Skip to main content
Log in

Fine-mapping of the woolly gene controlling multicellular trichome formation and embryonic development in tomato

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Trichomes are small hairs that originate from the epidermal cells of nearly all land plants, and they exist in unicellular and multicellular forms. The regulatory pathway of unicellular trichomes in Arabidopsis is well characterized. However, little is known about the multicellular trichome formation in tomato (Solanum lycopersicum). The woolly (Wo) gene controls multicellular trichome initiation and leads to embryonic lethality when homozygous in tomato. To clone and characterize Wo, the gene was fine-mapped to a DNA fragment of ~200 kb using the map-based cloning strategy. A series of sequence-based molecular markers, including simple sequence repeat, sequence characterized amplified region, and cleaved amplified polymorphic sequence were utilized in this study. Analysis of the sequence indicated that this region carries 19 putative open reading frames. These results will provide not only the important information for the isolation and characterization of Wo but also the starting point for studying the regulatory pathway responsible for trichome formation and embryonic lethality in tomato.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abe M, Katsumata H, Komeda Y, Takahashi T (2003) Regulation of shoot epidermal cell differentiation by a pair of homeodomain proteins in Arabidopsis. Development 130:635–643

    Article  PubMed  CAS  Google Scholar 

  • Ashraf M, Zafar ZU, McNeilly T, Veltkamp CJ (1999) Some morpho-anatomical characteristics of cotton (Gossypium hirsutum L.) in relation to resistance to cotton leaf curl virus (CLCuV). Angew Bot 73:76–82

    Google Scholar 

  • Bernhardt C, Lee MM, Gonzalez A, Zhang F, Lloyd A, Schiefelbein J (2003) The bHLH genes GLABRA3 (GL3) and ENHANCER OF GLABRA3 (EGL3) specify epidermal cell fate in the Arabidopsis root. Development 130:6431–6439

    Article  PubMed  CAS  Google Scholar 

  • Canady MA, Ji YF, Chetelat RT (2006) Homeologous recombination in Solanum lycopersicoides introgression lines of cultivated tomato. Genetics 174:1775–1788

    Article  PubMed  CAS  Google Scholar 

  • Channarayappa SG, Muniyappa V, Frist RH (1992) Resistance of Lycopersicon species to Bemisia tabaci, a tomato leaf curl virus vector. Can J Bot 70:2184–2192

    Article  Google Scholar 

  • Chen KY, Cong B, Wing R, Vrebalow J, Tanksley SD (2007) Changes in regulation of a transcription factor lead to autogamy in cultivated tomatoes. Science 318:643–645

    Article  PubMed  CAS  Google Scholar 

  • Cong B, Barrero LS, Tanksley SD (2008) Regulatory change in YABBY-like transcription factor led to evolution of extreme fruit size during tomato domestication. Nat Genet 40:800–804

    Article  PubMed  CAS  Google Scholar 

  • Dimock MB, Kennedy GG (1983) The role of glandular trichomes in the resistance of Lycopersicon hirsutum f. glabratum to Heliothis zea. Entomol Exp Appl 33:263–268

    Article  Google Scholar 

  • Duffey SS (1986) Plant glandular trichomes: their partial role in defence against insects. In: Juniper BE, Southwood TRE (eds) Insects and the plant surface. Edward Arnold, London, pp 151–172

    Google Scholar 

  • Eshed Y, Zamir D (1994) A genomic library of Lycopersicon pennellii in L. esculentum: a tool for fine mapping of genes. Euphytica 79:175–179

    Article  CAS  Google Scholar 

  • Fulton TM, Chunwongse J, Tanksley SD (1995) Microprep protocol for extraction of DNA from tomato and other herbaceous plants. Plant Mol Biol Rep 13:207–209

    Article  CAS  Google Scholar 

  • Glover BJ, Perez-Rodriguez M, Martin C (1998) Development of several epidermal cell types can be specified by the same MYB-related plant transcriptional factor. Development 125:3497–3508

