Skip to main content
Log in

Simultaneous transfer, introgression, and genomic localization of genes for resistance to stem rust race TTKSK (Ug99) from Aegilops tauschii to wheat

  • Original Paper
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Wheat production is currently threatened by widely virulent races of the wheat stem rust fungus, Puccinia graminis f. sp. tritici, that are part of the TTKSK (also known as ‘Ug99’) race group. The diploid D genome donor species Aegilops tauschii (2n = 2x = 14, DD) is a readily accessible source of resistance to TTKSK and its derivatives that can be transferred to hexaploid wheat, Triticum aestivum (2n = 6x = 42, AABBDD). To expedite transfer of TTKSK resistance from Ae. tauschii, a direct hybridization approach was undertaken that integrates gene transfer, mapping, and introgression into one process. Direct crossing of Ae. tauschii accessions with an elite wheat breeding line combines the steps of gene transfer and introgression while development of mapping populations during gene transfer enables the identification of closely linked markers. Direct crosses were made using TTKSK-resistant Ae. tauschii accessions TA1662 and PI 603225 as males and a stem rust-susceptible T. aestivum breeding line, KS05HW14, as a female. Embryo rescue enabled recovery of F1 (ABDD) plants that were backcrossed as females to the hexaploid recurrent parent. Stem rust-resistant BC1F1 plants from each Ae. tauschii donor source were used as males to generate BC2F1 mapping populations. Bulked segregant analysis of BC2F1 genotypes was performed using 70 SSR loci distributed across the D genome. Using this approach, stem rust resistance genes from both accessions were located on chromosome arm 1DS and mapped using SSR and EST-STS markers. An allelism test indicated the stem rust resistance gene transferred from PI 603225 is Sr33. Race specificity suggests the stem rust resistance gene transferred from TA1662 is unique and this gene has been temporarily designated SrTA1662. Stem rust resistance genes derived from TA1662 and PI 603225 have been made available with selectable molecular markers in genetic backgrounds suitable for stem rust resistance breeding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Anugrahwati DR, Shepherd KW, Verlin DC, Zhang P, Mirzaghaderi G, Walker E, Francki MG, Dundas IS (2008) Isolation of wheat-rye 1RS recombinants that break the linkage between the stem rust resistance gene SrR and secalin. Genome 51:341–349

    Article  PubMed  CAS  Google Scholar 

  • Brooks SA, Huang L, Herbel MN, Gill BS, Brown-Guedira G, Fellers JP (2006) Structural variation and evolution of a defense-gene cluster in natural populations of Aegilops tauschii. Theor Appl Genet 112:618–626

    Article  PubMed  CAS  Google Scholar 

  • Cox TS, Sears RG, Bequette RK (1995a) Use of winter wheat x Triticum tauschii backcross populations for germplasm evaluation. Theor Appl Genet 90:571–577

    Article  Google Scholar 

  • Cox TS, Sears RG, Bequette RK, Martin TJ (1995b) Germplasm enhancement in winter wheat x Triticum tauschii backcross populations. Crop Sci 35:913–919

    Article  Google Scholar 

  • Dundas IS, Anugrahwati DR, Verlin DC, Park RF, Bariana HS, Mago R, Islam AKMR (2007) New sources of rust resistance from alien species: meliorating linked defects and discovery. Aust J Agric Res 58:545–549

    Article  CAS  Google Scholar 

  • Gamborg OL, Miller RA, Ojima K (1968) Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res 50:151–158

    Article  PubMed  CAS  Google Scholar 

  • Gill BS, Raupp WJ (1987) Direct genetic transfers from Aegilops sqarrosa L. to hexaploid wheat. Crop Sci 27:445–450

    Article  Google Scholar 

  • Innes RL, Kerber ER (1994) Resistance to wheat leaf rust and stem rust in Triticum tauschii and inheritance in hexaploid wheat of resistance transferred from T. tauschii. Genome 37:813–822

    Article  PubMed  CAS  Google Scholar 

  • Jin Y, Singh RP, Ward RW, Wanyera R, Kinyua M, Njau P, Fetch T, Pretorius ZA, Yahyaoui A (2007) Characterization of seedling infection types and adult plant infection responses of monogenic Sr gene lines to race TTKS of Puccinia graminis f. sp. tritici. Plant Dis 91:1096–1099

