Skip to main content
Log in

The molecular basis of salt adaptation in Methanosarcina mazei Gö1

  • Mini-Review
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

The study on the molecular basis of salt adaptation and its regulation in archaea is still in its infancy, but genomics and functional genome analyses combined with classical biochemistry shed light on the processes conferring salt adaptation in the methanogenic archaeon Methanosarcina mazei Gö1. In this article, we will review discoveries made within the last years that will culminate in the description of the overall cellular response of M. mazei Gö1 to elevated salinities. This response includes accumulation of solutes and export of Na+ as well as potential uptake/export of K+ but also a restructuring of the cell surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Abken HJ, Tietze M, Brodersen J, Bäumer S, Beifuss U, Deppenmeier U (1998) Isolation and characterization of methanophenazine and function of phenazines in membrane-bound electron transport of Methanosarcina mazei Gö1. J Bacteriol 180:2027–2032

    PubMed  CAS  Google Scholar 

  • Aguena M, Yagil E, Spira B (2002) Transcriptional analysis of the pst operon of Escherichia coli. Mol Genet Genomics 268:518–524

    Article  PubMed  CAS  Google Scholar 

  • Ashby MK (2006) Distribution, structure and diversity of “bacterial” genes encoding two-component proteins in the Euryarchaeota. Archaea 2:11–30

    PubMed  CAS  Google Scholar 

  • Bakker EP (1992) Cell K+ and K+ transport systems in procaryotes. In: Bakker EP (ed) Alcali cation transport systems in procaryotes. CRC Press, Boca Raton

    Google Scholar 

  • Becher B, Müller V (1994) ΔμNa+ drives the synthesis of ATP via an ΔμNa+-translocating F1F0-ATP synthase in membrane vesicles of the archaeon Methanosarcina mazei Gö1. J Bacteriol 176:2543–2550

    PubMed  CAS  Google Scholar 

  • Becher B, Müller V, Gottschalk G (1992) N 5-methyl-tetrahydromethanopterin : coenzyme M methyltransferase of Methanosarcina strain Gö1 is a Na+ translocating membrane protein. J Bacteriol 174:7656–7660

    PubMed  CAS  Google Scholar 

  • Blaut M, Gottschalk G (1984) Coupling of ATP synthesis and methane formation from methanol and molecular hydrogen in Methanosarcina barkeri. Eur J Biochem 141:217–222

    Article  PubMed  CAS  Google Scholar 

  • Blaut M, Müller V, Gottschalk G (1992) Energetics of methanogenesis studies in vesicular systems. J Bioenerg Biomembr 24:529–546

    Article  PubMed  CAS  Google Scholar 

  • Bohnert HJ (1995) Adaptations to environmental stresses. Plant Cell 7:1099–1111

    Article  PubMed  CAS  Google Scholar 

  • Brown AD (1976) Microbial water stress. Bacteriol Rev 40:803–846

    PubMed  CAS  Google Scholar 

  • Cánovas D, Vargas C, Csonka LN, Ventosa A, Nieto JJ (1996) Osmoprotectants in Halomonas elongata: high-affinity betaine transport system and choline-betaine pathway. J Bacteriol 178:7221–7226

    PubMed  Google Scholar 

  • Cánovas D, Vargas C, Csonka LN, Ventosa A, Nieto JJ (1998) Synthesis of glycine betaine from exogenous choline in the moderately halophilic bacterium Halomonas elongata. Appl Environ Microbiol 64:4095–4097

    PubMed  Google Scholar 

  • Cánovas D et al (2000) Genes for the synthesis of the osmoprotectant glycine betaine from choline in the moderately halophilic bacterium Halomonas elongata DSM 3043. Microbiology 146:455–463

    PubMed  Google Scholar 

  • Csonka LN (1989) Physiological and genetic responses of bacteria to osmotic stress. Microbiol Rev 53:121–147

    PubMed  CAS  Google Scholar 

  • Deppenmeier U (2002) The unique biochemistry of methanogenesis. Prog Nucleic Acid Res Mol Biol 71:223–283

