Skip to main content
Log in

Exekutive Funktionen bei depressiven Patienten

Zur Rolle der präfrontalen Aktivierung

Executive functions in patients with depression

The role of prefrontal activaton

  • Übersichten
  • Published:
Der Nervenarzt Aims and scope Submit manuscript

Zusammenfassung

Die Depression ist eine facettenreiche Erkrankung, die zu tief greifenden Einschnitten in fast allen Lebensbereichen führen kann. Alltagsrelevante Symptome sind kognitive Störungen, die zu wesentlichen Beeinträchtigungen und Leistungseinschränkungen führen. Neuropsychologische Untersuchungen zeigen neben Gedächtnisproblemen vor allem Defizite im Bereich exekutiver Funktionen. Bis jetzt existieren nur wenige funktionell-bildgebende Untersuchungen, die mit Hilfe von neuropsychologischen Tests gezielt die neurofunktionellen Mechanismen exekutiver Defizite untersucht haben. Die erhobenen Befunde reichen von einer Minder- bis hin zu einer Mehraktivierung in präfrontalen Arealen als Substrat einer erbrachten exekutiven Leistung. In diesem Beitrag werden die bisherigen Befunde vor dem Hintergrund des Konzepts der Depression als komplexer Störung eines limbisch-kortikalen Regelkreises diskutiert. Dabei zeigt sich, dass eine „einfache“ Hypofrontalität keinen ausreichenden Erklärungsansatz bietet, sondern ein dynamisches Modell notwendig ist, um der gegenwärtigen Datenlage Rechnung zu tragen. Dieses sollte verschiedene depressive Subtypen mit ihren z. T. verschiedenen neurofunktionellen und metabolischen Mustern berücksichtigen.

Summary

Depression is a multifarious disease, having an impact on most aspects of everyday life. Cognitive deficits cause considerable impairments and restraints in performance and have become one of the major clinical and research foci in recent years. According to previous work, deficits in executive functioning seem to be particularly prominent. At present only a few functional neuroimaging studies investigated the neurofunctional correlates aimed at these deficits by using specific activation tasks. These findings are somewhat controversial, revealing prefrontal hypo- as well as hyperactivation as a substrate of executive performance. This paper reviews current functional neuroimaging findings within a framework of depression as a dysfunction in limbic-cortical circuits. As a conclusion, the concept of “simple” hypofrontality does not offer a satisfactory explanation. Rather, a more dynamic model will be necessary in order to achieve a more realistic concept of executive deficits in depression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Abb. 1
Abb. 2
Abb. 3

Literatur

  1. Alexopoulos GS, Kiosses DN, Heo M et al. (2005) Executive dysfunction and the course of geriatric depression. Biol Psychiatry 58: 204–210

    Article  PubMed  Google Scholar 

  2. Alexopoulos GS, Meyers BS, Young RC et al. (2000) Executive dysfunction and long-term outcomes of geriatric depression. Arch Gen Psychiatry 57: 285–290

    Article  PubMed  CAS  Google Scholar 

  3. Audenaert K, Goethals I, Van Laere K et al. (2002) SPECT neuropsychological activation procedure with the Verbal Fluency Test in attempted suicide patients. Nucl Med Commun 23: 907–916

    Article  PubMed  Google Scholar 

  4. Austin MP, Ross M, Murray C, O“Carroll RE et al. (1992) Cognitive function in major depression. J Affect Disord 25: 21–29

    Article  PubMed  CAS  Google Scholar 

  5. Baddeley AD, Logie RH (1999) Working memory: the multiple-component model. In: A. Miyake PS (ed) Models of Working Memory: Mechanisms of Active Maintenance and Executive Control. Cambridge Univ Press, New York, pp 28–61

    Google Scholar 

  6. Baker SC, Frith CD, Dolan RJ (1997) The interaction between mood and cognitive function studied with PET. Psychol Med 27: 565–578

