Skip to main content
Log in

High-density AFLP map of nonbrittle rachis 1 (btr1) and 2 (btr2) genes in barley (Hordeum vulgare L.)

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

An Erratum to this article was published on 13 November 2004

Abstract

Wild relatives of barley disperse their seeds at maturity by means of their brittle rachis. In cultivated barley, brittleness of the rachis was lost during domestication. Nonbrittle rachis of occidental barley lines is controlled by a single gene (btr1) on chromosome 3H. However, nonbrittle rachis of oriental barley lines is controlled by a major gene (btr2) on chromosome 3H and two quantitative trait loci on chromosomes 5HL and 7H. This result suggests multiple mutations of the genes involved in the formation of brittle rachis in oriental lines. The btr1 and btr2 loci did not recombine in the mapping population analyzed. This result agrees with the theory of tight linkage between the two loci. A high-density amplified fragment-length polymorphism (AFLP) map of the btr1/btr2 region was constructed, providing an average density of 0.08 cM/locus. A phylogenetic tree based on the AFLPs showed clear separation of occidental and oriental barley lines. Thus, barley consists of at least two lineages as far as revealed by molecular markers linked to nonbrittle rachis genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Åberg E (1938) Hordeum agriocrithon nova sp., a wild six-rowed barley. Ann Agric Coll Sweden 6:159–216

    Google Scholar 

  • Badr A, Müller K, Schäfer-Pregl R, El Rabey H, Effgen S, Ibrahim H, Pozzi C, Rohde W, Salamini F (2000) On the origin and domestication history of barley (Hordeum vulgare). Mol Biol Evol 17:499–510

    CAS  PubMed  Google Scholar 

  • Basten C, Weir B, Zeng Z-B (2000) QTL Cartographer 1.14. A reference manual and tutorial for QTL mapping. Department of Statistics, North Carolina State University, Raleigh

  • Bothmer Rv (1979) Revision of the Asiatic taxa of Hordeum sect. Stenostachys. Bot Tidsskr 74:117–147

    Google Scholar 

  • Bothmer Rv, Jacobsen N (1985) Origin, taxonomy, and related species. In: Rasmusson D (ed) Barley—ASA agronomy monograph, vol 26. American Society of Agronomy, Crop Science Society of America, Soil Science Society of America, Madison, pp 19–56

  • Bothmer Rv, Jacobsen N, Baden C, Jørgensen R, Linde-Laursen I (1995) An ecogeographical study of the genus Hordeum, 2nd edn. Systematic and ecogeographic studies on crop genepools. 7. International Plant Genetic Resources Institute, Rome

  • Cai H-W, Morishima H (2000) Genomic regions affecting seed shattering and seed dormancy in rice. Theor Appl Genet 100:840–846

    Article  CAS  Google Scholar 

  • Castiglioni P, Pozzi C, Heun M, Terzi V, Müller K, Rohde W, Salamini F (1998) An AFLP-based procedure for the efficient mapping of mutations and DNA probes in barley. Genetics 149:2039–2056

    CAS  PubMed  Google Scholar 

  • Eiguchi M, Sano Y (1990) A gene complex responsible for seed shattering and panicle spreading found in common wild rices. Rice Genet Newsl 7:105–107

    Google Scholar 

  • Elliott W, Perlinger G (1977) Inheritance of shattering in wild rice. Crop Sci 17:851–853

    Google Scholar 

  • Franckowiak J, Lundqvist U, Konishi T (1997) New and revised names for barley genes. Barley Genet Newsl 26:4–8

    Google Scholar 

  • Frederiksen S, Petersen G (1998) A taxonomic revision of Secale (Triticeae, Poaceae). Nordic J Bot 18:399–420

    Google Scholar 

  • Freisleben R (1943) Ein neuer Fund von Hodeum agriocrithon Åberg. Zuchter 15:25–29

    Google Scholar 

  • Fukuta Y (1995) Genetic analysis of shattering-resistance mutant lines induced from an indica rice variety, ‘Nan-jing 11.4’. RFLP mapping of a mutant gene in ‘Hokuriku 143’ (SR-5). Breed Sci 45 [Suppl 1]:89

  • Fukuta Y, Harushima Y, Yano M (1996) Using quantitative trait locus analysis for studying genetic regulation of shattering. Rice Genet 3:657–662

    Google Scholar 

  • Johnson I, Åberg E (1943) The inheritance of brittle rachis in barley. J Am Soc Agron 35:101–106

    Google Scholar 

  • Kandemir N, Kudrna D, Ullrich S, Kleinhofs A (2000) Molecular marker-assisted genetic analysis of head shattering in six-rowed barley. Theor Appl Genet 101:203–210

    Article  CAS  Google Scholar 

  • Kennard W, Phillips R, Porter R (2002) Genetic dissection of seed shattering, agronomic, and color traits in American wild rice (Zizania palustris var. interior L.) with a comparative map. Theor Appl Genet 105:1075–1086

