Skip to main content

Advertisement

Log in

LXR is a negative regulator of glucose uptake in human adipocytes

  • Article
  • Published:
Diabetologia Aims and scope Submit manuscript

Abstract

Aims/hypothesis

Obesity increases the risk of developing type 2 diabetes mellitus, characterised by impaired insulin-mediated glucose uptake in peripheral tissues. Liver X receptor (LXR) is a positive regulator of adipocyte glucose transport in murine models and a possible target for diabetes treatment. However, the levels of LXRα are increased in obese adipose tissue in humans. We aimed to investigate the transcriptome of LXR and the role of LXR in the regulation of glucose uptake in primary human adipocytes.

Methods

The insulin responsiveness of human adipocytes differentiated in vitro was characterised, adipocytes were treated with the LXR agonist GW3965 and global transcriptome profiling was determined by microarray, followed by quantitative RT-PCR (qRT-PCR), western blot and ELISA. Basal and insulin-stimulated glucose uptake was measured and the effect on plasma membrane translocation of glucose transporter 4 (GLUT4) was assayed.

Results

LXR activation resulted in transcriptional suppression of several insulin signalling genes, such as AKT2, SORBS1 and CAV1, but caused only minor changes (<15%) in microRNA expression. Activation of LXR impaired the plasma membrane translocation of GLUT4, but not the expression of its gene, SLC2A4. LXR activation also diminished insulin-stimulated glucose transport and lipogenesis in adipocytes obtained from overweight individuals. Furthermore, AKT2 expression was reduced in obese adipose tissue, and AKT2 and SORBS1 expression was inversely correlated with BMI and HOMA index.

Conclusions/interpretation

In contrast to murine models, LXR downregulates insulin-stimulated glucose uptake in human adipocytes from overweight individuals. This could be due to suppression of Akt2, c-Cbl-associated protein and caveolin-1. These findings challenge the idea of LXR as a drug target in the treatment of diabetes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

22-R-HC:

22-R-Hydroxycholesterol

CAP:

c-Cbl associated protein

CAV1:

Caveolin 1

FAS:

Fatty acid synthase

GLUT4:

Glucose transporter 4

hMSC:

Human mesenchymal stem cell

HOMA-IR:

HOMA of insulin resistance

LXR:

Liver X receptor

miRNA:

MicroRNA

PM:

Plasma membrane

qRT-PCR:

Quantitative real-time RT-PCR

RXR:

Retinoic X receptor

SAM:

Significance analysis of microarray

SGBS:

Simpson–Golabi–Behmel syndrome

References

  1. Guilherme A, Virbasius JV, Puri V, Czech MP (2008) Adipocyte dysfunctions linking obesity to insulin resistance and type 2 diabetes. Nat Rev Mol Cell Biol 9:367–377

    Article  PubMed  CAS  Google Scholar 

  2. Leto D, Saltiel AR (2012) Regulation of glucose transport by insulin: traffic control of GLUT4. Nat Rev Mol Cell Biol 13:383–396

    Article  PubMed  CAS  Google Scholar 

  3. Chiang SH, Baumann CA, Kanzaki M et al (2001) Insulin-stimulated GLUT4 translocation requires the CAP-dependent activation of TC10. Nature 410:944–948

    Article  PubMed  CAS  Google Scholar 

  4. Miura A, Sajan MP, Standaert ML et al (2003) Cbl PYXXM motifs activate the P85 subunit of phosphatidylinositol 3-kinase, Crk, atypical protein kinase C, and glucose transport during thiazolidinedione action in 3T3/L1 and human adipocytes. Biochemistry 42:14335–14341

    Article  PubMed  CAS  Google Scholar 

  5. Yamamoto M, Toya Y, Schwencke C, Lisanti MP, Myers MG Jr, Ishikawa Y (1998) Caveolin is an activator of insulin receptor signaling. J Biol Chem 273:26962–26968

    Article  PubMed  CAS  Google Scholar 

  6. Olson AL, Pessin JE (1996) Structure, function, and regulation of the mammalian facilitative glucose transporter gene family. Annu Rev Nutr 16:235–256

    Article  PubMed  CAS  Google Scholar 

  7. Trajkovski M, Hausser J, Soutschek J et al (2011) MicroRNAs 103 and 107 regulate insulin sensitivity. Nature 474:649–653