    Article  PubMed  CAS  Google Scholar 

  7. Barbas H, Saha S, Rempel-Clower N, Ghashghaei T (2003) Serial pathways from primate prefrontal cortex to autonomic areas may influence emotional expression. BMC Neurosci 4: 25

    Article  PubMed  Google Scholar 

  8. Barch DM, Sheline YI, Csernansky JG, Snyder AZ (2003) Working memory and prefrontal cortex dysfunction: specificity to schizophrenia compared with major depression. Biol Psychiatry 53: 376–384

    Article  PubMed  Google Scholar 

  9. Baxter LR, Jr., Schwartz JM, Phelps ME et al. (1989) Reduction of prefrontal cortex glucose metabolism common to three types of depression. Arch Gen Psychiatry 46: 243–250

    PubMed  CAS  Google Scholar 

  10. Beats BC, Sahakian BJ, Levy R (1996) Cognitive performance in tests sensitive to frontal lobe dysfunction in the elderly depressed. Psychol Med 26: 591–603

    PubMed  CAS  Google Scholar 

  11. Beblo T, Herrmann M (2000) [Neuropsychological deficits in depressive disorders]. Fortschr Neurol Psychiatr 68: 1–11

    Article  PubMed  CAS  Google Scholar 

  12. Beblo Th BB, Wallesch C-W, Hermann M (1999) Neuropsychological correlates of major depression: a short term follow up. Cogn Neuropsychiatry 4: 333–341

    Article  Google Scholar 

  13. Bench CJ, Friston KJ, Brown RG et al. (1993) Regional cerebral blood flow in depression measured by positron emission tomography: the relationship with clinical dimensions. Psychol Med 23: 579–590

    PubMed  CAS  Google Scholar 

  14. Bench CJ, Friston KJ, Brown RG et al. (1992) The anatomy of melancholia–focal abnormalities of cerebral blood flow in major depression. Psychol Med 22: 607–615

    PubMed  CAS  Google Scholar 

  15. Berman KF, Doran AR, Pickar D, Weinberger DR (1993) Is the mechanism of prefrontal hypofunction in depression the same as in schizophrenia? Regional cerebral blood flow during cognitive activation. Br J Psychiatry 162: 183–192

    Article  PubMed  CAS  Google Scholar 

  16. Brannan SK MH, McGinnis (2000) Cingulate metabolism predicts treatment response: a replication. Biol Psychiatry 47: 107S

    Article  Google Scholar 

  17. Brody AL, Saxena S, Stoessel P et al. (2001) Regional brain metabolic changes in patients with major depression treated with either paroxetine or interpersonal therapy: preliminary findings. Arch Gen Psychiatry 58: 631–640

    Article  PubMed  CAS  Google Scholar 

  18. Buchsbaum MS, Wu J, Siegel BV et al. (1997) Effect of sertraline on regional metabolic rate in patients with affective disorder. Biol Psychiatry 41: 15–22

    Article  PubMed  CAS  Google Scholar 

  19. Burt DB, Zembar MJ, Niederehe G (1995) Depression and memory impairment: a meta-analysis of the association, its pattern, and specificity. Psychol Bull 117: 285–305

    Article  PubMed  CAS  Google Scholar 

  20. Bush G, Luu P, Posner MI (2000) Cognitive and emotional influences in anterior cingulate cortex. Trends Cogn Sci 4: 215–222

    Article  PubMed  Google Scholar 

  21. Caine ED (1981) Pseudodementia. Current concepts and future directions. Arch Gen Psychiatry 38: 1359–1364

    PubMed  CAS  Google Scholar 

  22. Callicott JH, Bertolino A, Mattay VS et al. (2000) Physiological dysfunction of the dorsolateral prefrontal cortex in schizophrenia revisited. Cereb Cortex 10: 1078–1092

    Article  PubMed  CAS  Google Scholar 

  23. Callicott JH, Mattay VS, Verchinski BA et al. (2003) Complexity of prefrontal cortical dysfunction in schizophrenia: more than up or down. Am J Psychiatry 160: 2209–2215