    Article  CAS  PubMed  Google Scholar 

  • Kimber G, Feldman M (1987) Wild wheat. An introduction. College of Agriculture, University of Missouri, Columbia

  • Komatsuda T, Mano Y (2002) Molecular mapping of the intermedium spike-c (int-c) and non-brittle rachis 1 (btr1) loci in barley (Hordeum vulgare L.). Theor Appl Genet 105:85–90

    Article  CAS  PubMed  Google Scholar 

  • Komatsuda T, Annaka T, Oka S (1993) Genetic mapping of a quantitative trait locus (QTL) that enhances the shoot differentiation rate in Hordeum vulgare L. Theor Appl Genet 86:713–720

    CAS  Google Scholar 

  • Konishi T (2001) Genetic diversity in Hordeum agriocrithon E. Aberg, six-rowed barley with brittle rachis, from Tibet. Genet Resource Crop Evol 48:27–34

    Article  Google Scholar 

  • Lander E, Green P, Abrahamson J, Barlow A, Daly M, Lincoln S, Newburg L (1987) MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174–181

    CAS  PubMed  Google Scholar 

  • Lincoln S, Daly M, Lander E (1993) Constructing genetic linkage maps with MAPMAKER/Exp 3.0. Whitehead Institute for Biomedical Research Technical Report, 3rd edn. Cambridge

  • Linde-Laursen I, Heslop-Harrison J, Shepherd K, Taketa S (1997) The barley genome and its relationship with the wheat genomes. A survey with an internationally agreed recommendation for barley chromosome nomenclature. Hereditas 126:1–16

    Article  CAS  Google Scholar 

  • Lundqvist U, Franckowiak JD, Konishi T (1997) New and revised descriptions of barley genes. Barley Genet Newsl 26:22–516

    Google Scholar 

  • Mano Y, Komatsuda T (2002) Identification of QTLs controlling tissue-culture traits in barley (Hordeum vulgare L.). Theor Appl Genet 105:708–715

    Article  CAS  PubMed  Google Scholar 

  • Mano Y, Kawasaki S, Takaiwa F, Komatsuda T (2001) Construction of a genetic map of barley (Hordeum vulgare L.) cross ‘Azumamugi’ × ‘Kanto Nakate Gold’ using a simple and efficient amplified fragment-length polymorphism system. Genome 44:284–292

    Article  CAS  PubMed  Google Scholar 

  • Molina-Cano J, Gómèz-Campo C, Conde J (1982) Hordeum spontaneum C. Koch as a weed of barley fields in Morocco. Z Pflanzenzuecht 88:161–167

    Google Scholar 

  • Molina-Cano J, Moralejo M, Igartua E, Romagosa I (1999) Further evidence supporting Morocco as a centre of origin of barley. Theor Appl Genet 98:913–918

    Article  Google Scholar 

  • Nei M, Kumar S (2000) Molecular evolution and phylogenetics. Oxford University Press, New York

  • Oba S, Kikuchi F, Maruyama K (1990) Genetic analysis of semidwarfness and grain shattering of Chinese rice variety ‘Ai-Jio-Nan-Te’. Jpn J Breed 40:13–20

    Google Scholar 

  • Paterson A, Lin Y-R, Li Z, Schertz K, Doebley J, Pinson S, Liu S-C, Stansel J, Irvine J (1995) Convergent domestication of cereal crops by independent mutations at corresponding genetic loci. Science 269:1714–1718

    CAS  Google Scholar 

  • Sameri M, Komatsuda T (2004) Identification of quantitative trait loci controlling morphological and physiological traits, which are characteristic between Oriental and Occidental barley cultivars (Hordeum vulgare L.). Spunar I, Janicoba J (eds) Proceedings of 9th International Barley Genetics Symposium, Brno, Czech Republic, 20–26 June 2004, pp 231–236

  • Sanchez P, Kurakazu T, Hirata C, Sobrizal A, Yoshimura A (2002) Mapping of seed shattering genes using introgression lines from wild species of rice. Breed Res 4:68

    Google Scholar 

  • Schiemann E (1921) Genetische Studien an Gerste. Z Indukt Abstammungs Vererbungsl 26:109–143

    Google Scholar 

  • Slageren M van (1994) Wild wheats: a monograph of Aegilops L. and Amblyopyrum (Jaub. & Spach) Eig (Poaceae). Wageningen Agriculture University, Wageningen

    Google Scholar 

  • Swofford D (1998) PAUP*. Phylogenetic analysis using parsimony (*and other methods), ver 4. Sinauer, Sunderland, Mass.

