Skip to main content
Log in

GWAS analysis of sorghum association panel lines identifies SNPs associated with disease response to Texas isolates of Colletotrichum sublineola

  • Original Article
  • Published:
Theoretical and Applied Genetics Aims and scope Submit manuscript

Abstract

Key message

SNPs identify prospective genes related to response to Colletotrichum sublineola (anthracnose) in the sorghum association panel lines.

Abstract

Sorghum association panel (SAP) lines were scored over several years for response to Colletotrichum sublineola, the causal agent of the disease anthracnose. Known resistant and susceptible lines were included each year to verify successful inoculation. Over 79,000 single-nucleotide polymorphic (SNP) loci from a publicly available genotype by sequencing dataset available for the SAP lines were used with TASSEL association mapping software to identify chromosomal locations associated with differences in disease response. When the top-scoring SNPs were mapped to the published sorghum genome, in each case, the nearest annotated gene has precedence for a role in host defense.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Adeyanju A, Little C, Yu J, Tesso T (2015) Genome-wide association study on resistance to stalk rot diseases in grain sorghum. G3 Genes Genom Genet 5:1165. https://doi.org/10.1534/g3.114.016394

    Article  CAS  Google Scholar 

  • Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES (2007) Tassel: software for association mapping of complex traits in diverse samples. Bioinformatics 23:2633–2635

    Article  CAS  PubMed  Google Scholar 

  • Buiate EAS, Xavier KV, Moore N, Torres MF, Farman ML, Schardl CL, Vaillancourt LJ (2017) A comparative genomic analysis of putative pathogenicity genes in the host-specific sibling species colletotrichum graminicola and Colletotrichum sublineola. BMC Genom 18:67. https://doi.org/10.1186/s12864-016-3457-9

    Article  CAS  Google Scholar 

  • Cardwell KF (1989) Pathotypes of Colletotrichum graminicola and seed transmission of sorghum anthracnose. Plant Dis 73:255–257

    Article  Google Scholar 

  • Casa AM, Pressoir G, Brown PJ, Mitchell SE, Rooney WL, Tuinstra MR, Franks CD, Kresovich S (2008) Community resources and strategies for association mapping in sorghum. Crop Sci 48:30–40

    Article  Google Scholar 

  • Chala A, Tronsmo AM, Brurberg MB (2011) Genetic differentiation and gene flow in Colletotrichum sublineolum in Ethiopia, the centre of origin and diversity of sorghum, as revealed by AFLP analysis. Plant Pathol J 60:474–482

    Article  CAS  Google Scholar 

  • Cheng P, Gedling CR, Patil G, Vuong TD, Shannon JG, Dorrance AE, Nguyen HT (2017) Genetic mapping and haplotype analysis of a locus for quantitative resistance to Fusarium graminearum in soybean accession pi 567516c. Theroret Appl Genet 130:999–1010

    Article  CAS  Google Scholar 

  • Chopra R, Burow G, Burke JJ, Gladman N, Xin Z (2017) Genome-wide association analysis of seedling traits in diverse sorghum germplasm under thermal stress. BMC Plant Biol 17:12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Costa RV, Zambolim L, Cota LV, Silva DD, Parreira DF, Lanza FE, Souza AGC (2015) Pathotypes of Colletotrichum sublineolum in response to sorghum populations with different levels of genetic diversity in Sete Lagoas-MG. J Phytopathol 163:543–553

    Article  Google Scholar 

  • Cuevas HE, Prom LK, Cooper EA, Knoll JE, Ni X (2018) Genome-wide association mapping of anthracnose (Colletotrichum sublineoloum) resistance in the US sorghum association panel. Plant Genome 11:1. https://doi.org/10.3835/plantgenome2017.11.0099

    Article  CAS  Google Scholar 

  • Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, Mitchell SE (2011) A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species. PLoS ONE 6:e19379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guthrie PAI, Magill CW, Frederiksen RA (1992) Random amplified polymorphic DNA markers: a system for identifying and differentiating isolates of Colletotrichum graminicola. Phytopathology 82:832–835