    Article  PubMed  Google Scholar 

  24. Channon S (1996) Executive dysfunction in depression: the Wisconsin Card Sorting Test. J Affect Disord 39: 107–114

    Article  PubMed  CAS  Google Scholar 

  25. Coryell W, Endicott J, Winokur G et al. (1995) Characteristics and significance of untreated major depressive disorder. Am J Psychiatry 152: 1124–1129

    PubMed  CAS  Google Scholar 

  26. Dew MA, Bromet EJ, Schulberg HC et al. (1991) Factors affecting service utilization for depression in a white collar population. Soc Psychiatry Psychiatr Epidemiol 26: 230–237

    Article  PubMed  CAS  Google Scholar 

  27. Dougherty DD, Weiss AP, Cosgrove GR et al. (2003) Cerebral metabolic correlates as potential predictors of response to anterior cingulotomy for treatment of major depression. J Neurosurg 99: 1010–1017

    PubMed  Google Scholar 

  28. Drevets WC (2001) Neuroimaging and neuropathological studies of depression: implications for the cognitive-emotional features of mood disorders. Curr Opin Neurobiol 11: 240–249

    Article  PubMed  CAS  Google Scholar 

  29. Drevets WC (2000) Neuroimaging studies of mood disorders. Biol Psychiatry 48: 813–829

    Article  PubMed  CAS  Google Scholar 

  30. Drevets WC, Bogers W, Raichle ME (2002) Functional anatomical correlates of antidepressant drug treatment assessed using PET measures of regional glucose metabolism. Eur Neuropsychopharmacol 12: 527–544

    Article  PubMed  CAS  Google Scholar 

  31. Duncan J, Owen AM (2000) Common regions of the human frontal lobe recruited by diverse cognitive demands. Trends Neurosci 23: 475–483

    Article  PubMed  CAS  Google Scholar 

  32. Ebert D, Feistel H, Barocka A (1991) Effects of sleep deprivation on the limbic system and the frontal lobes in affective disorders: a study with Tc-99m-HMPAO SPECT. Psychiatry Res 40: 247–251

    Article  PubMed  CAS  Google Scholar 

  33. Ebert D, Feistel H, Barocka A, Kaschka W (1994) Increased limbic blood flow and total sleep deprivation in major depression with melancholia. Psychiatry Res 55: 101–109

    Article  PubMed  CAS  Google Scholar 

  34. Eder-Sommer G BR (1996) Verlangsamung des mentalen Durchmusterns (memory scanning) bei älteren Depressiven: Eine kontrollierte klinische Untersuchung. Zeitschrift für Neuropsychologie 1: 48–60

    Google Scholar 

  35. Elliott R (1998) The neuropsychological profile in unipolar depression. Trends in Cognitive Sciences 2(11): 447–454

    Article  Google Scholar 

  36. Elliott R, Baker SC, Rogers RD et al. (1997) Prefrontal dysfunction in depressed patients performing a complex planning task: a study using positron emission tomography. Psychol Med 27: 931–942

    Article  PubMed  CAS  Google Scholar 

  37. Elliott R, Sahakian BJ, McKay AP et al. (1996) Neuropsychological impairments in unipolar depression: the influence of perceived failure on subsequent performance. Psychol Med 26: 975–989

    PubMed  CAS  Google Scholar 

  38. Engle RW, Tuholski SW, Laughlin JE, Conway AR (1999) Working memory, short-term memory, and general fluid intelligence: a latent-variable approach. J Exp Psychol Gen 128: 309–331

    Article  PubMed  CAS  Google Scholar 

  39. Erk S WH, Spitzer M (2002) Functional Neuroimaging of depression. In: WP K (ed) Perspectives in Affective Disorders. Adv Biol Psychiatry. Karger, Basel, pp 63–69

  40. Everett J, Lajeunesse C (2000) [Cognitive inhibition and psychopathology: toward a less simplistic conceptualization]. Encephale 26: 13–20

