholds and division of labor in insect colonies. In: Detrain C, Deneubourg JL, Pasteels JM, (eds) Information processing in social insects. Birkhäuser, Basel, pp 115–139

    Google Scholar 

  • Brian AD (1952) Division of labor and foraging in Bombus agrorum Fabricius. J Anim Ecol 21:223–240

    Article  Google Scholar 

  • Bonabeau E, Theraulaz G (1999) Role and variability of response thresholds in the regulation of division of labor in insect colonies. In: Detrain C, Deneubourg JL, Pasteels JM, (eds) Information processing in social insects. Birkhäuser, Basel, pp 141–163

    Google Scholar 

  • Brockmann A, Brückner D, Crewe RM (1998) The EAG response spectra of workers and drones to queen honeybee mandibular gland components: the evolution of a social signal. Naturwissenschaften 85:283–285

    Article  CAS  Google Scholar 

  • Bullock SH (1999) Relationships among body size, wing size and mass in bees from a tropical dry forest in México. J Kans Entomol Soc 72:426–439

    Google Scholar 

  • Chapman RF (1982) Chemoreception: the significance of receptor numbers. In: Berridge MJ, Treherne JE, Wigglesworth VB (eds) Advances in insect physiology, vol. 16. Academic Press, New York, pp 247–356

    Google Scholar 

  • Chapman RF (1998) The insects. Cambridge University Press, Cambridge

    Google Scholar 

  • Chittka L, Thomson J, Waser NM (1999) Flower constancy, insect psychology, and plant evolution. Naturwissenschaften 8:361–377

    Article  Google Scholar 

  • Cumber RA (1949) The biology of humble-bees, with special reference to the production of the worker caste. Trans R Entomol Soc Lond 100:1–45

    Google Scholar 

  • Dekker T, Ibba I, Siju KP, Stensmeyr MC, Hansson BS (2006) Olfactory shifts parallel superspecialism for toxic fruit in Drosophila melanogaster sibling, D. sechellia. Curr Biol 16:101–109

    Article  PubMed  CAS  Google Scholar 

  • Esslen J, Kaissling KE (1976) Zahl und Verteiling antennaler Sensillen bei der Honigbiene (Apis mellifera L.). Zoomorphol 83:227–251

    Article  Google Scholar 

  • Farris SM, Roberts NS (2005) Coevolution of generalists feeding ecologies and gyrencephalic mushroom bodies in insects. Proc Natl Acad Sci USA 102:17394–17399

    Article  PubMed  CAS  Google Scholar 

  • Fonta C, Masson C (1985) Organisation neuroanatomique de la voie afférente antennaire chez les Bourdons mâles et femelles (Bombus sp.). C R Acad Sci Paris 3:437–442

    Google Scholar 

  • Garófalo C (1978) Bionomics of Bombus (fervidobombus) morio: 2. body size and length of life of workers. J Apic Res 17:130–136

    Google Scholar 

  • Goulson D, Peat J, Stout JC, Tucker J, Darvill B, Derwent LC, Hughes WOH (2002) Can alloethism in workers of the bumblebee Bombus terrestris be explained in terms of foraging efficiency? Anim Behav 64:123–130

    Article  Google Scholar 

  • Heinrich B (1979) Bumblebee economics. Havard University Press, Cambridge

    Google Scholar 

  • Heisenberg M (2003) Mushroom body memoir: from maps to models. Nat Rev Neurosci 4:266–275

    Article  PubMed  CAS  Google Scholar 

  • Hildebrand JG, Shepherd GM (1997) Mechanisms of olfactory discrimination: converging evidence for common principles across phyla. Annu Rev Neurosci 20:595–631

    Article  PubMed  CAS  Google Scholar 

  • Kaissling K-E (1995) Single unit and electroantennogram recordings in insect olfactory organs. In: Spielman AI, Brand JG (eds) Experimental cell biology of taste and olfaction. CRC Press, Boca Raton, pp 361–377

