Skip to main content
Log in

Identification of quantitative trait loci for agronomically important traits and their association with genic-microsatellite markers in sorghum

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

The identification of quantitative trait loci (QTLs) affecting agronomically important traits enable to understand their underlying genetic mechanisms and genetic basis of their complex interactions. The aim of the present study was to detect QTLs for 12 agronomic traits related to staygreen, plant early development, grain yield and its components, and some growth characters by analyzing replicated phenotypic datasets from three crop seasons, using the population of 168 F7 RILs of the cross 296B × IS18551. In addition, we report mapping of a subset of genic-microsatellite markers. A linkage map was constructed with 152 marker loci comprising 149 microsatellites (100 genomic- and 49 genic-microsatellites) and three morphological markers. QTL analysis was performed by using MQM approach. Forty-nine QTLs were detected, across environments or in individual environments, with 1–9 QTLs for each trait. Individual QTL accounted for 5.2–50.4% of phenotypic variance. Several genomic regions affected multiple traits, suggesting the phenomenon of pleiotropy or tight linkage. Stable QTLs were identified for studied traits across different environments, and genetic backgrounds by comparing the QTLs in the study with previously reported QTLs in sorghum. Of the 49 mapped genic-markers, 18 were detected associating either closely or exactly as the QTL positions of agronomic traits. EST marker Dsenhsbm19, coding for a key regulator (EIL-1) of ethylene biosynthesis, was identified co-located with the QTLs for plant early development and staygreen trait, a probable candidate gene for these traits. Similarly, such exact co-locations between EST markers and QTLs were observed in four other instances. Collectively, the QTLs/markers identified in the study are likely candidates for improving the sorghum performance through MAS and map-based gene isolations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Achard P, Baghour M, Chapple A, Hedden P, Van Der Straeten D, Genschik P, Moritz T, Harberd NP (2007) The plant stress hormone ethylene controls floral transition via DELLA-dependent regulation of floral meristem-identity genes. Proc Natl Acad Sci USA 104:6484–6489

    Article  PubMed  CAS  Google Scholar 

  • Aubert G, Morin J, Jacquin F, Loridon K, Quillet MC, Petit A, Rameau C, Lejeune-He´ naut I, Huguet T, Burstin J (2006) Functional mapping in pea, as an aid to the candidate gene selection and for investigating synteny with the model legume Medicago truncatula. Theor Appl Genet 112:1024–1041

    Article  PubMed  CAS  Google Scholar 

  • Bhattramakki D, Dong J, Chhabra AK, Hart GE (2000) An integrated SSR and RFLP linkage map of Sorghum bicolor (L.) Moench. Genome 43:988–1002

    Article  PubMed  CAS  Google Scholar 

  • Borrell AK, Bidinger FR, Sunitha K (1999) Stay-green trait associated with yield in recombinant inbred sorghum lines varying in rate of leaf senescence. Int Sorghum Millets Newslett 40:31–34

    Google Scholar 

  • Bout S, Vermerris W (2003) A candidate-gene approach to clone the sorghum Brown midrib gene encoding caffeic acid O-methyltransferase. Mol Gen Genet 269:205–214

    CAS  Google Scholar 

  • Brown PJ, Klein PE, Bortiri E, Acharya CB, Rooney WL, Kresovich S (2006) Inheritance of inflorescence architecture in sorghum. Theor Appl Genet 113:931–942

    Article  PubMed  CAS  Google Scholar 

  • Casady AJ (1965) Effect of single height (Dw) gene of sorghum on grain yield, grain yield components and test weight. Crop Sci 5:385–389

    Google Scholar 

  • Chao Q, Rothenberg M, Solano R, Roman G, Terzaghi W, Ecker JR (1997) Activation of the ethylene gas response pathway in Arabidopsis by the nuclear protein ETHYLENE-INSENSITIVE3 and related proteins. Cell 89:1133–1144