    Article  Google Scholar 

  • Jin Y, Szabo LJ, Pretorius ZA, Singh RP, Ward R, Fetch T (2008) Detection of virulence to resistance gene Sr24 within race TTKS of Puccinia graminis f. sp. tritici. Plant Dis 92:923–926

    Article  Google Scholar 

  • Jin Y, Szabo LJ, Rouse MN, Fetch T, Pretorius ZA, Wanyera R, Njau P (2009) Detection of virulence to resistance gene Sr36 within the TTKS race lineage of Puccinia graminis f. sp. tritici. Plant Dis 93:367–370

    Article  CAS  Google Scholar 

  • Kerber ER, Dyck PL (1969) Inheritance in hexaploid wheat of leaf rust resistance and other characters derived from Aegilops squarrosa. Can J Genet Cytol 11:639–647

    Google Scholar 

  • Kerber ER, Dyck PL (1979) Resistance to stem and leaf rust of wheat in Aegilops squarrosa and transfer of a gene for stem rust resistance to hexaploid wheat. In: Ramanjuam S (ed) Proceedings of the 5th international wheat genetics symposium, New Delhi, 1979

  • Kihara H (1944) Discovery of the DD-analyser, one of the ancestors of Triticum vulgare. Agric Hort 19:13–14

    Google Scholar 

  • Kihara H, Yamashita K, Tabushi J (1957) Some aspects of the new amphidiploids synthesized from the hybrids, emmer wheats X Aegilops var. strangulata. Wheat Infor Serv 6:14–15

    Google Scholar 

  • Klindworth DL, Niu Z, Chao S, Friesen TL, Jin Y, Faris JD, Cai X, Xu SS (2012) Introgression and characterization of a goatgrass gene for a high level of resistance to Ug99 stem rust in tetraploid wheat. G3 (Bethesda) 2:665–673

    Article  CAS  Google Scholar 

  • Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Lincoln SE, Newberg LA (1987) MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 2:174–181

    Article  Google Scholar 

  • Liu W, Jin Y, Rouse M, Friebe B, Gill B, Pumphrey MO (2011a) Development and characterization of wheat–Ae. searsii Robertsonian translocations and a recombinant chromosome conferring resistance to stem rust. Theor Appl Genet 122:1537–1545

    Article  PubMed  Google Scholar 

  • Liu W, Rouse M, Friebe B, Jin Y, Gill B, Pumphrey MO (2011b) Discovery and molecular mapping of a new gene conferring resistance to stem rust, Sr53, derived from Aegilops geniculata and characterization of spontaneous translocation stocks with reduced alien chromatin. Chromosome Res 19:669–682

    Article  PubMed  CAS  Google Scholar 

  • McFadden ES, Sears ER (1946) The origin of Triticum spelta and its free-threshing hexaploid relatives. J Hered 37:81–89

    PubMed  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Murphy J, Leath S, Huynh D, Navarro RA, Shi A (1998) Registration of NC96BGTD1, NC96BGTD2 and NC96BGTD3 wheat germplasm resistant to powdery mildew. Crop Sci 38:570–571

    Article  Google Scholar 

  • Murphy J, Leath S, Huynh D, Navarro RA, Shi A (1999) Registration of NC97BGTD7 and NC97BGTD8 wheat germplasms resistant to powdery mildew. Crop Sci 39:884–885

    Article  Google Scholar 

  • Niu Z, Klindworth DL, Friesen TL, Chao S, Jin Y, Cai X, Xu SS (2011) Targeted introgression of a wheat stem rust resistance gene by DNA marker-assisted chromosome engineering. Genetics 187:1011–1021

    Article  PubMed  CAS  Google Scholar 

  • Olson EL, Brown-Guedira G, Marshall DS, Jin Y, Mergoum M, Lowe I, Dubcovsky J (2010a) Genotyping of U.S. wheat germplasm for presence of stem rust resistance genes Sr24, Sr36 and Sr1RSAmigo. Crop Sci 50:668–675

    Article  CAS  Google Scholar 

  • Olson EL, Brown-Guedira G, Marshall D, Stack E, Bowden RL, Jin Y, Rouse MN, Pumphrey MO (2010b) Development of wheat lines having a small introgressed segment carrying stem rust resistance gene Sr22. Crop Sci 50:1823–1830