    Article  PubMed  CAS  Google Scholar 

  8. Baranowski M (2008) Biological role of liver X receptors. J Physiol Pharmacol 59(Suppl 7):31–55

    PubMed  Google Scholar 

  9. Dahlman I, Nilsson M, Jiao H et al (2006) Liver X receptor gene polymorphisms and adipose tissue expression levels in obesity. Pharmacogenet Genomics 16:881–889

    Article  PubMed  CAS  Google Scholar 

  10. Dahlman I, Nilsson M, Gu HF et al (2009) Functional and genetic analysis in type 2 diabetes of liver X receptor alleles—a cohort study. BMC Med Genet 10:27

    Article  PubMed  Google Scholar 

  11. Solaas K, Legry V, Retterstol K et al (2010) Suggestive evidence of associations between liver X receptor beta polymorphisms with type 2 diabetes mellitus and obesity in three cohort studies: HUNT2 (Norway), MONICA (France) and HELENA (Europe). BMC Med Genet 11:144

    Article  PubMed  Google Scholar 

  12. Ross SE, Erickson RL, Gerin I et al (2002) Microarray analyses during adipogenesis: understanding the effects of Wnt signaling on adipogenesis and the roles of liver X receptor alpha in adipocyte metabolism. Mol Cell Biol 22:5989–5999

    Article  PubMed  CAS  Google Scholar 

  13. Laffitte BA, Chao LC, Li J et al (2003) Activation of liver X receptor improves glucose tolerance through coordinate regulation of glucose metabolism in liver and adipose tissue. Proc Natl Acad Sci U S A 100:5419–5424

    Article  PubMed  CAS  Google Scholar 

  14. Dalen KT, Ulven SM, Bamberg K, Gustafsson JA, Nebb HI (2003) Expression of the insulin-responsive glucose transporter GLUT4 in adipocytes is dependent on liver X receptor alpha. J Biol Chem 278:48283–48291

    Article  PubMed  CAS  Google Scholar 

  15. Griesel BA, Weems J, Russell RA, Abel ED, Humphries K, Olson AL (2010) Acute inhibition of fatty acid import inhibits GLUT4 transcription in adipose tissue, but not skeletal or cardiac muscle tissue, partly through liver X receptor (LXR) signaling. Diabetes 59:800–807

    Article  PubMed  CAS  Google Scholar 

  16. Commerford SR, Vargas L, Dorfman SE et al (2007) Dissection of the insulin-sensitizing effect of liver X receptor ligands. Mol Endocrinol 21:3002–3012

    Article  PubMed  CAS  Google Scholar 

  17. Fernandez-Veledo S, Vila-Bedmar R, Nieto-Vazquez I, Lorenzo M (2009) c-Jun N-terminal kinase 1/2 activation by tumor necrosis factor-alpha induces insulin resistance in human visceral but not subcutaneous adipocytes: reversal by liver X receptor agonists. J Clin Endocrinol Metab 94:3583–3593

    Article  PubMed  CAS  Google Scholar 

  18. Fernandez-Veledo S, Nieto-Vazquez I, de Castro J et al (2008) Hyperinsulinemia induces insulin resistance on glucose and lipid metabolism in a human adipocytic cell line: paracrine interaction with myocytes. J Clin Endocrinol Metab 93:2866–2876

    Article  PubMed  CAS  Google Scholar 

  19. Hessvik NP, Bakke SS, Smith R et al (2012) The liver X receptor modulator 22(S)-hydroxycholesterol exerts cell-type specific effects on lipid and glucose metabolism. J Steroid Biochem Mol Biol 128:154–164

    Article  PubMed  CAS  Google Scholar 

  20. Arner E, Mejhert N, Kulyte A et al (2012) Adipose tissue microRNAs as regulators of CCL2 production in human obesity. Diabetes 61:1986–1993

    Article  PubMed  CAS  Google Scholar 

  21. van Harmelen V, Skurk T, Hauner H (2005) Primary culture and differentiation of human adipocyte precursor cells. Methods Mol Med 107:125–135

    PubMed  Google Scholar 

  22. Dicker A, Le Blanc K, Astrom G et al (2005) Functional studies of mesenchymal stem cells derived from adult human adipose tissue. Exp Cell Res 308:283–290

    Article  PubMed  CAS  Google Scholar 

  23. Rodriguez AM, Pisani D, Dechesne CA et al (2005) Transplantation of a multipotent cell population from human adipose tissue induces dystrophin expression in the immunocompetent mdx mouse. J Exp Med 201:1397–1405