    Article  PubMed  CAS  Google Scholar 

  • Chen X, Salamini F, Gebhardt C (2001) A potato molecular function map for carbohydrate metabolism and transport. Theor Appl Genet 102:284–295

    Article  CAS  Google Scholar 

  • Childs KL, Miller FR, Cordonnier-Pratt MM, Pratt LH, Morgan PW, Mullet JE (1997) The sorghum photoperiod sensitivity gene, Ma3, encodes a phytochrome B. Plant Physiol 113:611–619

    Article  PubMed  CAS  Google Scholar 

  • Churchill GA, Doerge RW (1994) Empirical threshold values for quantitative trait mapping. Genetics 138:963–971

    PubMed  CAS  Google Scholar 

  • Crasta OR, Xu WW, Rosenow DT, Mullet J, Nguyen HT (1999) Mapping of post-flowering drought resistance traits in grain sorghum: association between QTLs influencing premature senescence and maturity. Mol Gen Genet 262:579–588

    Article  PubMed  CAS  Google Scholar 

  • De Vicente C, Metz T, Alercia A (2004) Descriptors for genetic markers technologies. IPGRI

  • Falconer DS (1989) Introduction to quantitative genetics. Wiley, New York

    Google Scholar 

  • Faris JD, Li WH, Liu DJ, Chen PD, Gill BS (1999) Candidate gene analysis of quantitative disease resistance in wheat. Theor Appl Genet 98:219–223

    Article  CAS  Google Scholar 

  • Faris JD, Haen KM, Gill BS (2000) Saturation mapping of a gene-rich recombination hot spot region in wheat. Genetics 154:823–835

    PubMed  CAS  Google Scholar 

  • Feltus FA, Hart GE, Schertz KF, Casa AM, Kresovich S, Abraham S, Klein PE, Brown PJ, Paterson AH (2006) Alignment of genetic maps and QTLs between inter- and intra-specific sorghum populations. Theor Appl Genet 112:1295–1305

    Article  PubMed  CAS  Google Scholar 

  • Francki M, Carter M, Ryan K, Hunter A, Bellgard M, Appels R (2004) Comparative organization of wheat homoeologous group 3S and 7L using wheat-rice synteny and identification of potential markers for genes controlling xanthophyll content in wheat. Funct Integr Genomics 4:118–130

    Article  PubMed  CAS  Google Scholar 

  • Gepstein S, Thimann KV (1981) The role of ethylene in the senescence of oat leaves. Plant Physiol 68:349–354

    Article  PubMed  CAS  Google Scholar 

  • Gill KS, Gill BS, Endo TR, Taylor T (1996) Identification and high-density mapping of gene-rich regions in chromosome group 1 of wheat. Genetics 144:1883–1891

    PubMed  CAS  Google Scholar 

  • Graham D, Lessman KJ (1966) Effect of height on yield and yield components of two isogenic lines of Sorghum vulgare. Crop Sci 6:372–374

    Google Scholar 

  • Guo D, Chen F, Inoue K, Blount JW, Dixon RA (2001) Down regulation of caffeic acid 3-O-methyltransferase and caffeoyl CoA 3-O-methyltransferase in transgenic alfalfa. impacts on lignin structure and implications for the biosynthesis of G and S lignin. Plant Cell 13:73–88

    Article  PubMed  CAS  Google Scholar 

  • Guterman A, Hajouj T, Gepstein S (2003) Senescence-associated mRNAs that may participate in signal transduction and protein trafficking. Physiol Plant 118:439–446

    Article  CAS  Google Scholar 

  • Hart GE, Schertz KF, Peng Y, Syed N (2001) Genetic mapping of Sorghum bicolor (L.) Moench QTLs that control variation in tillering and other morphological characters. Theor Appl Genet 103:1232–1242

    Article  CAS  Google Scholar 

  • Haussmann BIG, Mahalakshmi V, Reddy BVS, Seetharama N, Hash CT, Geiger HH (2002) QTL mapping of stay-green in two sorghum recombinant inbred populations. Theor Appl Genet 106:143–148

