Skip to main content
Log in

Genetic variation for the response to ploidy change in Zea mays L.

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Polyploidization is an important process in the evolutionary history of most eukaryotic species. It oftentimes causes large-scale genomic reorganizations and is accompanied by a wide variety of phenotypic alterations in morphology, niche preference and fitness characteristics. Despite their importance, the morphological effects of alterations in ploidy are not well understood. We investigated these changes in four diverse maize inbred lines, using monoploid, diploid, triploid and tetraploid derivatives, measuring 13 characters in a randomized field study. Employing several analysis of variance approaches, we find that all characters investigated strongly respond to alterations in ploidy. This response appears to have two sources: one source is shared by all inbred lines and constitutes a common response to ploidy change. The other source is genotype specific and results in a response to ploidy change that varies among inbred lines. This finding demonstrates the existence of genetic variation for the morphological response to ploidy change in Zea mays.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Adams KL, Cronn R, Percifield R, Wendel JF (2003) Genes duplicated by polyploidy show unequal contributions to the transcriptome and organ-specific reciprocal silencing. Proc Natl Acad Sci USA 100:4649–4654

    Article  PubMed  CAS  Google Scholar 

  • Akaike H (1973) Information theory as an extension, Akademiai Kiado, Budapest, 267–281

  • Auger DL, Ream TS, Birchler JA (2004) A test for a metastable epigenetic component of heterosis using haploid induction in maize. Theor Appl Genet 108:1017–1023

    Article  PubMed  CAS  Google Scholar 

  • Blakeslee AF (1941) Effect of induced polyploidy in plants. Am Nat 75:117–135

    Article  Google Scholar 

  • Blanc G, Wolfe KH (2004) Functional divergence of duplicated genes formed by polyploidy during Arabidopsis evolution. Plant Cell 16:1679–1691

    Article  PubMed  CAS  Google Scholar 

  • Bretagnolle F, Lumaret R (1995) Bilateral polyploidization in Dactylis glomerata L. subsp. lusitanica: occurence, morphological and genetic characteristics of first polyploids. Euphytica 84:197–207

    Article  Google Scholar 

  • Cerny BA, Kaiser HF (1977) A study of a measure of sampling adequacy for factor-analytic correlation matrices. Multivariate Behav Res 12:43–47

    Article  Google Scholar 

  • Coe EJ (1959) A line of maize with high haploid frequency. Am Nat 93:381–382

    Article  Google Scholar 

  • Doyle G (1986) The allotetraploidization of maize. 4. Cytological and genetic evidence indicative of substantial progress. Theor Appl Genet 71:585–594

    Article  Google Scholar 

  • Feldman M, Liu B, Segal G, Abbo S, Levy AA, Vega JM (1997) Rapid elimination of low-copy DNA sequences in polyploid wheat: a possible mechanism for differentiation of homoeologous chromosomes. Genetics 147:1381–1387

    PubMed  CAS  Google Scholar 

  • Henry IM, Dilkes BP, Young K, Watson B, Wu H, Comai L (2005) Aneuploidy and genetic variation in the Arabidopsis thaliana triploid response. Genetics 170:1979–1989

    Article  PubMed  CAS  Google Scholar 

  • Kaiser HF (1970) A second generation little jiffy. Psychometrika 35:401–415

    Article  Google Scholar 

  • Kaiser HF, Rice J (1974) Little jiffy mark IV. Educ Psychol Meas 34:111–117

    Google Scholar 

  • Kato A (1997) Induced single fertilization in maize. Sex Plant Reprod 10:96–100

    Article  Google Scholar 

  • Kato A (1999) Induction of bicellular pollen by trifluralin treatment and occurrence of triploids and aneuploids after fertilization in maize. Genome 42:154–157

    Article  Google Scholar 

  • Kato A, Birchler JA (2006) Induction of tetraploid derivatives of maize inbred lines by nitrous oxide gas treatment. J Hered 97:39–44

    Article  PubMed  CAS  Google Scholar 

  • Keller MJ, Gerhardt HC (2001) Polyploidy alters advertisement call structure in gray treefrogs. Proc Biol Sci 268:341–345

    Article  PubMed  CAS  Google Scholar 

  • Kermani MJ, Sarasan V, Roberts AV, Yokoya K, Wentworth J, Sieber VK (2003) Oryzalin-induced chromosome doubling in Rosa and its effect on plant morphology and pollen viability. Theor Appl Genet 107:1195–200

    Article  PubMed  CAS  Google Scholar 

  • Laane MM, Croff BE, Wahlstrom R (1983) Cytotype distribution in the Campanula rotundifolia complex in Norway, and cyto-morphological characteristics of diploid and tetraploid groups. Hereditas 99:21–48

    PubMed  CAS  Google Scholar 

  • Levin DA (2002) The role of chromosomal change in plant evolution, Oxford University Press, New York

  • Liu B, Vega JM, Feldman M (1998) Rapid genomic changes in newly synthesized amphiploids of Triticum and Aegilops. II. Changes in low-copy coding DNA sequences. Genome 41:535–542

    Article  PubMed  CAS  Google Scholar 

  • Liu K, Goodman M, Muse S, Smith JS, Buckler E, Doebley J (2003) Genetic structure and diversity among maize inbred lines as inferred from DNA microsatellites. Genetics 165:2117–2128

    PubMed  CAS  Google Scholar 

  • Lowcock LA (1994) Biotype, genomotype, and genotype: variable effects of polyploidy and hybridity on ecological partitioning in a bisexual-unisexual community of salamanders. Can J Zool 72:104–117