    Article  PubMed  CAS  Google Scholar 

  • Deppenmeier U, Blaut M, Mahlmann A, Gottschalk G (1990) Reduced coenzyme F420:heterodisulfide oxidoreductase, a proton-translocating redox system in methanogenic bacteria. Proc Natl Acad Sci USA 87:9449–9453

    Article  PubMed  CAS  Google Scholar 

  • Deppenmeier U, Blaut M, Schmidt B, Gottschalk G (1992) Purification and properties of a F420-nonreactive, membrane-bound hydrogenase from Methanosarcina strain Gö1. Arch Microbiol 157:505–511

    PubMed  CAS  Google Scholar 

  • Deppenmeier U et al (2002) The genome of Methanosarcina mazei: evidence for lateral gene transfer between bacteria and archaea. J Mol Microbiol Biotechnol 4:453–461

    PubMed  CAS  Google Scholar 

  • Dinnbier U, Limpinsel E, Schmid R, Bakker EP (1988) Transient accumulation of potassium glutamate and its replacement by trehalose during adaptation of growing cells in Escherichia coli K-12 to elevated sodium chloride concentrations. Arch Microbiol 150:348–357

    Article  PubMed  CAS  Google Scholar 

  • Ehlers C, Veit K, Gottschalk G, Schmitz RA (2002) Functional organisation of a single nif cluster in the mesophilic archaeon Methanosarcina mazei strain Gö1. Archaea 1:143–150

    Article  PubMed  CAS  Google Scholar 

  • Ehlers C, Weidenbach K, Veit K, Deppenmeier U, Metcalf WW, Schmitz RA (2005a) Development of genetic methods and construction of a chromosomal glnK1 mutant in Methanosarcina mazei strain Gö1. Mol Genet Genomics 273:290–298

    Article  PubMed  CAS  Google Scholar 

  • Ehlers C, Weidenbach K, Veit K, Forchhammer K, Schmitz RA (2005b) Unique mechanistic features of post-translational regulation of glutamine synthetase activity in Methanosarcina mazei strain Gö1 in response to nitrogen availability. Mol Microbiol 55:1841–1854

    Article  PubMed  CAS  Google Scholar 

  • Empadinhas N, da Costa MS (2006) Diversity and biosynthesis of compatible solutes in hyper/thermophiles. Int Microbiol 9:199–206

    PubMed  CAS  Google Scholar 

  • Ferry JG (1992) Biochemistry of methanogenesis. Crit Rev Biochem Molec Biol 27:473–503

    Article  CAS  Google Scholar 

  • Galagan JE et al (2002) The genome of Methanosarcina acetivorans reveals extensive metabolic and physiological diversity. Genome Res 12:532–542

    Article  PubMed  CAS  Google Scholar 

  • Galinski EA, Trüper HG (1994) Microbial behaviour in salt-stressed ecosystems. FEMS Microbiol Rev 15:95–108

    Article  CAS  Google Scholar 

  • Grant WD (2004) Life at low water activity. Philos Trans R Soc Lond B Biol Sci 359:1249–1266

    Article  PubMed  CAS  Google Scholar 

  • Hendrickson EL et al (2004) Complete genome sequence of the genetically tractable hydrogenotrophic methanogen Methanococcus maripaludis. J Bacteriol 186:6956–6969

    Article  PubMed  CAS  Google Scholar 

  • Hohmann S (2002) Osmotic stress signaling and osmoadaptation in yeasts. Microbiol Mol Biol Rev 66:300–372

    Article  PubMed  CAS  Google Scholar 

  • Hovey R et al (2005) DNA microarray analysis of Methanosarcina mazei Gö1 reveals adaptation to different methanogenic substrates. Mol Genet Genomics 273:225–239

    Article  PubMed  CAS  Google Scholar 

  • Jones WJ, Leigh JA, Mayer F, Woese CR, Wolfe RS (1983) Methanococcus jannaschii sp.nov., an extremely thermophilic methanogen from a submarine hydrothermal vent. Arch Microbiol 136:254–261