    Article  Google Scholar 

  • Hammerschmidt R (1999) Induced disease resistance: how do induced plants stop pathogens? Physiol Mol Plant Pathol 55:77–84

    Article  CAS  Google Scholar 

  • Hwang IS, Hwang BK (2011) The pepper mannose-binding lectin Gene CaMBL1 is required to regulate cell death and defense responses to microbial pathogens. Plant Physiol 155(1):447–463

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Irazoqui JE, Troemel ER, Feinbaum RL, Luhachack LG, Cezairliyan BO, Ausubel FM (2010) Distinct pathogenesis and host responses during infection of C. elegans by P. aeruginosa and S. aureus. PLoS Pathogens 6(7):e1000982. https://doi.org/10.1371/journal.ppat.1000982

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Juliana P, Singh RP, Singh PK, Poland JA, Bergstrom GC, Huerta-Espino J, Bhavani S, Crossa J, Sorrells ME (2018) Genome-wide association mapping for resistance to leaf rust, stripe rust and tan spot in wheat reveals potential candidate genes. Theor Appl Genet. https://doi.org/10.1007/s00122-018-3086-6

    Article  PubMed  PubMed Central  Google Scholar 

  • Krattinger SG, Lagudah ES, Spielmeyer W, Singh RP, Huerta-Espino J, McFadden H, Bossolini E, Selter LL, Keller B (2009) A putative ABC transporter confers durable resistance to multiple fungal pathogens in wheat. Science 323:1360–1363

    Article  CAS  PubMed  Google Scholar 

  • Laluk K, AbuQamar S, Mengiste T (2011) The arabidopsis mitochondria-localized pentatricopeptide repeat protein PGN functions in defense against necrotrophic fungi and abiotic stress tolerance. Plant Physiol 156:2053–2068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li W-T, Chen W-L, Yang C, Wang J, Yang L, He M, Wang J-C, Qin P, Wang Y-P, Ma B-T, Li S-G, Chen X-W (2014) Identification and network construction of zinc finger protein (ZFP) genes involved in the rice-‘Magnaporthe oryzae’ interaction [online]. Plant Omics 7:540–548

    CAS  Google Scholar 

  • Li T, Ma X, Li N, Zhou L, Liu Z, Han H, Gui Y, Bao Y, Chen J, Dai X (2017) Genome-wide association study discovered candidate genes of verticillium wilt resistance in upland cotton (Gossypium hirsutum L.). Plant Biotechnol J 15:1520–1532

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liao Y, Bai Q, Xu P, Wu T, Guo D, Peng Y, Zhang H, Deng X, Chen X, Luo M, Ali A, Wang W, Wu X (2018) Mutation in rice abscisic acid2 results in cell death, enhanced disease-resistance, altered seed dormancy and development. Front Plant Sci 9:405. https://doi.org/10.3389/fpls.2018.00405

    Article  PubMed  PubMed Central  Google Scholar 

  • Mace ES, Rami J-F, Bouchet S, Klein PE, Klein RR, Kilian A, Wenzl P, Xia L, Halloran K, Jordan DR (2009) A consensus genetic map of sorghum that integrates multiple component maps and high-throughput diversity array technology (DaRT) markers. BMC Plant Biol 9:13. https://doi.org/10.1186/1471-2229-9-13

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McCormick RF, Truong SK, Sreedasyam A, Jenkins J, Shu S, Sims D, Kennedy M, Amirebrahimi M, Weers Brock D, McKinley B, Mattison A, Morishige Daryl T, Grimwood J, Schmutz J, Mullet JE (2018) The Sorghum bicolor reference genome: improved assembly, gene annotations, a transcriptome atlas, and signatures of genome organization. Plant J 93:338–354

    Article  CAS  PubMed  Google Scholar 

  • Mohr PG, Cahill DM (2007) Suppression by aba of salicylic acid and lignin accumulation and the expression of multiple genes, in arabidopsis infected with Pseudomonas syringae pv. Tomato. Funct Integr Genom 7:181–191