    Article  PubMed  CAS  Google Scholar 

  24. Zaragosi LE, Ailhaud G, Dani C (2006) Autocrine fibroblast growth factor 2 signaling is critical for self-renewal of human multipotent adipose-derived stem cells. Stem Cells 24:2412–2419

    Article  PubMed  CAS  Google Scholar 

  25. Rodbell M (1964) Metabolism of isolated fat cells. I. Effects of hormones on glucose metabolism and lipolysis. J Biol Chem 239:375–380

    PubMed  CAS  Google Scholar 

  26. Collins JL, Fivush AM, Watson MA et al (2002) Identification of a nonsteroidal liver X receptor agonist through parallel array synthesis of tertiary amines. J Med Chem 45:1963–1966

    Article  PubMed  CAS  Google Scholar 

  27. Stenson BM, Ryden M, Steffensen KR et al (2009) Activation of liver X receptor regulates substrate oxidation in white adipocytes. Endocrinology 150:4104–4113

    Article  PubMed  CAS  Google Scholar 

  28. Gerin I, Dolinsky VW, Shackman JG et al (2005) LXRbeta is required for adipocyte growth, glucose homeostasis, and beta cell function. J Biol Chem 280:23024–23031

    Article  PubMed  CAS  Google Scholar 

  29. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  30. Lofgren P, van Harmelen V, Reynisdottir S et al (2000) Secretion of tumor necrosis factor-alpha shows a strong relationship to insulin-stimulated glucose transport in human adipose tissue. Diabetes 49:688–692

    Article  PubMed  CAS  Google Scholar 

  31. Arner P, Engfeldt P (1987) Fasting-mediated alteration studies in insulin action on lipolysis and lipogenesis in obese women. Am J Physiol 253:E193–E201

    PubMed  CAS  Google Scholar 

  32. Elmensdorf JS (2003) Fractionation analysis of the subcellular distribution of GLUT-4 in 3T3-L1 adipocytes. In: Özcan S (ed) Diabetes mellitus: methods and protocols. Humana Press, Totowa, pp 105–111

    Chapter  Google Scholar 

  33. Zhang B, Kirov S, Snoddy J (2005) WebGestalt: an integrated system for exploring gene sets in various biological contexts. Nucleic Acids Res 33:W741–W748

    Article  PubMed  CAS  Google Scholar 

  34. Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC (1985) Homeostasis model assessment: insulin resistance and beta-cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia 28:412–419

    Article  PubMed  CAS  Google Scholar 

  35. Grefhorst A, van Dijk TH, Hammer A et al (2005) Differential effects of pharmacological liver X receptor activation on hepatic and peripheral insulin sensitivity in lean and ob/ob mice. Am J Physiol Endocrinol Metab 289:E829–E838

    Article  PubMed  CAS  Google Scholar 

  36. Kotokorpi P, Ellis E, Parini P et al (2007) Physiological differences between human and rat primary hepatocytes in response to liver X receptor activation by 3-[3-[N-(2-chloro-3-trifluoromethylbenzyl)-(2,2-diphenylethyl)amino]propyloxy]phe nylacetic acid hydrochloride (GW3965). Mol Pharmacol 72:947–955

    Article  PubMed  CAS  Google Scholar 

  37. Pehkonen P, Welter-Stahl L, Diwo J et al (2012) Genome-wide landscape of liver X receptor chromatin binding and gene regulation in human macrophages. BMC Genomics 13:50

    Article  PubMed  CAS  Google Scholar 

  38. Stulnig TM, Steffensen KR, Gao H et al (2002) Novel roles of liver X receptors exposed by gene expression profiling in liver and adipose tissue. Mol Pharmacol 62:1299–1305

    Article  PubMed  CAS  Google Scholar 

  39. Kulyte A, Pettersson AT, Antonson P et al (2011) CIDEA interacts with liver X receptors in white fat cells. FEBS Lett 585:744–748

    Article  PubMed  CAS  Google Scholar 

  40. Sun D, Zhang J, Xie J, Wei W, Chen M, Zhao X (2012) MiR-26 controls LXR-dependent cholesterol efflux by targeting ABCA1 and ARL7. FEBS Lett 586:1472–1479

    Article  PubMed  CAS  Google Scholar 

  41. George S, Rochford JJ, Wolfrum C et al (2004) A family with severe insulin resistance and diabetes due to a mutation in AKT2. Science 304:1325–1328

