Skip to main content

Advertisement

Log in

Bacteriophages and cancer

  • Mini-Review
  • Published:
Archives of Microbiology Aims and scope Submit manuscript

Abstract

Bacteriophages can be used effectively to cure bacterial infections. They are known to be active against bacteria but inactive against eukaryotic cells. Nevertheless, novel observations suggest that phages are not neutral for higher organisms. They can affect physiological and immunological processes which may be crucial to their expected positive effects in therapies. Bacteriophages are a very differentiated group of viruses and at least some of them can influence cancer processes. Phages may also affect the immunological system. In general, they activate the immunological response, for example cytokine secretion. They can also switch the tumor microenvironment to one advantageous for anticancer treatment. On the other hand, bacteriophages are used as a platform for foreign peptides that may induce anticancer effects. As bacterial debris can interfere with bacteriophage activity, phage purification is significant for the final effect of a phage preparation. In this review, results of the influence of bacteriophages on cancer processes are presented which have implications for the perspective application of phage therapy in patients with cancer and the general understanding of the role of bacteriophages in the human organism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

BM-DCs:

 Bone marrow-derived dendritic cells

DCs:

Dendritic cells

IFN:

Interferon

IL:

Interleukin

LPS:

Lipopolysaccharides

MAGE:

Melanoma-associated antigens

MMPs:

Metalloproteinase

scFv:

Single-chain Fv

sLeX:

Sialyl Lewis X protein

TAMs:

Tumor-associated macrophages

TNF:

Tumor necrosis factor

VEGF:

Vascular endothelial growth factor

References

  • Arap W, Pasqualini R (1998) Cancer treatment by targeted drug delivery to tumor vasculature in a mouse model. Science 279:377–380

    Article  CAS  PubMed  Google Scholar 

  • Bar H, Yacoby I, Benhar I (2008) Killing cancer cells by targeted drug-carrying phage nanomedicines. BMC Biotechnol 8:37

    Article  PubMed  Google Scholar 

  • Binetruy-Tournaire R, Demangel C (2000) Identification of a peptide blocking vascular endothelial growth factor (VEGF)-mediated angiogenesis. EMBO J 19:1525–1533

    Article  CAS  PubMed  Google Scholar 

  • Bloch H (1940) Experimental investigation on the relationships between bacteriophages and malignant tumors. Arch Virol 1:481–496 (in German)

    Google Scholar 

  • Boratyński J, Syper D, Weber-Dabrowska B, Łusiak-Szelachowska M, Poźniak G, Górski A (2004) Preparation of endotoxin-free bacteriophages. Cell Mol Biol Lett 9:253–259

    PubMed  Google Scholar 

  • Borysowski J, Górski A (2004) Phage display technology and its application to experimental oncological therapy (in Polish). Postepy Hig Med Dosw 58:100–107

    Google Scholar 

  • Dabrowska K, Opolski A, Wietrzyk J, Switala-Jelen K, Boratynski J, Nasulewicz A, Lipinska L, Chybicka A, Kujawa M, Zabel M, Dolinska-Krajewska B, Piasecki E, Weber-Dabrowska B, Rybka J, Salwa J, Wojdat E, Nowaczyk M, Gorski A (2004a) Antitumour activity of bacteriophages in murine experimental cancer models caused possibly by inhibition of β3 integrin signaling pathway. Acta Virol 48:241–248

    CAS  PubMed  Google Scholar 

  • Dabrowska K, Opolski A, Wietrzyk J, Switala-Jelen K, Godlewska J, Boratynski J, Syper D, Weber-Dabrowska B, Gorski A (2004b) Anticancer activity of bacteriophage T4 and its mutant HAP1 in mouse experimental tumour models. Anticancer Res 24:3991–3995

    CAS  PubMed  Google Scholar 

  • Dabrowska K, Switała-Jelen K, Opolski A, Weber-Dabrowska B, Gorski A (2005) Bacteriophage penetration in vertebrates. J Appl Microbiol 98:7–13

    Article  CAS  PubMed  Google Scholar 

  • Dąbrowska K, Świtała-Jeleń K, Opolski A, Górski A (2006) Possible association between phages, Hoc protein, and the immune system. Arch Virol 151:209–215

    Article  PubMed  Google Scholar 

  • Dąbrowska K, Zembala M, Boratyński J, Świtała-Jeleń K, Wietrzyk J, Opolski A, Szczaurska K, Kujawa M, Godlewska J, Górski A (2007) Hoc protein regulates The biological effects of T4 phage in mammals. Arch Microbiol 6:489–498

    Article  Google Scholar 

  • Dąbrowska K, Skaradziński G, Jończyk P, Kurzępa A, Wietrzyk J, Owczarek B, Zaczek M, Świtała-Jeleń K, Boratyński J, Poźniak G, Maciejewska M, Górski A (2009) The effect of bacteriophages T4 and HAP1 on in vitro melanoma migration. BMC Microbiol 9:13