  • Takahashi R (1942) Studies on the classification and the geographical distribution of the Japanese barley varieties. I. Significance of the bimodal curve of the coleoptile length. Ber Ohara Inst Landwirtsch Biol Okayama Univ 9:71–90

    Google Scholar 

  • Takahashi R (1951) Studies on the classification and the geographical distribution of the Japanese barley varieties. II. Correlative inheritance of some quantitative characters with the ear types. Ber Ohara Inst Landwirtsch Biol Okayama Univ 9:383–398

    Google Scholar 

  • Takahashi R (1955) The origin and evolution of cultivated barley. In: Demerec M (ed) Advances in Genetics, vol 7. Academic, New York, pp 227–266

  • Takahashi R (1963) Further studies on the phylogenetic differentiation of cultivated barley. Barley Genet 1:19–26

    Google Scholar 

  • Takahashi R, Hayashi J (1959) Linkage study of the genes for brittle rachises in barley (preliminary) (in Japanese). Nogaku Kenkyu 46:113–119

    Google Scholar 

  • Takahashi R, Hayashi J (1964) Linkage study of two complementary genes for brittle rachis in barley. Ber Ohara Inst Landwirtsch Biol Okayama Univ 12:99–105

    Google Scholar 

  • Takahashi R, Yamamoto J (1949) Studies on the classification and the geographic distribution of barley varieties. 8. Nogaku Kenkyu 38:41–43

    Google Scholar 

  • Takahashi R, Yamamoto J (1951) Studies on the classification and the geographic distribution of barley varieties. 15. Nogaku Kenkyu 39:81–90

    Google Scholar 

  • Takahashi R, Hayashi J, Moriya I (1979) Geographical differentiation of the genes for compact head barley. Barley Genet Newsl 9:99–101

    Google Scholar 

  • Takahashi R, Yasuda S, Hayashi J, Fukuyama T, Moriya I, Konishi T (1983) Catalogue of barley germplasm preserved in Okayama University. Okayama University, Kurashiki

  • Tanno K (1999) Molecular phylogeny in the genus Hordeum. PhD Thesis, University of Tsukuba

  • Tanno K, Takaiwa F, Oka S, Komatsuda T (1999) A nucleotide sequence linked to the vrs1 locus for studies of differentiation in cultivated barley (Hordeum vulgare L.). Hereditas 130:77–82

    Article  CAS  PubMed  Google Scholar 

  • Tanno K, Taketa S, Takeda K, Komatsuda T (2002) A DNA marker closely linked to the vrs1 locus (row-type gene) indicates multiple origins of six-rowed cultivated barley (Hordeum vulgare L.). Theor Appl Genet 104:54–60

    Article  CAS  PubMed  Google Scholar 

  • Ubisch Gv (1915) Analyse eines Falles von Bastardatavismus und Faktorenkoppelung bei Gerste. Z Indukt Abstammungs Vererbungsl 14:226–237

    Google Scholar 

  • Vos P, Hogers R, Bleeker M, Reijans M, van de Lee T, Hornes M, Frijters A, Pot J, Peleman J, Kuiper M, Zabeau M (1995) AFLP: a new technique for DNA fingerprinting. Nucleic Acids Res 23:4407–4414

    CAS  PubMed  Google Scholar 

  • Watanabe N, Ikebata N (2000) The effects of homoeologous group 3 chromosomes on grain colour dependent seed dormancy and brittle rachis in tetraploid wheat. Euphytica 115:215–220

    Article  Google Scholar 

  • Zohary D, Hopf M (2000) Domestication of plants in the old world. Oxford, New York

Download references

Acknowledgements

We thank Dr. T. Konishi (Okayama, Japan) and Drs. K. Takeda and Dr. K. Sato (Okayama University, Kurashiki, Japan) for critically reviewing the manuscript; Dr. A. Paterson (University of Georgia, USA) for comments on the manuscript; Dr. R. von Bothmer (Swedish University of Agricultural Sciences), Dr. B. Salomon (Swedish University of Agricultural Sciences), Dr. B. Gill (Kansas State University, USA), Dr. Y. Ogihara (Yokohama City University, Japan), and Dr. N. Minaka (National Institute of Agro-Environmental Sciences, Tsukuba, Japan) for discussions; and Dr. B. E. Sayed-Tabatabaei (Isfahan University of Technology, Iran) for helping in AFLP analysis. Research grants from Core Research for Evolutional Science and Technology (CREST), Japan Science and Technology Corporation to T. Komatsuda are gratefully appreciated. P. Maxim and N. Senthil are STA fellows, and Y. Mano is a research fellow, all supported by JST.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. Komatsuda.

Additional information

Communicated by J.S. Heslop-Harrison

An erratum to this article can be found at http://dx.doi.org/10.1007/s00122-004-1864-9

Electronic Supplementary Material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Komatsuda, T., Maxim, P., Senthil, N. et al. High-density AFLP map of nonbrittle rachis 1 (btr1) and 2 (btr2) genes in barley (Hordeum vulgare L.). Theor Appl Genet 109, 986–995 (2004). https://doi.org/10.1007/s00122-004-1710-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-004-1710-0

Keywords

Navigation