    PubMed  CAS  Google Scholar 

  • Gregory P, Tingey WM, Ave DA, Bouthyette PY (1986) Potato glandular trichomes: a physicochemical defense mechanism against insects. Nat Resist Plants Pests 13:160–167

    Article  Google Scholar 

  • Huang PC, Paddock EF (1962) The time and site of the semidominant lethal action of ‘Wo’ in Lycopersicon esculentum. Amer J Bot 49:388–393

    Article  Google Scholar 

  • Kang JH, Shi F, Jones AD, Marks MD, Howe GA (2010) Distortion of trichome morphology by the hairless mutation of tomato affects leaf surface chemistry. J Exp Bot 61:1053–1064

    Article  PubMed  CAS  Google Scholar 

  • Khush GS, Rick CM (1968) Cytogenetic analysis of the tomato genome by means of induced deficiencies. Chromosoma 23:452–484

    Article  Google Scholar 

  • Kim HJ, Han JH, Kwon JK, Park M, Kim BD, Choi D (2010) Fine mapping of pepper trichome locus 1 controlling trichome formation in Capsicum annuum L. CM334. Theor Appl Genet 120:1099–1106

    Article  PubMed  CAS  Google Scholar 

  • Koornneef M (1981) The complex syndrome of ttg mutants. Arabidopsis Inf Serv 18:45–51

    Google Scholar 

  • Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Lincoln SE, Newburg L (1987) MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174–181

    Article  PubMed  CAS  Google Scholar 

  • Larkin JC, Walker JD, Bolognesi-Winfield AC, Gray JC, Walker AR (1999) Allele-specific interactions between ttg and gl1 during trichome development in Arabidopsis thaliana. Genetics 151:1591–1604

    PubMed  CAS  Google Scholar 

  • Lim GTT, Wang GP, Hemming MN, McGrath DJ, Jones DA (2008) High resolution genetic and physical mapping of the I-3 region of tomato chromosome 7 reveals almost continuous microsynteny with grape chromosome 12 but interspersed microsynteny with duplications on Arabidopsis chromosomes 1, 2 and 3. Theor Appl Genet 118:57–75

    Article  PubMed  CAS  Google Scholar 

  • Lincoln S, Daly M, Lander E (1992) Constructing genetic linkage maps with Mapmaker/exp 3.0: a tutorial and reference manual, 3rd edn. Whitehead Institute Technical Report, Cambridge

  • Lloyd AM, Walbot V, Davis RW (1992) Arabidopsis and Nicotiana anthocyanin production activated by maize regulators R and C1. Science 258:1773–1775

    Article  PubMed  CAS  Google Scholar 

  • Luckwill LC (1943) The genus Lycopersicon: a historical, biological and taxonomic survey of the wild and cultivated tomatoes. Aberd Univ Stud 120:44

    Google Scholar 

  • Marks MD, Feldmann KA (1989) Trichome development in Arabidopsis thaliana I T-DNA tagging of the GLABROUS1 gene. Plant Cell 1:1043–1050

    Article  PubMed  CAS  Google Scholar 

  • Oppenheimer DG, Herman PL, Sivakumaran S, Esch J, Marks MD (1991) A myb gene required for leaf trichome differentiation in Arabidopsis is expressed in stipules. Cell 67:483–493

    Article  PubMed  CAS  Google Scholar 

  • Payne T, Clement J, Arnold D, Lloyd A (1999) Heterologous myb genes distinct from GL1 enhance trichome production when overexpressed in Nicotiana tabacum. Development 126:671–682

    PubMed  CAS  Google Scholar 

  • Payne CT, Zhang F, Lloyd AM (2000) GL3 Encodes a bHLH protein that regulates trichome development in Arabidopsis through interaction with GL1 and TTG1. Genetics 156:1349–1362

    PubMed  CAS  Google Scholar 

  • Philippe RN, Bohlmann J (2007) Poplar defense against insect herbivores. Can J Bot 85:1111–1126