    Article  PubMed  Google Scholar 

  • Di Giovine M, Salone B, Martina Y, Amati V, Zambruno G, Cundari E, Failla CM, Saggio I (2001) Binding properties, cell delivery, and gene transfer of adenoviral penton base displaying bacteriophage. Virology 282:102–112

    Article  CAS  PubMed  Google Scholar 

  • Eriksson F, Culp WD, Massey R, Egevad L, Garland D, Persson MAA, Pisa P (2007) Tumor specific phage particles promote tumor regression in a mouse melanoma model. Cancer Immunol Immunother 56:677–687

    Article  PubMed  Google Scholar 

  • Eriksson F, Tsagozis P, Lundeberg K, Parsa R, Mangsbo SM, Persson MAA, Harris RA, Pisa P (2009) Tumor-specific bacteriophages induce tumor destruction through activation of tumor-associated macrophages. J Immunol 182:3105–3111

    Article  CAS  PubMed  Google Scholar 

  • Fogelman I, Davey V, Ochs HD, Elashoff M, Feinberg MB, Mican J, Siegel JP, Sneller M, Lane HC (2000) Evaluation of CD4+ T cell function in vivo in HIV-infected patients as measured by bacteriophage phiX174 immunization. J Infect Dis 182:435–441

    Article  CAS  PubMed  Google Scholar 

  • Fokine A, Chipman PR, Leiman PG, Mesyanzhinov VV, Rao VB, Rossmann MG (2004) Molecular architecture of the prolate head of bacteriophage T4. Proc Natl Acad Sci U S A 101:6003–6008

    Article  CAS  PubMed  Google Scholar 

  • Fukuda MN, Ohyama C (2000) A peptide mimic of E-selectin ligand inhibits sialyl Lewis X-dependent lung colonization of tumor cells. Cancer Res 60:450–456

    CAS  PubMed  Google Scholar 

  • Gorski A, Weber-Dabrowska B (2005) The potential role of endogenous bacteriophages in controlling invading pathogens. Cell Mol Life Sci 62:511–519

    Article  CAS  PubMed  Google Scholar 

  • Gorski A, Dabrowska K, Switala-Jelen K, Nowaczyk M, Weber-Dabrowska B, Boratynski J, Wietrzyk J, Opolski A (2003) New insights into the possible role of bacteriophages in host defence and disease. Med Immunol 2:2

    Article  PubMed  Google Scholar 

  • Gorski A, Borysowski J, Miedzybrodzki R, Weber-Dabrowska B (2007) Bacteriophages in medicine. In: Mc Grath S (ed) Bacteriophage genetics and molecular biology. Caister Academic Press, Norfolk, p 125

    Google Scholar 

  • Górski A, Wazna E, Weber-Dabrowska B, Dabrowska K, Switała-Jeleń K, Miedzybrodzki R (2006) Bacteriophage translocation. FEMS Immunol Med Microbiol 46:313–319

    Article  PubMed  Google Scholar 

  • Hetian L, Ping A (2002) A novel peptide isolated from a phage display library inhibits tumor growth and metastasis by blocking the binding of vascular endothelial growth factor to its kinase domain receptor. J Biol Chem 277:43137–43142

    Article  PubMed  Google Scholar 

  • Kantoch M, Mordarski M (1958) Binding of bacterial viruses by cancer cells in vitro. Postepy Hig Med Dosw 12:191–192

    CAS  PubMed  Google Scholar 

  • Kelly E, Russell SJ (2007) History of oncolytic viruses: genesis to genetic engineering. Mol Ther 15:651–659

    Article  CAS  PubMed  Google Scholar 

  • Koivunen E, Arap W (1999) Tumor targeting with a selective gelatinase inhibitor. Nat Biotechmol 17:768–774

    Article  CAS  Google Scholar 

  • Kucharewicz-Krukowska A, Slopek S (1987) Immunogenic effect of bacteriophage in patients subjected to phage therapy. Arch Immunol Ther Exp (Warsz.) 35:553–561

    CAS  Google Scholar 

  • Kutter E (1997) Phage therapy: bacteriophages as antibiotics, http://www.evergreen.edu/phage/phagetherapy/phagetherapy.html

  • Leiman PG, Kanamaru S, Mesyanzhinov VV, Arisaka F, Rossmann MG (2003) Structure and morphogenesis of bacteriophage T4. Cell Mol Life Sci 60:2356–2370

    Article  CAS  PubMed  Google Scholar 

  • Li XB, Schluesener HJ, Xu SQ (2006) Molecular addresses of tumors: selection by in vivo phage display. Arch Immunol Ther Exp (Warsz) 54(3):177–181

    Article  CAS  Google Scholar 

  • Lorch A (1999) Bacteriophages: an alternative to antibiotics? Biotechnol Dev Monit 39:14–17