    Article  CAS  Google Scholar 

  • Jones WJ, Nagle DP, Whitman WB (1987) Methanogens and diversity of archaebacteria. Microbiol Rev 51:135–177

    PubMed  CAS  Google Scholar 

  • Jung K, Altendorf K (2002) Towards an understanding of the molecular mechanisms of stimulus perception and signal transduction by the KdpD/KdpE system of Escherichia coli. J Mol Microbiol Biotechnol 4:223–228

    PubMed  CAS  Google Scholar 

  • Jussofie A, Mayer F, Gottschalk G (1986) Methane formation from methanol and molecular hydrogen by protoplasts of new methanogenic isolates and inhibition by dicyclohexylcarbodiimide. Arch Microbiol 146:245–249

    Article  CAS  Google Scholar 

  • Kandler O, König H (1998) Cell wall polymers in Archaea (Archaebacteria). Cell Mol Life Sci 54:305–308

    Article  PubMed  CAS  Google Scholar 

  • Kempf B, Bremer E (1998) Uptake and synthesis of compatible solutes as microbial stress responses to high-osmolality environments. Arch Microbiol 170:319–330

    Article  PubMed  CAS  Google Scholar 

  • Kühn W, Gottschalk G (1983) Characterization of the cytochromes occurring in Methanosarina species. Eur J Biochem 135:89–94

    Article  PubMed  Google Scholar 

  • Kühn W, Fiebig K, Walther R, Gottschalk G (1979) Presence of a cytochrome b 559 in Methanosarcina barkeri. FEBS Lett 105:271–274

    Article  PubMed  Google Scholar 

  • Lai MC, Sowers KR, Robertson DE, Roberts MF, Gunsalus RP (1991) Distribution of compatible solutes in the halophilic methanogenic archaebacteria. J Bacteriol 173:5352–5358

    PubMed  CAS  Google Scholar 

  • Lanyi JK (1979) The role of Na+ in transport processes of bacterial membranes. Biochim Biophys Acta 559:377–397

    PubMed  CAS  Google Scholar 

  • Lienard T, Becher B, Marschall M, Bowien S, Gottschalk G (1996) Sodium ion translocation by N 5-methyltetrahydromethanopterin:coenzyme M methyltransferase from Methanosarcina mazei Gö1 reconstituted in ether lipid liposomes. Eur J Biochem 239:857–864

    Article  PubMed  CAS  Google Scholar 

  • Maeder DL et al (2006) The Methanosarcina barkeri genome: comparative analysis with Methanosarcina acetivorans and Methanosarcina mazei reveals extensive rearrangement within methanosarcinal genomes. J Bacteriol 188:7922–7931

    Article  PubMed  CAS  Google Scholar 

  • Martin DD, Ciulla RA, Roberts MF (1999) Osmoadaptation in archaea. Appl Environ Microbiol 65:1815–1825

    PubMed  CAS  Google Scholar 

  • Martin DD, Ciulla RA, Robinson PM, Roberts MF (2001) Switching osmolyte strategies: response of Methanococcus thermolithotrophicus to changes in external NaCl. Biochim Biophys Acta 1524:1–10

    PubMed  CAS  Google Scholar 

  • Müller V, Spanheimer R, Santos H (2005) Stress response by solute accumulation in archaea. Curr Opin Microbiol 8:729–736

    Article  PubMed  CAS  Google Scholar 

  • Oren A (1999) Bioenergetic aspects of halophilism. Microbiol Mol Biol Rev 63:334–348

    PubMed  CAS  Google Scholar 

  • Oren A, Heldal M, Norland S, Galinski EA (2002) Intracellular ion and organic solute concentrations of the extremely halophilic bacterium Salinibacter ruber. Extremophiles 6:491–498