    Google Scholar 

  • Kaissling K-E, Thorson J (1980) Insect olfactory sensilla: structural, chemical and electrical aspects of the functional organization. In: Sattelle DB, Hall LM, Hildebrand JG (eds) Receptors for neurotransmitters, hormones and pheromones in insects. Elsevier, Amsterdam, pp 261–282

    Google Scholar 

  • Mares S, Ash L, Gronenberg W (2005) Brain allometry in bumblebee and honey bee workers. Brain Behav Evol 66:50–61

    Article  PubMed  Google Scholar 

  • Michener CD (1974) The social behavior of the bees. Harvard University Press, Cambridge

    Google Scholar 

  • Nishino C, Kuwabara K (1983) Threshold dose values for sex pheromones of the American cockroach in electroantennogram and behavioural responses. Comp Biochem Physiol 74:909–914

    Article  Google Scholar 

  • Ochieng SA, Hansson BS (1999) Responses of olfactory receptor neurons to behaviourally important odours in gregarious and solitary desert locust, Schistocerca gregaria. Physiol Entomol 24:28–36

    Article  Google Scholar 

  • Pereboom JJM, Velthuis HHM, Duchateau MJ, et al. (2003) The organisation of larval feeding in bumblebees (Hymenoptera, Apidae) and its significance to caste differentiation. Insectes Soc 50:127–133

    Article  Google Scholar 

  • Plowright RC, Jay SC (1968) Caste differentiation in bumblebees (Bombus latr.: Hym.) I. The determination of female size. Insectes Soc 2:171–192

    Article  Google Scholar 

  • Rice WR (1989) Analyzing tables of statistical tests. Evolution 43:223–225

    Article  Google Scholar 

  • Rospars JP (1988) Structure and development of the insect antennodeutocerebral system. Int J Insect Morphol Embryol 17:243–294

    Article  Google Scholar 

  • Schneider D (1957) Eletrophysiologische Untersuchungen von Chemo- und Mechanorezeptoren der Antenne des Seidenspinners Bombyx mori. Z Vergl Physiol 40:8–41

    Article  Google Scholar 

  • Spaethe J, Chittka L (2003) Interindividual variation of eye optics and single object resolution in bumblebees. J Exp Biol 206:3447–3453

    Article  PubMed  Google Scholar 

  • Spaethe J, Weidenmüller A (2002) Size variation and foraging rate in bumblebees (Bombus terrestris). Insectes Soc 49:142–146

    Article  Google Scholar 

  • Van der Gen A (1972) Corps olfactifs a l’odeau al jasmin. Parfum Cosmet Savon 2:356–370

    Google Scholar 

  • Vander Meer RK, Breed MD, Espelie KE, Winston ML (1998) Pheromone communication in social insects. Westview Press, Oxford

    Google Scholar 

  • Vareschi E (1971) Duftunterscheidung bei der Honigbiene - Einzelzell-Ableitungen und Verhaltensreaktionen. Z Vergl Physiol 75:142–173

    Google Scholar 

  • White PR (1991) The electroantennogram response: effects of varying sensillum numbers and recording electrode position in a clubbed antenna. J Insect Physiol 37:145–152

    Article  Google Scholar 

Download references

Acknowledgment

We thank R. F. Chapman, J. G. Hildebrand, and J. Schachtner for their valuable comments on an earlier version of the manuscript and C. Lutz and S. Beshers for comments on the present version. J.S. and A.B. were supported by the German Research Foundation DFG (SFB554 and Graduiertenkolleg 200). The experiments in this study comply with the current laws of Germany.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Axel Brockmann.

Additional information

Spaethe and Brockmann both contributed equally to the manuscript.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spaethe, J., Brockmann, A., Halbig, C. et al. Size determines antennal sensitivity and behavioral threshold to odors in bumblebee workers. Naturwissenschaften 94, 733–739 (2007). https://doi.org/10.1007/s00114-007-0251-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00114-007-0251-1

Keywords

Navigation