    PubMed  CAS  Google Scholar 

  41. Friedman AS (1964) Minimal Effects of Severe Depression on Cognitive Functioning. J Abnorm Psychol 69: 237–243

    Article  PubMed  CAS  Google Scholar 

  42. Galynker, II, Cai J, Ongseng F et al. (1998) Hypofrontality and negative symptoms in major depressive disorder. J Nucl Med 39: 608–612

    PubMed  CAS  Google Scholar 

  43. George MS, Ketter TA, Parekh PI et al. (1995) Brain activity during transient sadness and happiness in healthy women. Am J Psychiatry 152: 341–351

    PubMed  CAS  Google Scholar 

  44. George MS, Ketter TA, Parekh PI F et al. (1997) Blunted left cingulate activation in mood disorder subjects during a response interference task (the Stroop). J Neuropsychiatry Clin Neurosci 9: 55–63

    PubMed  CAS  Google Scholar 

  45. Goldapple K, Segal Z, Garson C F et al. (2004) Modulation of cortical-limbic pathways in major depression: treatment-specific effects of cognitive behavior therapy. Arch Gen Psychiatry 61: 34–41

    Article  PubMed  Google Scholar 

  46. Gusnard DA, Akbudak E, Shulman GL, Raichle ME (2001) Medial prefrontal cortex and self-referential mental activity: relation to a default mode of brain function. Proc Natl Acad Sci U S A 98: 4259–4264

    Article  PubMed  CAS  Google Scholar 

  47. Gusnard DA, Raichle ME (2001) Searching for a baseline: functional imaging and the resting human brain. Nat Rev Neurosci 2: 685–694

    Article  PubMed  CAS  Google Scholar 

  48. Hart RP, Kwentus JA (1987) Psychomotor slowing and subcortical-type dysfunction in depression. J Neurol Neurosurg Psychiatry 50: 1263–1266

    PubMed  CAS  Google Scholar 

  49. Harvey PO, Fossati P, Pochon JB F et al. (2005) Cognitive control and brain resources in major depression: An fMRI study using the n-back task. Neuroimage 26: 860–869

    Article  PubMed  Google Scholar 

  50. Harvey PO, Le Bastard G, Pochon JB F et al. (2004) Executive functions and updating of the contents of working memory in unipolar depression. J Psychiatr Res 38: 567–576

    Article  PubMed  CAS  Google Scholar 

  51. Hasher L ZRT (1979) Automatic and effortful processes in memory. J Exp Psychol Gen 108: 356–388

    Article  Google Scholar 

  52. Hertel PT, Hardin TS (1990) Remembering with and without awareness in a depressed mood: evidence of deficits in initiative. J Exp Psychol Gen 119: 45–59

    Article  PubMed  CAS  Google Scholar 

  53. Holmes AJ, Macdonald A, 3rd, Carter CS F et al. (2005) Prefrontal functioning during context processing in schizophrenia and major depression: An event-related fMRI study. Schizophr Res 76: 199–206

    Article  PubMed  Google Scholar 

  54. Holthoff VA, Beuthien-Baumann B, Pietrzyk U F et al. (1999) [Changes in regional cerebral perfusion in depression.SPECT monitoring of response to treatment]. Nervenarzt 70: 620–626

    Article  PubMed  CAS  Google Scholar 

  55. Hugdahl K, Rund BR, Lund A, Asbjornsen A F et al. (2004) Brain activation measured with fMRI during a mental arithmetic task in schizophrenia and major depression. Am J Psychiatry 161: 286–293

    Article  PubMed  Google Scholar 

  56. Kaiser S, Unger J, Kiefer M F et al. (2003) Executive control deficit in depression: event-related potentials in a Go/Nogo task. Psychiatry Res 122: 169–184

    Article  PubMed  Google Scholar 

  57. Kalayam B, Alexopoulos GS (1999) Prefrontal dysfunction and treatment response in geriatric depression. Arch Gen Psychiatry 56: 713–718