    Article  PubMed  CAS  Google Scholar 

  • Pflüger K, Baumann S, Gottschalk G, Lin W, Santos H, Müller V (2003) Lysine-2,3-aminomutase and β-lysine acetyltransferase genes of methanogenic archaea are salt induced and are essential for the biosynthesis of N ε-acetyl-β-lysine and growth at high salinity. Appl Environ Microbiol 69:6047–6055

    Article  PubMed  CAS  Google Scholar 

  • Pflüger K, Wieland H, Müller V (2005) Osmoadaptation in methanogenic archaea: recent insights from a genomic perspective. In: Gunde-Cimerman N, Oren A, Plemenitas A (eds) Adaptation to life at hight salt concentrations in archaea, bacteria, and eukarya. Springer, Dordrecht, pp 241–251

    Google Scholar 

  • Pflüger K et al (2007) Identification of genes involved in salt adaptation in the archaeon Methanosarcina mazei Gö1 using genome-wide gene expression profiling. FEMS Microbiol Lett 277:79–89

    Article  PubMed  CAS  Google Scholar 

  • Poolman B, Glaasker E (1998) Regulation of compatible solute accumulation in bacteria. Mol Microbiol 29:397–407

    Article  PubMed  CAS  Google Scholar 

  • Poolman B, Spitzer JJ, Wood JM (2004) Bacterial osmosensing: roles of membrane structure and electrostatics in lipid–protein and protein–protein interactions. Biochim Biophys Acta 1666:88–104

    Article  PubMed  CAS  Google Scholar 

  • Proctor LM, Lai R, Gunsalus RP (1997) The methanogenic archaeon Methanosarcina thermophila TM-1 possesses a high-affinity glycine betaine transporter involved in osmotic adaptation. Appl Environ Microbiol 63:2252–2257

    PubMed  CAS  Google Scholar 

  • Roberts MF (2000) Osmoadaptation and osmoregulation in archaea. Front Biosci 5:796–812

    Article  Google Scholar 

  • Roberts MF (2004) Osmoadaptation and osmoregulation in archaea: update 2004. Front Biosci 9:1999–2019

    Article  PubMed  CAS  Google Scholar 

  • Roberts MF, Lai MC, Gunsalus RP (1992) Biosynthetic pathways of the osmolytes N ε-acetyl-β-lysine, β-glutamine, and betaine in Methanohalophilus strain FDF1 suggested by nuclear magnetic resonance analyses. J Bacteriol 174:6688–6693

    PubMed  CAS  Google Scholar 

  • Robertson DE, Noll D, Roberts MF, Menaia JAGF, Boone DR (1990) Detection of the osmoregulator betaine in methanogens. Appl Environ Microbiol 56:563–565

    PubMed  CAS  Google Scholar 

  • Roeßler M, Müller V (2001) Osmoadaptation in bacteria and archaea: common principles and differences. Environ Microbiol 3:743–754

    Article  Google Scholar 

  • Roeßler M, Pflüger K, Flach H, Lienard T, Gottschalk G, Müller V (2002) Identification of a salt-induced primary transporter for glycine betaine in the methanogen Methanosarcina mazei Gö1. Appl Environ Microbiol 68:2133–2139

    Article  PubMed  CAS  Google Scholar 

  • Saito H, Tatebayashi K (2004) Regulation of the osmoregulatory HOG MAPK cascade in yeast. J Biochem 136:267–272

    Article  PubMed  CAS  Google Scholar 

  • Saum SH, Müller V (2007) Salinity-dependent switching of osmolyte strategies in a moderately halophilic bacterium: glutamate induces proline biosynthesis in Halobacillus halophilus. J Bacteriol 189:6968–6975

    Article  PubMed  CAS  Google Scholar 

  • Saum SH, Müller V (2008) Growth phase-dependent switch in osmolyte strategy in a moderate halophile: ectoine is a minor osmolyte but major stationary phase solute in Halobacillus halophilus. Environ Microbiol 10(3):716–726

    Article  PubMed  CAS  Google Scholar 

  • Saum SH, Sydow JF, Palm P, Pfeiffer F, Oesterhelt D, Müller V (2006) Biochemical and molecular characterization of the biosynthesis of glutamine and glutamate, two major compatible solutes in the moderately halophilic bacterium Halobacillus halophilus. J Bacteriol 188:6808–6815