    Google Scholar 

  • Międzybrodzki R, Fortuna W, Weber-Dąbrowska B, Górski A (2009) A retrospective analysis of changes in inflammatory markers in patients treated with bacterial viruses. Clin Exp Med. doi:10.1007/s10238-009-0044-2

  • Newton J, Deutscher SL (2008) Phage peptide display. Handb Exp Pharmacol 185(Pt 2):145–163

    Article  CAS  PubMed  Google Scholar 

  • Nilsson F, Kosmehl H (2001) Targeted delivery of tissue factor to the ED-B domain of fibronectin mediates the infarction of solid tumors in mice. Cancer Res 61:711–716

    CAS  PubMed  Google Scholar 

  • Pajtasz-Piasecka E, Rossowska J, Duś D, Weber-Dabrowska B, Zablocka A, Gorski A (2008) Bacteriophages support anti-tumor response initiated by DC-based vaccine against murine transplantable colon carcinoma. Immunol Lett 116:24–32

    Article  CAS  PubMed  Google Scholar 

  • Przerwa A, Zimecki M, Switała-Jeleń K, Dabrowska K, Krawczyk E, Łuczak M, Weber-Dabrowska B, Syper D, Miedzybrodzki R, Górski A (2006) Effects of bacteriophages on free radical production and phagocytic functions. Med Microbiol Immunol 195:143–150

    Article  CAS  PubMed  Google Scholar 

  • Qiu J, Luo P, Wasmund K, Steplewski Z, Kieber-Emmons T (1999) Towards the development of peptide mimotopes of carbohydrate antigens as cancer vaccines. Hybridoma 18(1):103–112

    Article  CAS  PubMed  Google Scholar 

  • Ribas A, Butterfield LH, Economou JS (2000) Genetic immunotherapy for cancer. Oncologist 5:87–98

    Article  CAS  PubMed  Google Scholar 

  • Shearer WT, Lugg DJ, Rosenblatt HM, Nickoll PM, Sharp RM, Reuben JM, Ochs HD (2001) Antibody responses to bacteriophage phiX174 in human subjects exposed to the antarctic wind-over model of spaceflight. J Allergy Clin Immunol 107:19–20

    Article  Google Scholar 

  • Sinkovics JG, Horvath JC (2008) Natural and genetically engineered viral agents for oncolysis and gene therapy of human cancers. Arch Immunol Ther Exp (Warsz) 56(Suppl 1):3s–59s

    Google Scholar 

  • Smith GP (1985) Filamentous fusion phage: novel expression vectors that display cloned antigens on the virion surface. Science 228:1315–1316

    Article  CAS  PubMed  Google Scholar 

  • Szczaurska-Nowak K (2009) Badanie mechanizmu działania przeciwnowotworowego preparatu fagowego BP T4 u myszy obarczonych przeszczepialnym czerniakiem B16 (In Polish). Dissertation, Polish Academy of Science, Institute of Immunology and Experimental Therapy, Wroclaw, Poland

  • Tallant C, Marrero A, Gomis-Rüth FX (2009) Matrix metalloproteinases. Fold and function of their catalytic domains. Biochim Biophys Acta. doi:10.1016/j.bbamcr.2009.04.003

  • Uchiyama F, Tanaka Y, Minari Y, Tokui N (2005) Designing scaffolds of peptides for phages display libraries. J Biosci Bioeng 99(5):448–456

    Article  CAS  PubMed  Google Scholar 

  • Vitaliti A, Wittmer M (2002) Inhibition of tumor angiogenesis by a single-chain antibody directed against vascular growth factor. Cancer Res 60:4311–4314

    Google Scholar 

  • Weber-Dabrowska B, Mulczyk M, Gorski A (2001) Therapy of infections in cancer patients with bacteriophages. Clin Appl Immunol Rev 1:131

    Article  Google Scholar 

  • Woo Y, Adusumilli PS, Fong Y (2006) Advances in oncolytic viral therapy. Curr Opin Investig Drugs 7:549–559

    CAS  PubMed  Google Scholar 

  • World Health Organization (2002) WHO health topics, antimicrobial resistance (fact sheet 194, Jan 2002). http://www.who.int/topics/en/

  • World Health Organization (2005) World alliance for patient safety “WHO Guidelines on hand hygiene in health care (advanced draft): a summary”. http://www.who.int/patientsafety/events/05/HH_en.pdf

Download references

Acknowledgments

This work was supported by EU Structural Funds (Operational Program Innovative Economy “Optimization of characteristics and preparing of bacteriophage preparations for therapeutic purposes”) and the Polish Ministry of Science (grant no. N N401 1305 33 and no. N N401 417236).

Conflict of interest statement

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paulina Budynek.

Additional information

Communicated by Erko Stackebrandt.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Budynek, P., Dąbrowska, K., Skaradziński, G. et al. Bacteriophages and cancer. Arch Microbiol 192, 315–320 (2010). https://doi.org/10.1007/s00203-010-0559-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00203-010-0559-7

Keywords

Navigation