    Google Scholar 

  • Huh JH, Kang BC, Nahm SH, Kim S, Ha KS, Lee MH, Kim BD (2001) A candidate gene approach identified phytoene synthase as the locus for mature fruit color in red pepper (Capsicum spp.). Theor Appl Genet 102:524–530

    Article  CAS  Google Scholar 

  • Jansen RC (1993) Interval mapping of multiple quantitative trait loci. Genetics 135:205–211

    PubMed  CAS  Google Scholar 

  • Jansen RC, Stam P (1994) High resolution of quantitative traits into multiple loci via interval mapping. Genetics 136:1447–1455

    PubMed  CAS  Google Scholar 

  • Jing HC, Schippers JH, Hille J, Dijkwel PP (2005) Ethylene-induced leaf senescence depends on age-related changes and OLD genes in Arabidopsis. J Exp Bot 56:2915–2923

    Article  PubMed  CAS  Google Scholar 

  • Joshi AK, Pandya JN, Buhecha KV, Dave HR, Pethani KV, Dangaria CJ (2003) Grain yield in pearl millet in relation to source size and proximity to sink. Photosynthetica 41:157–159

    Article  Google Scholar 

  • Kebede H, Subudhi PK, Rosenow DT, Nguyen HT (2001) Quantitative trait loci influencing drought tolerance in grain sorghum (Sorghum bicolor L. Moench). Theor Appl Genet 103:266–276

    Article  CAS  Google Scholar 

  • Klein RR, Rodriguez-Herrera R, Schulueter JA, Klein PE, Yu ZH, Rooney WL (2001) Identification of genomic regions that affect grain-mould incidence and other traits of agronomic performance in sorghum. Theor Appl Genet 102:307–319

    Article  CAS  Google Scholar 

  • Lagercrantz U, Putterill J, Coupland G, Lydiate D (1996) Comparative mapping in Arabidopsis and Brassica, fine scale genome colinearity and congruence of genes controlling flowering time. Plant J 9:13–20

    Article  PubMed  CAS  Google Scholar 

  • Lander ES, Botstein D (1989) Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121:185–199

    PubMed  CAS  Google Scholar 

  • Lehmann EL (1975) Nonparametrics. McGraw-Hill, New York

    Google Scholar 

  • Li CD, Ni P, Francki M, Hunter A, Zhang Y, Schibeci D, Li H, Tarr A, Wang J, Cakir M, Yu J, Bellgard M, Lance R, Appels R (2004a) Genes controlling seed dormancy and pre-harvest sprouting in rice-wheat-barley comparison. Funct Integr Genomics 4:84–93

    Article  PubMed  CAS  Google Scholar 

  • Li J, Thomson M, McCouch SR (2004b) Fine mapping of a grain-weight quantitative trait locus in the pericentromeric region of rice chromosome 3. Genetics 168:2187–2195

    Article  PubMed  CAS  Google Scholar 

  • Lin YR, Schertz KF, Paterson AH (1995) Comparative analysis of QTLs affecting plant height and maturity across the Poaceae, in reference to an interspecific sorghum population. Genetics 141:391–411

    PubMed  CAS  Google Scholar 

  • Matthews BF, Devine TE, Weisemann JM, Beard HS, Lewers KS, McDonald MH, Park Y-B, Maiti R, Lin J-J, Kuo J, Pedroni MJ, Cregan PB, Saunders JA (2001) Incorporation of sequenced cDNA and genomic markers into the soybean genetic map. Crop Sci 41:516–521

    CAS  Google Scholar 

  • Menz MA, Klein RR, Mullet JE, Obert JA, Unruh NC, Klein PE (2002) A high-density genetic map of Sorghum bicolor (L.) Moench based on 2926 AFLP, RFLP and SSR markers. Plant Mol Biol 48:483–499