    Article  PubMed  CAS  Google Scholar 

  • Schmidt S, Pflüger K, Kögl S, Spanheimer R, Müller V (2007) The salt-induced ABC transporter Ota of the methanogenic archaeon Methanosarcina mazei Gö1 is a glycine betaine transporter. FEMS Microbiol Lett 277:44–49

    Article  PubMed  CAS  Google Scholar 

  • Sheikh-Hamad D, Gustin MC (2004) MAP kinases and the adaptive response to hypertonicity: functional preservation from yeast to mammals. Am J Physiol Renal Physiol 287:1102–1110

    Article  CAS  Google Scholar 

  • Sowers KR, Gunsalus RP (1995) Halotolerance in Methanosarcina spp.: role of N ε-acetyl-β-lysine, α-glutamate, glycine betaine, and K+ as compatible solutes for osmotic adaptation. Appl Environ Microbiol 61:4382–4388

    PubMed  CAS  Google Scholar 

  • Sowers KR, Baron SF, Ferry JG (1984) Methanosarcina acetivorans sp. nov., an acetotrophic methane-producing bacterium isolated from marine sediments. Appl Environ Microbiol 47:971–978

    PubMed  CAS  Google Scholar 

  • Sowers KR, Robertson DE, Noll D, Gunsalus RP, Roberts MF (1990) N ε-acetyl-β-lysine—an osmolyte synthesized by methanogenic archaebacteria. Proc Natl Acad Sci USA 87:9083–9087

    Article  PubMed  CAS  Google Scholar 

  • Sowers KR, Boone JE, Gunsalus RP (1993) Disaggregation of Methanosarcina spp. and growth as single cells at elevated osmolarity. Appl Environ Microbiol 59:3832–3839

    PubMed  CAS  Google Scholar 

  • Spanheimer R, Hoffmann M, Kögl S, Schmidt S, Pflüger K, Müller V (2008) Differential regulation of Ota and Otb, two primary glycine betaine transporters in the methanogenic archaeon Methanosarcina mazei Gö1. J Mol Microbiol Biotechnol (in press)

  • Sugiura A, Hirokawa K, Nakashima K, Mizuno T (1994) Signal-sensing mechanisms of the putative osmosensor KdpD in Escherichia coli. Mol Microbiol 14:929–938

    Article  PubMed  CAS  Google Scholar 

  • Thauer RK (1998) Biochemistry of methanogenesis: a tribute to Marjory Stephenson. Microbiology 144:2377–2406

    PubMed  CAS  Google Scholar 

  • Veit K et al (2006) Global transcriptional analysis of Methanosarcina mazei strain Gö1 under different nitrogen availabilities. Mol Genet Genomics 276:41–55

    Article  PubMed  CAS  Google Scholar 

  • Whatmore AM, Chudek JA, Reed RH (1990) The effects of osmotic upshock on the intracellular solute pools of Bacillus subtilis. J Gen Microbiol 136:2527–2535

    PubMed  CAS  Google Scholar 

  • Wood JM (1999) Osmosensing by bacteria: signals and membrane-based sensors. Microbiol Mol Biol Rev 63:230–262

    PubMed  CAS  Google Scholar 

  • Wood JM et al (2001) Osmosensing and osmoregulatory compatible solute accumulation by bacteria. Comp Biochem Physiol A 130:437–460

    Article  CAS  Google Scholar 

Download references

Acknowledgment

Generous support of the project by the Deutsche Forschungsgemeinschaft (Priority programme 1112) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Volker Müller.

Additional information

Communicated by Harald Huber.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Spanheimer, R., Müller, V. The molecular basis of salt adaptation in Methanosarcina mazei Gö1. Arch Microbiol 190, 271–279 (2008). https://doi.org/10.1007/s00203-008-0363-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-008-0363-9

Keywords

Navigation