    Article  PubMed  CAS  Google Scholar 

  42. Lin WH, Chiu KC, Chang HM, Lee KC, Tai TY, Chuang LM (2001) Molecular scanning of the human sorbin and SH3-domain-containing-1 (SORBS1) gene: positive association of the T228A polymorphism with obesity and type 2 diabetes. Hum Mol Genet 10:1753–1760

    Article  PubMed  CAS  Google Scholar 

  43. Kim CA, Delepine M, Boutet E et al (2008) Association of a homozygous nonsense caveolin-1 mutation with Berardinelli-Seip congenital lipodystrophy. J Clin Endocrinol Metab 93:1129–1134

    Article  PubMed  CAS  Google Scholar 

  44. Zhou QL, Park JG, Jiang ZY et al (2004) Analysis of insulin signalling by RNAi-based gene silencing. Biochem Soc Trans 32:817–821

    Article  PubMed  CAS  Google Scholar 

  45. Tan SX, Ng Y, Meoli CC et al (2012) Amplification and demultiplexing in insulin-regulated Akt protein kinase pathway in adipocytes. J Biol Chem 287:6128–6138

    Article  PubMed  CAS  Google Scholar 

  46. Katz A, Udata C, Ott E et al (2009) Safety, pharmacokinetics, and pharmacodynamics of single doses of LXR-623, a novel liver X-receptor agonist, in healthy participants. J Clin Pharmacol 49:643–649

    Article  PubMed  CAS  Google Scholar 

  47. Stenson BM, Ryden M, Venteclef N et al (2011) Liver X receptor (LXR) regulates human adipocyte lipolysis. J Biol Chem 286:370–379

    Article  PubMed  CAS  Google Scholar 

  48. Arner P (2005) Human fat cell lipolysis: biochemistry, regulation and clinical role. Best Pract Res Clin Endocrinol Metab 19:471–482

    Article  PubMed  CAS  Google Scholar 

  49. Kase ET, Wensaas AJ, Aas V et al (2005) Skeletal muscle lipid accumulation in type 2 diabetes may involve the liver X receptor pathway. Diabetes 54:1108–1115

    Article  PubMed  CAS  Google Scholar 

  50. Kase ET, Thoresen GH, Westerlund S, Hojlund K, Rustan AC, Gaster M (2007) Liver X receptor antagonist reduces lipid formation and increases glucose metabolism in myotubes from lean, obese and type 2 diabetic individuals. Diabetologia 50:2171–2180

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The excellent technical assistance of E. Sjölin, K. Wåhlén, E. Dungner, B.-M. Leijonhufvud, Y. Widlund and K. Hertel (Department of Medicine Huddinge, Karolinska Institutet, Sweden) is greatly appreciated. We also thank T. Skurk (Else Kröner-Fresenius-Centre for Nutritional Medicine, Technical University of Munich, Germany) for advice.

Funding

This study was supported by the Swedish Research Council, NovoNordisk, Swedish Diabetes Association, Swedish Heart-Lung Foundation, Karolinska Institutet, SRP Diabetes programme, Åke Wiberg Foundation, Magnus Bergvalls Foundation, Tore Nilsson Foundation, NordForsk (SYSDIET-070014) and NWO Rubicon (825.07.025).

Duality of interest

The authors declare that there is no duality of interest associated with this manuscript.

Contribution statement

JL and AMLP designed the study. AMLP, BMS, JK, JL, NM, DPA, ID and PA performed experiments, acquired data and/or performed data analysis and interpretation. SLC, AMLP, JL and JK carried out cell system characterisations. AMLP, JK, JL, SLC, GÅ and AVC designed, performed and analysed method development experiments. AP and JL drafted the manuscript. All authors revised the manuscript critically and approved the final version.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to A. M. L. Pettersson or J. Laurencikiene.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM Methods

(PDF 222 kb)

ESM Table 1

(PDF 152 kb)

ESM Table 2

(PDF 145 kb)

ESM Fig. 1

(PDF 89 kb)

ESM Fig. 2

(PDF 87 kb)

ESM Fig. 3

(PDF 134 kb)

ESM Fig. 4

(PDF 83 kb)

ESM Fig. 5

(PDF 90 kb)

ESM Fig. 6

(PDF 96 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Pettersson, A.M.L., Stenson, B.M., Lorente-Cebrián, S. et al. LXR is a negative regulator of glucose uptake in human adipocytes. Diabetologia 56, 2044–2054 (2013). https://doi.org/10.1007/s00125-013-2954-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00125-013-2954-5

Keywords

Navigation