    Article  PubMed  CAS  Google Scholar 

  58. Kondo H, Morishita M, Osaka N F et al. (2004) Functional roles of the cingulo-frontal network in performance on working memory. Neuroimage 21: 2–14

    Article  PubMed  Google Scholar 

  59. Landro NI, Celius EG, Sletvold H (2004) Depressive symptoms account for deficient information processing speed but not for impaired working memory in early phase multiple sclerosis (MS). J Neurol Sci 217: 211–216

    Article  PubMed  Google Scholar 

  60. Lezak MD (1995) Neuropsychological Assessment. Oxford University Press, New York

  61. Majer M, Ising M, Kunzel H F et al. (2004) Impaired divided attention predicts delayed response and risk to relapse in subjects with depressive disorders. Psychol Med 34: 1453–1463

    Article  PubMed  CAS  Google Scholar 

  62. Manoach DS (2003) Prefrontal cortex dysfunction during working memory performance in schizophrenia: reconciling discrepant findings. Schizophr Res 60: 285–298

    Article  PubMed  Google Scholar 

  63. Martinot JL, Hardy P, Feline A F et al. (1990) Left prefrontal glucose hypometabolism in the depressed state: a confirmation. Am J Psychiatry 147: 1313–1317

    PubMed  CAS  Google Scholar 

  64. Matsuo K, Kato N, Kato T (2002) Decreased cerebral haemodynamic response to cognitive and physiological tasks in mood disorders as shown by near-infrared spectroscopy. Psychol Med 32: 1029–1037

    Article  PubMed  CAS  Google Scholar 

  65. Mayberg HS (2003) Modulating dysfunctional limbic-cortical circuits in depression: towards development of brain-based algorithms for diagnosis and optimised treatment. Br Med Bull 65: 193–207

    Article  PubMed  Google Scholar 

  66. Mayberg HS, Brannan SK, Mahurin RK F et al. (1997) Cingulate function in depression: a potential predictor of treatment response. Neuroreport 8: 1057–1061

    Article  PubMed  CAS  Google Scholar 

  67. Mayberg HS, Lewis PJ, Regenold W, Wagner HN Jr. (1994) Paralimbic hypoperfusion in unipolar depression. J Nucl Med 35: 929–934

    PubMed  CAS  Google Scholar 

  68. Mayberg HS, Liotti M, Brannan SK F et al. (1999) Reciprocal limbic-cortical function and negative mood: converging PET findings in depression and normal sadness. Am J Psychiatry 156: 675–682

    PubMed  CAS  Google Scholar 

  69. Mayberg HS, Lozano AM, Voon V F et al. (2005) Deep brain stimulation for treatment-resistant depression. Neuron 45: 651–660

    Article  PubMed  CAS  Google Scholar 

  70. Mayes A, Daum I (1997) How specific are the memory and other cognitive deficits caused by frontal lobe lesions? In: P R (ed) Methodology of frontal and executive function. Psychology Press, Hove, pp 155–177

  71. Michaud CM, Murray CJ, Bloom BR (2001) Burden of disease – implications for future research. JAMA 285: 535–539

    Article  PubMed  CAS  Google Scholar 

  72. Miller WR (1975) Psychological deficit in depression. Psychol Bull 82: 238–260

    Article  PubMed  CAS  Google Scholar 

  73. Mottaghy FM, Keller CE, Gangitano M et al. (2002) Correlation of cerebral blood flow and treatment effects of repetitive transcranial magnetic stimulation in depressed patients. Psychiatry Res 115: 1–14

    Article  PubMed  Google Scholar 

  74. Nobler MS, Oquendo MA, Kegeles LS F et al. (2001) Decreased regional brain metabolism after ect. Am J Psychiatry 158: 305–308

    Article  PubMed  CAS  Google Scholar 

  75. Northoff G, Heinzel A, Bermpohl FF et al. (2004) Reciprocal modulation and attenuation in the prefrontal cortex: an fMRI study on emotional-cognitive interaction. Hum Brain Mapp 21: 202–212