    Article  CAS  Google Scholar 

  • Qi LL, Friebe B, Zhang P, Gill BS (2007) Homoeologous recombination, chromosome engineering and crop improvement. Chromosome Res 15:3–19

    Article  PubMed  CAS  Google Scholar 

  • Qi LL, Pumphrey MO, Friebe B, Zhang P, Qian C, Bowden RL, Rouse MN, Jin Y, Gill BS (2011) A novel Robertsonian translocation event leads to transfer of a stem rust resistance gene (Sr52) effective against race Ug99 from Dasypyrum villosum into bread wheat. Theor Appl Genet 123:159–167

    Article  PubMed  CAS  Google Scholar 

  • Rosenquist CE (1927) An improved method of producing F1 hybrid seeds of wheat and barley. Agron J 19:968–971

    Article  Google Scholar 

  • Rouse MN, Olson EL, Gill BS, Pumphrey MO, Jin Y (2011) Stem rust resistance in Aegilops tauschii germplasm. Crop Sci 51:2074–2078

    Article  Google Scholar 

  • Sambasivam PK, Bansal UK, Hayden MJ, Dvorak J, Lagudah ES, Bariana HS (2008) Identification of markers linked with stem rust resistance genes Sr33 and Sr45. In: Appels R, Eastwood R, Lagudah E, Langridge P, Mackay M, McIntyre L, Sharp P (eds) Proceedings of 11th international wheat genetics symposium, Sydney, 2008

  • Singh RP, Hodson DP, Huerta-Espino J, Jin Y, Bhavani S, Njau P, Herrera-Foessel S, Singh PK, Singh S, Govindan V (2011) The emergence of Ug99 races of the stem rust fungus is a threat to world wheat production. Annu Rev Phytopathol 49(1):465–481

    Google Scholar 

  • Stakman E, Steward D, Loegering W (1962) Identification of physiologic races of Puccinia graminis var. tritici. US Department of Agriculture, ARS (E-617)

  • Tanaka M (1961) Newly synthesized amphidiploids from the hybrids, emmer wheats X Aegilops squarrosa varieties. Wheat Infor Serv 8:8

    Google Scholar 

  • The T (1973) Chromosome location of genes conditioning stem rust resistance transferred from diploid to hexaploid wheat. Nature New Biol 241:256

    Article  PubMed  CAS  Google Scholar 

  • Tiwari S, Spielman M, Schulz R, Oakey RJ, Kelsey G, Salazar A, Zhang K, Pennell R, Scott RJ (2010) Transcriptional profiles underlying parent-of-origin effects in seeds of Arabidopsis thaliana. BMC Plant Biol 10:72

    Article  PubMed  Google Scholar 

  • Zhang W, Olson E, Saintenac C, Rouse M, Abate Z, Jin Y, Akhunov E, Pumphrey M, Dubcovsky J (2010) Genetic maps of stem rust resistance gene Sr35 in diploid and hexaploid wheat. Crop Sci 50:2464–2474

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This is contribution number 13-074-J from the Kansas Agricultural Experiment Station. This project was funded by the Durable Rust Resistance in Wheat project, Cornell University through funds from The Bill & Melinda Gates Foundation and the USDA-ARS (Appropriation #5430-21000-006-00D). We thank Amy Bernardo, Paul St. Amand, Katherine Kaus and Mitchell Keller for technical assistance. Dr. Robert A. McIntosh gave helpful suggestions that improved this manuscript. Mention of trade names or commercial products in this publication is solely for the purpose of providing specific information and does not imply recommendation or endorsement by the US Department of Agriculture. USDA is an equal opportunity provider and employer.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jesse A. Poland.

Additional information

Communicated by H.-C. Jing.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Olson, E.L., Rouse, M.N., Pumphrey, M.O. et al. Simultaneous transfer, introgression, and genomic localization of genes for resistance to stem rust race TTKSK (Ug99) from Aegilops tauschii to wheat. Theor Appl Genet 126, 1179–1188 (2013). https://doi.org/10.1007/s00122-013-2045-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-013-2045-5

Keywords

Navigation