    Article  Google Scholar 

  • Madlung A, Masuelli RW, Watson B, Reynolds SH, Davison J, Comai L (2002) Remodeling of DNA methylation and phenotypic and transcriptional changes in synthetic Arabidopsis allotetraploids. Plant Physiol 129:733–746

    Article  PubMed  CAS  Google Scholar 

  • Madlung A, Tyagi AP, Watson B, Jiang H, Kagochi T, Doerge RW, Martienssen R, Comai L (2005) Genomic changes in synthetic Arabidopsis polyploids. Plant J 41:221–230

    Article  PubMed  CAS  Google Scholar 

  • Masterson J (1994) Stomatal size in fossil plants: evidence for polyploidy in majority of angiosperms. Science 264:421–423

    Article  PubMed  CAS  Google Scholar 

  • Mittelsten Scheid O, Afsar K, Paszkowski J (2003) Formation of stable epialleles and their paramutation-like interaction in tetraploid Arabidopsis thaliana. Nat Genet 34:450–454

    Article  PubMed  CAS  Google Scholar 

  • Ohno S (1970) Evolution by gene duplication, Springer, Berlin Heidelberg New York

  • Pandey KK (1968) Colchicine-induced changes in the self-incompatibility behaviour of Nicotiana. Genetica 39:257–271

    Article  Google Scholar 

  • Pires JC, Zhao Y, Schranz ME, Leon EJ, Quijada PA, Lukens LN, Osborn TC (2004) Flowering time divergence and genomic rearrangements in resynthesized Brassica polyploids (Brassicaceae). Biol J Linn Soc 82:675–688

    Article  Google Scholar 

  • Pontes O, Neves N, Silva M, Lewis MS, Madlung A, Comai L, Viegas W, Pikaard CS (2004) Chromosomal locus rearrangements are a rapid response to formation of the allotetraploid Arabidopsis suecica genome. Proc Natl Acad Sci USA 101:18240–18245

    Article  PubMed  CAS  Google Scholar 

  • Ptacek MB, Gerhardt HC, Sage RD (1994) Speciation by polyploidy in treefrogs: multiple origins of the tetraploid Hyla versicolor. Evolution 48:898–908

    Article  Google Scholar 

  • Quadt F (1955) Beobachtungen an den Nachkommen tetraploider Tomatenbastarde. Der Züchter 25:241–245

    Article  Google Scholar 

  • Ramsey J, Schemske DW (2002) Neopolyploidy in flowering plants. Annu Rev Ecol Syst 33:589–639

    Article  Google Scholar 

  • Rhoades MM, Dempsey E (1966) Induction of chromosome doubling at meiosis by the elongate gene in maize. Genetics 54:505–522

    PubMed  CAS  Google Scholar 

  • Schranz ME, Osborn TC (2000) Novel flowering time variation in the resynthesized polyploid Brassica napus. J Hered 91:242–246

    Article  PubMed  CAS  Google Scholar 

  • Senior ML, Murphy JP, Goodman MM, Stuber CW (1998) Utility of SSRs for determining genetic similarities and realtionships in maize using an agarose gel system. Crop Sci 38:1088–1098

    Article  Google Scholar 

  • Sidow A (1996) Gen(om)e duplications in the evolution of early vertebrates. Curr Opin Genet Dev 6:715–722

    Article  PubMed  CAS  Google Scholar 

  • Soltis PS, Plunkett GM, Novak SJ, Soltis DE (1995) Genetic variation in Tragopogon species: additional origins of the allotetraploids T. mirus and T. miscellus (Compositae). Am J Bot 82:1329–1341

    Article  Google Scholar 

  • Song K, Lu P, Tang K, Osborn TC (1995) Rapid genome change in synthetic polyploids of Brassica and its implications for polyploid evolution. Proc Natl Acad Sci USA 92:7719–7723

    Article  PubMed  CAS  Google Scholar 

  • Spearman C (1904) General Intelligence objectively determined and measured. Am J Psychol 15:201–293

    Article  Google Scholar 

  • Stebbins GL (1985) Polyploidy, hybridization and the invasion of new habitats. Ann MO Bot Gard 72:824–832

    Article  Google Scholar 

  • Stout AB, Chandler C (1941) Change from self-incompatibility to self-compatibility accompanying change from diploidy to tetraploidy. Science 94:118

    Article  PubMed  CAS  Google Scholar 

  • Uyeno T, Smith GR (1972) Tetraploid origin of the karyotype of catostomid fishes. Science 175:644–646

    Article  PubMed  CAS  Google Scholar 

  • Weiss H, Maluszynska J (2000) Chromosomal rearrangement in autotetraploid plants of Arabidopsis thaliana. Hereditas 133:255–261

    Article  PubMed  CAS  Google Scholar 

  • Werlemark G, Nybom H (2001) Skewed distribution of morphological character scores and molecular markers in three interspecific crosses in Rosa section Caninae. Hereditas 134:1–13

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are very grateful to Don Auger for generating the B73 triploid individuals and to Amy Walker and Jessica Heman for their assistance with fieldwork. We would also like to thank the members of the Birchler lab as well as the members of the “Functional Genomics of Polyploids” project for stimulating discussion and advice. Funding for this work was provided by the National Institute of Health (NRSA post-doctoral fellowship to NCR) and National Science Foundation (DBI0077774 and DBI 0501712).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James A. Birchler.

Additional information

Communicated by M. Kearsey.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Riddle, N.C., Kato, A. & Birchler, J.A. Genetic variation for the response to ploidy change in Zea mays L.. Theor Appl Genet 114, 101–111 (2006). https://doi.org/10.1007/s00122-006-0414-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-006-0414-z

Keywords

Navigation