    Article  PubMed  Google Scholar 

  76. Okada G, Okamoto Y, Morinobu S et al. (2003) Attenuated left prefrontal activation during a verbal fluency task in patients with depression. Neuropsychobiology 47: 21–26

    Article  PubMed  CAS  Google Scholar 

  77. Osaka M, Osaka N, Kondo H et al. (2003) The neural basis of individual differences in working memory capacity: an fMRI study. Neuroimage 18: 789–797

    Article  PubMed  Google Scholar 

  78. Paelecke-Habermann Y, Pohl J, Leplow B (2005) Attention and executive functions in remitted major depression patients. J Affect Disord 89: 125–135

    Article  PubMed  Google Scholar 

  79. Pelosi L, Slade T, Blumhardt LD, Sharma VK (2000) Working memory dysfunction in major depression: an event-related potential study. Clin Neurophysiol 111: 1531–1543

    Article  PubMed  CAS  Google Scholar 

  80. Purcell R, Maruff P, Kyrios M, Pantelis C (1997) Neuropsychological function in young patients with unipolar major depression. Psychol Med 27: 1277–1285

    Article  PubMed  CAS  Google Scholar 

  81. Raichle ME, MacLeod AM, Snyder AZ F et al. (2001) A default mode of brain function. Proc Natl Acad Sci U S A 98: 676–682

    Article  PubMed  CAS  Google Scholar 

  82. Ridderinkhof KR, Ullsperger M, Crone EA, Nieuwenhuis S (2004) The role of the medial frontal cortex in cognitive control. Science 306: 443–447

    Article  PubMed  CAS  Google Scholar 

  83. Rogers MA, Kasai K, Koji M et al. (2004) Executive and prefrontal dysfunction in unipolar depression: a review of neuropsychological and imaging evidence. Neurosci Res 50: 1–11

    Article  PubMed  Google Scholar 

  84. Rose EJ, Simonotto E, Ebmeier KP (2006) Limbic over-activity in depression during preserved performance on the n-back task. NeuroImage 29: 203–215

    PubMed  CAS  Google Scholar 

  85. Sackeim HA, Prohovnik I, Moeller JR F et al. (1990) Regional cerebral blood flow in mood disorders. I. Comparison of major depressives and normal controls at rest. Arch Gen Psychiatry 47: 60–70

    PubMed  CAS  Google Scholar 

  86. Smith EE, Jonides J (1999) Storage and executive processes in the frontal lobes. Science 283: 1657–1661

    Article  PubMed  CAS  Google Scholar 

  87. Smith GS, Reynolds CF, 3rd, Pollock B F et al. (1999) Cerebral glucose metabolic response to combined total sleep deprivation and antidepressant treatment in geriatric depression. Am J Psychiatry 156: 683–689

    PubMed  CAS  Google Scholar 

  88. Sternberg S (1966) High-speed scanning in human memory. Science 153: 652–654

    Article  PubMed  CAS  Google Scholar 

  89. Stordal KI, Lundervold AJ, Egeland J F et al. (2004) Impairment across executive functions in recurrent major depression. Nord J Psychiatry 58: 41–47

    Article  PubMed  Google Scholar 

  90. Trichard C, Martinot JL, Alagille M F et al. (1995) Time course of prefrontal lobe dysfunction in severely depressed in-patients: a longitudinal neuropsychological study. Psychol Med 25: 79–85

    Article  PubMed  CAS  Google Scholar 

  91. Vasic N, Wolf RC, Walter H (2005) Neurofunktionelle Grundlagen unipolarer depressiver Störungen. Nervenheilkunde 24: 603–610

    Google Scholar 

  92. Veiel HO (1997) A preliminary profile of neuropsychological deficits associated with major depression. J Clin Exp Neuropsychol 19: 587–603

    PubMed  CAS  Google Scholar 

  93. Videbech P, Ravnkilde B, Gammelgaard L et al. (2004) The Danish PET/depression project: performance on Stroop“s test linked to white matter lesions in the brain. Psychiatry Res 130: 117–130

