Skip to main content
Log in

DpsA protects the human pathogen Burkholderia pseudomallei against organic hydroperoxide

  • Short Communication
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

The human pathogen, Burkholderia pseudomalle, is able to survive and multiply in hostile environments such as within macrophages. In an attempt to understand its strategy to cope with oxidative stress, the physiological role and gene regulation of a nonspecific DNA-binding protein (DpsA) was investigated. Expression of dpsA increases in response to oxidative stress through increased transcription from the upstream katG (catalase–peroxidase) promoter, which is OxyR dependent. dpsA is also transcribed from its own promoter, which is activated by osmotic stress in an OxyR-independent manner. DpsA-deficient mutants are hypersensitive to tert-butyl hydroperoxide, while overexpression of DpsA leads to increased resistance to organic oxidants. B. pseudomallei DpsA can also protect Escherichia coli against organic hydroperoxide toxicity. The mechanism of DpsA-mediated resistance to organic hydroperoxides was shown to differ from that of alkyl hydroperoxide reductase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Akaike T, Sato K, Ijiri S, Miyamoto Y, Kohno M, Ando M, Maeda H (1992) Bactericidal activity of alkyl peroxyl radicals generated by heme-iron-catalyzed decomposition of organic peroxides. Arch Biochem Biophys 294:55–63

    CAS  PubMed  Google Scholar 

  • Alexeyev MF (1999) The pKNOCK series of broad-host-range mobilizable suicide vectors for gene knockout and targeted DNA insertion into the chromosome of gram-negative bacteria. Biotechniques 26:824–828

    CAS  PubMed  Google Scholar 

  • Almiron M, Link AJ, Furlong D, Kolter RA (1992) A novel DNA-binding protein with regulatory and protective roles in starved Escherichia coli. Genes Dev 6:2646–2654

    CAS  PubMed  Google Scholar 

  • Altman SA, Zastawny TH, Randers L, Lin Z, Lumpkin JA, Remacle J, Dizdaroglu M, Rao G (1994) tert-butyl hydroperoxide-mediated DNA base damage in cultured mammalian cells. Mutat Res 306:35–44

    Article  CAS  PubMed  Google Scholar 

  • Altuvia S, Almiron M, Huisman G, Kolter R, Storz G (1994) The dps promoter is activated by OxyR during growth and by IHF and sigma S in stationary phase. Mol Microbiol 13:265–272

    CAS  PubMed  Google Scholar 

  • Antelmann H, Engelmann S, Schmid R, Sorokin A, Lapidus A, Hecker M (1997) Expression of a stress- and starvation-induced dps/pexB-homologous gene is controlled by the alternative sigma factor sigmaB in Bacillus subtilis. J Bacteriol 179:7251–7256

    CAS  PubMed  Google Scholar 

  • Buettner GR (1993) The pecking order of free radicals and antioxidants: lipid peroxidation, alpha-tocopherol, and ascorbate. Arch Biochem Biophys 300:535–543

    Article  CAS  PubMed  Google Scholar 

  • Chen L, Helmann JD (1995) Bacillus subtilis MrgA is a Dps(PexB) homologue: evidence for metalloregulation of an oxidative-stress gene. Mol Microbiol 18:295–300

    Article  CAS  PubMed  Google Scholar 

  • Choi SH, Baumler DJ, Kaspar CW (2000) Contribution of dps to acid stress tolerance and oxidative stress tolerance in Escherichia coli O157:H7. Appl Environ Microbiol 66:3911–3916

    Article  CAS  PubMed  Google Scholar 

  • de Lorenzo V, Herrero M, Jakubzik U, Timmis KN (1990) Mini-Tn5 transposon derivatives for insertion mutagenesis, promoter probing, and chromosomal insertion of cloned DNA in gram-negative eubacteria. J Bacteriol 172:6568–6572

    CAS  PubMed  Google Scholar 

  • Ferguson GP, Creighton RI, Nikolaev Y, Booth IR (1998) Importance of RpoS and Dps in survival of exposure of both exponential- and stationary-phase Escherichia coli cells to the electrophile N-ethylmaleimide. J Bacteriol 180:1030–1036

    CAS  PubMed  Google Scholar 

  • Francis KP, Taylor PD, Inchley CJ, Gallagher MP (1997) Identification of the ahp operon of Salmonella typhimurium as a macrophage-induced locus. J Bacteriol 179:4046–4048

    CAS  PubMed  Google Scholar 

  • Fuangthong M, Atichartpongkul S, Mongkolsuk S, Helmann JD (2001) OhrR is a repressor of ohrA, a key organic hydroperoxide resistance determinant in Bacillus subtilis. J Bacteriol 183:4134–4141

    Article  CAS  PubMed  Google Scholar 

  • Halliwell B, Gutteridge JM (1984) Lipid peroxidation, oxygen radicals, cell damage, and antioxidant therapy. Lancet 1:1396–1397

    Article  CAS  PubMed  Google Scholar 

  • Kovach ME, Elzer PH, Hill DS, Robertson GT, Farris MA, Roop RM II, Peterson KM (1995) Four new derivatives of the broad-host-range cloning vector pBBR1MCS, carrying different antibiotic-resistance cassettes. Gene 166:175–176