    Article  CAS  Google Scholar 

  • Moore JW, Ditmore M, TeBeest DO (2008) Pathotypes of Colletotrichum sublineolum in Arkansas. Plant Dis 92:1415–1420

    Article  CAS  PubMed  Google Scholar 

  • Morris GP, Ramu P, Deshpande SP, Hash CT, Shah T, Upadhyaya HD, Riera-Lizarazu O, Brown PJ, Acharya CB, Mitchell SE, Harriman J, Glaubitz JC, Buckler ES, Kresovich S (2013a) Population genomic and genome-wide association studies of agroclimatic traits in sorghum. Proc Natl Acad Sci USA 110:453–458

    Article  PubMed  Google Scholar 

  • Morris GP, Rhodes DH, Brenton Z, Ramu P, Thayil VM, Deshpande S, Hash CT, Acharya C, Mitchell SE, Buckler ES, Yu J, Kresovich S (2013b) Dissecting genome-wide association signals for loss-of-function phenotypes in sorghum flavonoid pigmentation traits. G3 Genes Genom Genet 3:1. https://doi.org/10.1534/g3.113.008417

    Article  CAS  Google Scholar 

  • Nicholson RL, Kollipara SS, Vincent JR, Lyons PC, Cadena-Gomez G (1987) Phytoalexin synthesis by the sorghum mesocotyl in response to infection by pathogenic and nonpathogenic fungi. Proc Natl Acad Sci USA 84:5520–5524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nürnberger T, Brunner F, Kemmerling B, Piater L (2004) Innate immunity in plants and animals: striking similarities and obvious differences. Immunol Rev 198:249–266

    Article  PubMed  Google Scholar 

  • Paterson AH (2008) Genomics of sorghum. Int J Plant Genom 2008:1. https://doi.org/10.1155/2008/362451

    Article  CAS  Google Scholar 

  • Politis DJ (1975) The identity and perfect state of Colletotrichum graminicola. Mycologia 67:56–62

    Article  Google Scholar 

  • Prom LK, Perumal R, Erpelding J, Isakeit T, Montes-Garcia N, Magill CW (2009) A pictorial technique for mass screening of sorghum germplasm for anthracnose (Colletotrichum sublineolum) resistance. Open Agric J. https://doi.org/10.2174/1874331500903010020

    Article  Google Scholar 

  • Prom LK, Perumal R, Erattaimuthu SR, Little CR, No EG, Erpelding JE, Rooney WL, Odvody GN, Magill CW (2012) Genetic diversity and pathotype determination of Colletotrichum sublineolum isolates causing anthracnose in sorghum. Eur J Plant Pathol 133:671–685

    Article  Google Scholar 

  • Rhodes DH, Hoffmann L, Rooney WL, Ramu P, Morris GP, Kresovich S (2014) Genome-wide association study of grain polyphenol concentrations in global sorghum [Sorghum bicolor (L.) moench] germplasm. J Agric Food Chem 62:10916–10927

    Article  CAS  PubMed  Google Scholar 

  • Rosewich UL, Pettway RE, McDonald BA, Duncan RR, Frederiksen RA (1998) Genetic structure and emporal dynamics of a Colletotrichum graminicola population in a sorghum disease nursery. Phytopathology 88:1087–1093

    Article  CAS  PubMed  Google Scholar 

  • Sekhwal KM, Li P, Lam I, Wang X, Cloutier S, You MF (2015) Disease resistance gene analogs (RGAs) in plants. Int J Mol Sci 16:19248–19290

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen Y, Liu N, Li C, Wang X, Xu X, Chen W, Xing G, Zheng W (2017) The early response during the interaction of fungal phytopathogen and host plant. Open Biol 7(5):170057. https://doi.org/10.1098/rsob.170057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sherriff C, Whelan MJ, Arnold GM, Bailey JA (1995) RDNA sequence analysis confirms the distinction between Colletotrichum graminicola and C. sublineolum. Mycol Res 99:475–478