    Article  PubMed  Google Scholar 

  94. Videbech P, Ravnkilde B, Kristensen S et al. (2003) The Danish PET/depression project: poor verbal fluency performance despite normal prefrontal activation in patients with major depression. Psychiatry Res 123: 49–63

    Article  PubMed  Google Scholar 

  95. Videbech P, Ravnkilde B, Pedersen AR F et al. (2001) The Danish PET/depression project: PET findings in patients with major depression. Psychol Med 31: 1147–1158

    Article  PubMed  CAS  Google Scholar 

  96. Vogt BA PD (1987) Cingulate cortex of the rhesus monkey: II. Cortical afferents. J Comp Neurol 8; 262(2): 271–289

    Google Scholar 

  97. Walter H (2005) Funktionelle Bildgebung in Psychiatrie und Psychotherapie. Schattauer, Stuttgart

  98. Walter H, Wolf RC (2002) Von der Hypofrontalität zur dynamischen frontalen Dysfunktion: f-MRT- Studien bei Patienten mit Schizophrenie. Nervenheilkunde 21: 392–399

    Google Scholar 

  99. Walter H, Vasic N, Wolf RC et al. (2007) Differential brain activation in an event related working memory task in schizophrenia as compared to depression. Neuroimage (in press)

  100. Watts F (1995) Depression and anxiety. In: Baddeley AD, Wilson BA, Watts FN (ed) Handbook of Memory Disorders. Wiley, Chichester, pp 211–242

  101. Weiland-Fiedler P, Erickson K, Waldeck T et al. (2004) Evidence for continuing neuropsychological impairments in depression. J Affect Disord 82: 253–258

    Article  PubMed  Google Scholar 

  102. WHO (2001) Chapter 2: Burden of Mental and Behavioral Disorders. WHO Report 2001: Mental Health, New Understanding, New Hope http: //www.who.int/whr/2001/chapter2/en/index4.html

  103. Wolf RC, Vasic N, Walter H (2005) Kognitive Defizite in der Schizophrenie: Zwischen präfrontaler Dysfunktion und funktioneller Entkopplung. Nervenheilkunde 24: 573–583

    Google Scholar 

  104. Walter H, Wolf RC, Spitzer M, Vasic N (2007) Increased left prefrontal activation in patients with unipolar depression: An event-related, parametric, performance-controlled fMRT study. J Affect Disord (in press)

  105. Wolf RC, Vasic N, Walter H (2006) Das Arbeitsgedächtniskonzept in der Schizophrenie: Überblick und Ausblick. Fortsch Neurol Psychiatr 74(8): 449–468

    Article  CAS  Google Scholar 

  106. Wu J, Buchsbaum MS, Gillin JC et al. (1999) Prediction of antidepressant effects of sleep deprivation by metabolic rates in the ventral anterior cingulate and medial prefrontal cortex. Am J Psychiatry 156: 1149–1158

    PubMed  CAS  Google Scholar 

  107. Wu JC, Gillin JC, Buchsbaum MS et al. (1992) Effect of sleep deprivation on brain metabolism of depressed patients. Am J Psychiatry 149: 538–543

    PubMed  CAS  Google Scholar 

  108. Zakzanis KK, Leach L, Kaplan E (1998) On the nature and pattern of neurocognitive function in major depressive disorder. Neuropsychiatry Neuropsychol Behav Neurol 11: 111–119

    PubMed  CAS  Google Scholar 

  109. Matsuo K, Glahn DC, Peluso MA et al. (2007) Prefrontal hyperactivation during working memory task in untreated individuals with major depressive disorder. Mol Psychiatry 12(2): 158–166

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nenad Vasic.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Vasic, N., Wolf, R. & Walter, H. Exekutive Funktionen bei depressiven Patienten. Nervenarzt 78, 628–640 (2007). https://doi.org/10.1007/s00115-006-2240-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00115-006-2240-6

Schlüsselwörter

Keywords

Navigation