    Article  CAS  Google Scholar 

  • Plett JM, Wilkins O, Campbell MM, Ralph SG, Regan S (2010) Endogenous over-expression of Populus MYB186 increases trichome density, improves insect pest resistance, and impacts plant growth. Plant J 64(3):419–432

    Article  PubMed  CAS  Google Scholar 

  • Rick CM, Butler L (1956) Cytogenetics of the tomato. Adv Genet 8:267–382

    Article  Google Scholar 

  • Schiefelbein J (2003) Cell-fate specification in the epidermis: a common patterning mechanism in the root and shoot. Curr Opin Plant Biol 6:74–78

    Article  PubMed  CAS  Google Scholar 

  • Serna L, Martin C (2006) Trichomes: different regulatory networks lead to convergent structures. Trends Plant Sci 11:274–280

    Article  PubMed  CAS  Google Scholar 

  • Shilling PR (1959) An investigation of the hereditary character, woolly in the tomato. Ohio J Sci 59:289–302

    Google Scholar 

  • Tanksley SD, Ganal MW, Prince JP, de Vicente MC, Bonierbale MW, Broun P, Fulton TM, Giovanonni JJ, Grandillo S, Martin GB, Messeguer R, Miller JC, Miller L, Paterson AH, Pineda O, Roder M, Wing RA, Wu W, Young ND (1992) High density molecular linkage maps of the tomato and potato genomes. Genetics 132:1141–1160

    PubMed  CAS  Google Scholar 

  • Wagner GJ (1991) Secreting glandular trichomes: more than just hairs. Plant Physiol 96:675–679

    Article  PubMed  CAS  Google Scholar 

  • Walker AR, Davisona PA, Bolognesi-Winfielda AC, Jamesa CM, Srinivasanb N, Blundellb TL, Eschc JJ, Marksc MD, Graya JC (1999) The TRANSPARENT TESTA GLABRA1 locus, which regulates trichome differentiation and anthocyanin biosynthesis in Arabidopsis, encodes a WD40 repeat protein. Plant Cell 11:1337–1349

    Article  PubMed  CAS  Google Scholar 

  • Wang S, Wang JW, Yu N, Li CH, Luo B, Gou JY, Wang LJ, Chen XY (2004) Control of plant trichome development by a cotton fiber MYB gene. Plant Cell 16:2323–2334

    Article  PubMed  CAS  Google Scholar 

  • Werker E (2000) Trichome diversity and development. Adv Bot Res 31:1–35

    Article  Google Scholar 

  • Xiao H, Jiang N, Schaffner E, Stockinger EJ, Knaap E (2008) A retrotransposon-mediated gene duplication underlies morphological variation of tomato fruit. Science 319:1527–1530

    Article  PubMed  CAS  Google Scholar 

  • Zhao MZ, Morohashi K, Hatlestad G, Grotewold E, Lloyd A (2008) The TTG1-bHLH-MYB complex controls trichome cell fate and patterning through direct targeting of regulatory loci. Development 135:1991–1999

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Dr. G. P. Wang from the South China Agricultural University and Dr. H. H. Kuang from our College for the helpful advice. The authors acknowledge the Tomato Genetics Resource Center, University of California, USA, for providing the seed stocks of the introgression lines and the woolly mutant LA3186. This project was supported by grants from the 973 project (No. 2011CB100600), the National Natural Science Foundation of China (Nos. 30971997 and 30921002) and the Research Fund for the Doctoral Program of Higher Education of China (4010-081023).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhibiao Ye.

Additional information

Communicated by M. Havey.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 52 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yang, C., Li, H., Zhang, J. et al. Fine-mapping of the woolly gene controlling multicellular trichome formation and embryonic development in tomato. Theor Appl Genet 123, 625–633 (2011). https://doi.org/10.1007/s00122-011-1612-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-011-1612-x

Keywords

Navigation