    Article  CAS  Google Scholar 

  • Sutton BC (1968) The appressoria of Colletotrichum graminicola and C. falcatum. Can J Bot 46:873–876

    Article  Google Scholar 

  • Tesso TRP, Little CR, Adeyanju A, Radwan GL, Prom LK, Magill CW (2012) Sorghum pathology and biotechnology—a fungal disease perspective: part II. Anthracnose, stalk rot, and downy mildew. Eur J Plant Sci Biotechnol 6:33–44

    Google Scholar 

  • Ton J, Flors V, Mauch-Mani B (2009) The multifaceted role of ABA in disease resistance. Trends Plant Sci 14:310–317

    Article  CAS  PubMed  Google Scholar 

  • Upadhyaya HD, Wang Y, Sharma R, Sharma S (2013) Identification of genetic markers linked to anthracnose resistance in sorghum using association analysis. Theor Appl Genet 126:649–657. https://doi.org/10.1007/s00122-013-2081-1

    Article  CAS  Google Scholar 

  • Valèrio H, Rèsende M, Weikert-Oliveira R, Casela C (2005) Virulence and molecular diversity in Colletotrichum graminicola from Brazil. Mycopathologia 159:449–459

    Article  CAS  PubMed  Google Scholar 

  • Vera-Estrella R, Barkla BJ, Higgins VJ, Blumwald E (1994) Plant defense response to fungal pathogens (activation of host-plasma membrane H+-atpase by elicitor-induced enzyme dephosphorylation). Plant Physiol 104:1. https://doi.org/10.1104/pp.104.1.209

    Article  Google Scholar 

  • Vorwerk S, Somerville S, Somerville C (2004) The role of plant cell wall polysaccharide composition in disease resistance. Trends Plant Sci 9:203–209

    Article  CAS  PubMed  Google Scholar 

  • Woloshen V, Huang S, Li X (2011) RNA-binding proteins in plant immunity. J Pathog 2011:278697. https://doi.org/10.4061/2011/278697

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zanette GF, Nóbrega GMA, Meirelles LDP (2009) Morphogenetic characterization of Colletotrichum sublineolum strains, causal agent of anthracnose of sorghum. Trop Plant Pathol 34:146–151

    Article  Google Scholar 

  • Zhang D, Li J, Compton RO, Robertson J, Goff VH, Epps E, Kong W, Kim C, Paterson AH (2015) Comparative genetics of seed size traits in divergent cereal lineages represented by sorghum Panicoidae) and rice (Oryzoidae). G3 Genes Genom Genet 5:1. https://doi.org/10.1534/g3.115.017590

    Article  Google Scholar 

  • Zhou Y-L, Xu M-R, Zhao M-F, Xie X-W, Zhu L-H, Fu B-Y, Li Z-K (2010) Genome-wide gene responses in a transgenic rice line carrying the maize resistance gene Rxo1 to the rice bacterial streak pathogen, xanthomonas oryzae pv. Oryzicola. BMC Genom 11:1. https://doi.org/10.1186/1471-2164-11-78

    Article  CAS  Google Scholar 

  • Zhu X, Yin J, Liang S, Liang R, Zhou X, Chen Z (2016) The multivesicular bodies (MVBs)-localized AAA ATPase LRD6-6 inhibits immunity and cell death likely through regulating MVBs-mediated vesicular trafficking in rice. PLoS Genet 12(9):e1006311. https://doi.org/10.1371/journal.pgen.1006311

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

Funding from the USDA CRIS project # 3091-22000-034-00-D.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Louis K. Prom.

Ethics declarations

Ethical standards

All research has been conducted to satisfy TAMU System BSL-1 Biological Safety Standards.

Additional information

Communicated by Hai-Chun Jing.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (XLSX 37 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prom, L.K., Ahn, E., Isakeit, T. et al. GWAS analysis of sorghum association panel lines identifies SNPs associated with disease response to Texas isolates of Colletotrichum sublineola. Theor Appl Genet 132, 1389–1396 (2019). https://doi.org/10.1007/s00122-019-03285-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00122-019-03285-5

Navigation