    Article  PubMed  CAS  Google Scholar 

  • Paterson AH, Lander ES, Hewitt JD, Peterson S, Lincoln SE, Tanksley SD (1988) Resolution of quantitative traits into Mendelian factors by using a complete RFLP linkage map. Nature 335:721–726

    Article  PubMed  CAS  Google Scholar 

  • Patterson HD (1997) Analysis of series of variety trials. In: Kempton RA, Fox P (eds) Statistical methods for plant variety evaluation. Chapman and Hall, London

    Google Scholar 

  • Patterson HD, Thompson R (1971) Recovery of inter-block information when block sizes are unequal. Biometrika 58:545–554

    Article  Google Scholar 

  • Pereira MG, Lee M (1995) Identification of genomic regions affecting plant height in sorghum and maize. Theor Appl Genet 90:380–388

    Article  CAS  Google Scholar 

  • Pflieger S, Palloix A, Caranta C, Blattes A, Lefebvre V (2001) Defense response genes colocalize with quantitative disease resistance loci in pepper. Theor Appl Genet 103:920–929

    Article  CAS  Google Scholar 

  • Prioul JL, Quarrie S, Causse M, de Vienne D (1997) Dissecting of complex physiological functions through the use of molecular quantitative genetics. J Exp Bot 48:1151–1163

    Article  CAS  Google Scholar 

  • Quinby JR (1967) The maturity genes of sorghum. In: Norman AG (ed) Advances in agronomy, vol 19. Academic Press, New York, pp 267–30

  • Quinby JR, Karper RE (1954) Inheritance of height in sorghum. Agron J 46:211–216

    Article  Google Scholar 

  • Rami JF, Dufour P, Trouche G, Fliedel G, Mestres C, Davrieux F, Blanchard P, Hamon P (1998) Quantitative trait loci for grain quality, productivity, morphological and agronomical traits in sorghum (Sorghum bicolor L. Moench). Theor Appl Genet 97:605–616

    Article  CAS  Google Scholar 

  • Rosenow DT, Quisenberry JE, Wendt CW, Clark LE (1983) Drought tolerant sorghum and cotton germplasm. Agric Water Manag 7:207–222

    Article  Google Scholar 

  • Sandhu D, Champoux JA, Bondareva SN, Gill KS (2001) Identification and physical localization of useful genes and markers to a major gene-rich region on wheat group 1S chromosomes. Genetics 157:1735–1747

    PubMed  CAS  Google Scholar 

  • Solano R, Stepanova A, Chao Q, Ecker JR (1998) Nuclear events in ethylene signaling: a transcriptional cascade mediated by ETHYLENE-INSENSITIVE3 and ETHYLENE-RESPONSE-FACTOR1. Genes Dev 12:3703–3714

    Article  PubMed  CAS  Google Scholar 

  • Srinivas G, Satish K, Murali Mohan S, Nagaraja Reddy R, Madhusudhana R, Balakrishna D, Venkatesh Bhat B, Howarth CJ, Seetharama N (2008) Development of genic-microsatellite markers for sorghum staygreen QTL using a comparative genomic approach with rice. Theor Appl Genet 117:283–296

    Article  PubMed  CAS  Google Scholar 

  • Srinivas G, Satish K, Madhusudhana R, Seetharama N (2009) Exploration and mapping of microsatellite markers from subtracted drought stress ESTs in Sorghum bicolor (L.) Moench. Theor Appl Genet 118:703–717

    Article  PubMed  CAS  Google Scholar 

  • Subudhi PK, Rosenow DT, Nguyen HT (2000) Quantitative trait loci for the stay green trait in sorghum (Sorghum bicolor L. Moench): consistency across genetic backgrounds and environments. Theor Appl Genet 101:733–741

    Article  CAS  Google Scholar 

  • Tanksley SD (1993) Mapping polygenes. Annu Rev Genet 27:205–233

    Article  PubMed  CAS  Google Scholar 

  • Tao YZ, Henzell RG, Jordan DR, Butler DG, Kelly AM, Mcintyre CL (2000) Identification of genomic regions associated with stay-green in sorghum by testing RILs in multiple environments. Theor Appl Genet 100:1225–1232