    Article  CAS  PubMed  Google Scholar 

  • Loprasert S, Sallabhan R, Whangsuk W, Mongkolsuk S (2002) The Burkholderia pseudomallei oxyR gene: expression analysis and mutant characterization. Gene 296:161–169

    Article  CAS  PubMed  Google Scholar 

  • Loprasert S, Sallabhan R, Whangsuk W, Mongkolsuk S (2003a) Compensatory increase in ahpC gene expression and its role in protecting Burkholderia pseudomallei against reactive nitrogen intermediates. Arch Microbiol 180:498–502

    Article  CAS  PubMed  Google Scholar 

  • Loprasert S, Whangsuk W, Sallabhan R, Mongkolsuk S (2003b) Regulation of the katG–dpsA operon and the importance of KatG in survival of Burkholderia pseudomallei exposed to oxidative stress. FEBS Lett 542:17–21

    Article  CAS  PubMed  Google Scholar 

  • Martinez A, Kolter R (1997) Protection of DNA during oxidative stress by the nonspecific DNA-binding protein Dps. J Bacteriol 179:5188–5194

    CAS  PubMed  Google Scholar 

  • Michan C, Manchado M, Dorado G, Pueyo C (1999) In vivo transcription of the Escherichia coli oxyR regulon as a function of growth phase and in response to oxidative stress. J Bacteriol 181:2759–2764

    CAS  PubMed  Google Scholar 

  • Mongkolsuk S, Loprasert S, Vattanaviboon P, Chanvanichayachai C, Chamnongpol S, Supsamran N (1996) Heterologous growth phase- and temperature-dependent expression and H2O2 toxicity protection of a superoxide-inducible monofunctional catalase gene from Xanthomonas oryzae pv. oryzae. J Bacteriol 178:3578–3584

    CAS  PubMed  Google Scholar 

  • Mongkolsuk S, Praituan W, Loprasert S, Fuangthong M, Chamnongpol S (1998) Identification and characterization of a new organic hydroperoxide resistance (ohr) gene with a novel pattern of oxidative stress regulation from Xanthomonas campestris pv. phaseoli. J Bacteriol 180:2636–2643

    CAS  PubMed  Google Scholar 

  • Rankin S, Li Z, Isberg RR (2002) Macrophage-induced genes of Legionella pneumophila: protection from reactive intermediates and solute imbalance during intracellular growth. Infect Immun 70:3637–3648

    Article  CAS  PubMed  Google Scholar 

  • Reece KS, Phillips GJ (1995) New plasmids carrying antibiotic-resistance cassettes. Gene 165:141–142

    Article  CAS  PubMed  Google Scholar 

  • Shalom G, Shaw JG, Thomas MS (2000) pGSTp: an IVET-compatible promoter probe vector conferring resistance to trimethoprim. Biotechniques 29:954–958

    CAS  PubMed  Google Scholar 

  • Shea RJ, Mulks MH (2002) ohr, Encoding an organic hydroperoxide reductase, is an in vivo-induced gene in Actinobacillus pleuropneumoniae. Infect Immun 70:794–802

    Article  CAS  PubMed  Google Scholar 

  • Steers E Jr, Craven GR, Anfinsen CB (1965) Comparison of beta-galactosidases from normal (i-o+z+) and operator constitutive (i-ocz+) strains of E. coli. Proc Natl Acad Sci USA 54:1174–1181

    CAS  PubMed  Google Scholar 

  • Storz G, Toledano MB (1994) Regulation of bacterial gene expression in response to oxidative stress. Methods Enzymol 236:196–207

    Article  CAS  PubMed  Google Scholar 

  • Storz G, Jacobson FS, Tartaglia LA, Morgan RW, Silveira LA, Ames BN (1989) An alkyl hydroperoxide reductase induced by oxidative stress in Salmonella typhimurium and Escherichia coli: genetic characterization and cloning of ahp. J Bacteriol 171:2049–2055

    CAS  PubMed  Google Scholar 

  • Wolf SG, Frenkiel D, Arad T, Finkel SE, Kolter R, Minsky A (1999) DNA protection by stress-induced biocrystallization. Nature 400:83–85

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto Y, Poole LB, Hantgan RR, Kamio Y (2002) An iron-binding protein Dpr, from Streptococcus mutans prevents iron-dependent hydroxyl radical formation in vitro. J Bacteriol 184:2931–2939

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank J. Dubbs for a critical review of the manuscript and P. Munpiyamit for photograph preparation. This research was supported by grants from the Chulabhorn Research Institute and the senior research scholar RTA 4580010 grant from the Thailand Research Fund to SM.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suvit Loprasert.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Loprasert, S., Whangsuk, W., Sallabhan, R. et al. DpsA protects the human pathogen Burkholderia pseudomallei against organic hydroperoxide. Arch Microbiol 182, 96–101 (2004). https://doi.org/10.1007/s00203-004-0694-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-004-0694-0

Keywords

Navigation