    Article  CAS  Google Scholar 

  • Trusov Y, Botella JR (2006) Silencing of the ACC synthase gene ACACS2 causes delayed flowering in pineapple [Ananas comosus (L.) Merr.]. J Exp Bot 57:3953–3960

    Article  PubMed  CAS  Google Scholar 

  • Tuinstra MR, Grote EM, Goldsbough PB, Ejeta G (1996) Identification of quantitative trait loci associated with pre-flowering drought tolerance in sorghum. Crop Sci 36:1337–1344

    CAS  Google Scholar 

  • Tuinstra MR, Grote EM, Goldsbrough PB, Ejeta G (1997) Genetic analysis of post-flowering drought tolerance and components of grain development in Sorghum bicolor (L.) Moench. Mol Breed 3:439–448

    Article  CAS  Google Scholar 

  • Tuinstra MR, Ejeta G, Goldsbrough P (1998) Evaluation of near-isogenic sorghum lines contrasting for QTL markers associated with drought tolerance. Crop Sci 38:835–842

    Google Scholar 

  • Van Ooijen JW (2005) Map-QTL® 5: software for the mapping quantitative trait loci in mapping populations. Kyazma B.V., Wageningen

    Google Scholar 

  • Van Ooijen JW, Voorrips RE (2001) JoinMap 3.0, software for the calculation of genetic linkage maps. Plant Research International, Wageningen

    Google Scholar 

  • Van Oosterom EJ, Jayachandran R, Bidinger FR (1996) Diallele analysis of the stay-green trait and its components in sorghum. Crop Sci 36:549–555

    Google Scholar 

  • Veldboom LR, Lee M, Woodman WL (1994) Molecular facilitated studies of morphological traits in an elite maize population. II. Determination of QTLs for grain yield and yield components. Theor Appl Genet 89:451–458

    Article  CAS  Google Scholar 

  • Xiao J, Li J, Tanksley SD (1996) Identification of QTLs affecting traits of agronomic importance in a recombinant inbred population derived from a subspecific rice cross. Theor Appl Genet 92:230–244

    Article  CAS  Google Scholar 

  • Xu W, Subudhi PK, Crasta OR, Rosenow DT, Mullet JE, Nguyen NT (2000) Molecular mapping of QTLs conferring stay-green in grain sorghum (Sorghum bicolor L. Moench). Genome 43:461–469

    Article  PubMed  CAS  Google Scholar 

  • Yang TF, Gonzalez-Carranza ZH, Maunders MJ, Roberts JA (2008) Ethylene and the regulation of senescence processes in transgenic Nicotiana sylvestris plants. Ann Bot 101:301–310

    Article  PubMed  CAS  Google Scholar 

  • Zhang WK, Wang YJ, Luo GZ, Zhang JS, He CY, Wu XL, Gai JY, Chen SY (2004) QTL mapping of ten agronomic traits on the soybean (Glycine max L. Merr.) genetic map and their association with EST markers. Theor Appl Genet 108:1131–1139

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The first author would like to thank the Council of Scientific and Industrial Research (CSIR), New Delhi, India, for providing financial assistance for his doctoral program. The work was partly funded by the Department of Biotechnology, Government of India. The authors wish to thank Dr. B.V.S. Reddy, ICRISAT, India, for providing the mapping population and Dr. P. Rajendra Kumar (NRCS) for critically reading the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Madhusudhana.

Additional information

Communicated by X. Xia.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Srinivas, G., Satish, K., Madhusudhana, R. et al. Identification of quantitative trait loci for agronomically important traits and their association with genic-microsatellite markers in sorghum. Theor Appl Genet 118, 1439–1454 (2009). https://doi.org/10.1007/s00122-009-0993-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-009-0993-6

Keywords

Navigation