Skip to main content

Advertisement

Log in

Metabolism of arsenic and its toxicological relevance

  • Review Article
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

Arsenic is a worldwide environmental pollutant and a human carcinogen. It is well recognized that the toxicity of arsenicals largely depends on the oxidoreduction states (trivalent or pentavalent) and methylation levels (monomethyl, dimethyl, and trimethyl) that are present during the process of metabolism in mammals. However, presently, the specifics of the metabolic pathway of inorganic arsenicals have yet to be confirmed. In mammals, there are two possible mechanisms that have been proposed for the metabolic pathway of inorganic arsenicals, oxidative methylation, and glutathione conjugation. Oxidative methylation, which was originally proposed in fungi, is based on findings that arsenite (iAsIII) is sequentially converted to monomethylarsonic acid (MMAV) and dimethylarsinic acid (DMAV) in both humans and in laboratory animals such as mice and rats. However, recent in vitro observations have demonstrated that arsenic is only methylated in the presence of glutathione (GSH) or other thiol compounds, which strongly suggests that arsenic is methylated in trivalent forms. The glutathione conjugation mechanism is supported by findings that have shown that most intracellular arsenicals are trivalent and excreted from cells as GSH conjugates. Since non-conjugated trivalent arsenicals are highly reactive with thiol compounds and are easily converted to less toxic corresponding pentavalent arsenicals, the arsenic–glutathione conjugate stability may be the most important factor for determining the toxicity of arsenicals. In addition, “being a non-anionic form” also appears to be a determinant of the toxicity of oxo-arsenicals or thioarsenicals. The present review discusses both the metabolism of arsenic and the toxicity of arsenic metabolites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Andrewes P, Kitchin KT, Wallace K (2003) Dimethylarsine and trimethylarsine are potent genotoxins in vitro. Chem Res Toxicol 16:994–1003

    Article  PubMed  CAS  Google Scholar 

  • Aposhian HV (1997) Enzymatic methylation of arsenic species and other new approaches to arsenic toxicity. Annu Rev Pharmacol Toxicol 37:397–419

    Article  PubMed  CAS  Google Scholar 

  • Aposhian HV, Aposhian MM (2006) Arsenic toxicology: five questions. Chem Res Toxicol 19(1):1–15

    Article  PubMed  CAS  Google Scholar 

  • Bu N, Wang HY, Hao WH, Liu X, Xu S, Wu B, Anan Y, Ogra Y, Lou YJ, Naranmandura H (2011) Generation of thioarsenicals is dependent on the enterohepatic circulation in rats. Metallomics 3(10):1064–1073

    Article  PubMed  CAS  Google Scholar 

  • Calatayud M, Gimeno J, Velez D, Devesa V, Montoro R (2010) Characterization of the intestinal absorption of arsenate, monomethylarsonic acid, and dimethylarsinic acid using the Caco-2 cell line. Chem Res Toxicol 23(3):547–556

    Article  PubMed  CAS  Google Scholar 

  • Challenger F (1945) Biological methylation. Chem Rev 36:315–361

    Article  CAS  Google Scholar 

  • Chiou HY, Hsueh YM, Hsieh LL, Hsu LI, Hsu YH, Hsieh FI, Wei ML, Chen HC, Yang HT, Leu LC, Chu TH, ChenWu C, Yang MH, Chen CJ (1997) Arsenic methylation capacity, body retention, and null genotypes of glutathione S-transferase M1 and T1 among current arsenic-exposed residents in Taiwan. Mutat Res, Rev Mutat Res 386(3):197–207

    Article  Google Scholar 

  • Chowdhury UK, Zakharyan RA, Hernandez A, Avram MD, Kopplin MJ, Aposhian HV (2006) Glutathione-S-transferase-omega [MMA(V) reductase] knockout mice: enzyme and arsenic species concentrations in tissues after arsenate administration. Toxicol Appl Pharmacol 216(3):446–457

    Article  PubMed  CAS  Google Scholar 

  • Clarke SD, Romsos DR, Tsai AC, Belo PS, Bergen WG, Leveille GA (1976) Studies of the effect of dietary cholesterol on hepatic protein synthesis, reduced glutathione levels and serine dehydratase activity in the rat. J Nutr 106(1):94–102

    PubMed  CAS  Google Scholar 

  • Cullen WR, Reimer KJ (1989) Arsenic speciation in the environment. Chem Rev 89:713–764

    Article  CAS  Google Scholar 

  • Cullen WR, McBride BC, Reglinski J (1984) The reaction of methylarsenicals with thiols—some biological implications. J Inorg Biochem 21(3):179–194

    Article  CAS  Google Scholar 

  • Cullen WR, McBride BC, Manji H, Pickett AW, Reglinski J (1989) The metabolism of methylarsine oxide and sulfide. Appl Organomet Chem 3:71–78

    Article  CAS  Google Scholar 

  • Dhankher OP (2005) Arsenic metabolism in plants: an inside story. New Phytol 168(3):503–505

    Article  PubMed  CAS  Google Scholar 

  • Diaz-Bone RA, Hollmann M, Wuerfel O, Pieper D (2009) Analysis of volatile arsenic compounds formed by intestinal microorganisms: rapid identification of new metabolic products by use of simultaneous EI-MS and ICP-MS detection after gas chromatographic separation. J Anal At Spectrom 24(6):808–814

    Article  CAS  Google Scholar 

  • Dopp E, Hartmann LM, Florea AM, Rettenmeier AW, Hirner AV (2004) Environmental distribution, analysis, and toxicity of organometal(loid) compounds. Crit Rev Toxicol 34(3):301–333

    Article  PubMed  CAS  Google Scholar 

  • Drobna Z, Waters SB, Devesa V, Harmon AW, Thomas DJ, Styblo M (2005) Metabolism and toxicity of arsenic in human urothelial cells expressing rat arsenic (+3 oxidation state)-methyltransferase. Toxicol Appl Pharmacol 207(2):147–159

    Article  PubMed  CAS  Google Scholar 

  • Drobna Z, Xing W, Thomas DJ, Styblo M (2006) shRNA silencing of AS3MT expression minimizes arsenic methylation capacity of HepG2 cells. Chem Res Toxicol 19(7):894–898

    Article  PubMed  CAS  Google Scholar 

  • Drobna Z, Naranmandura H, Kubachka KM, Edwards BC, Herbin-Davis K, Styblo M, Le Chris X, Creed JT, Maeda N, Hughes MF, Thomas DJ (2009) Disruption of the arsenic (+3 oxidation state) methyltransferase gene in the mouse alters the phenotype for methylation of arsenic and affects distribution and retention of orally administered arsenate. Chem Res Toxicol 22(10):1713–1720

    Article  PubMed  CAS  Google Scholar 

  • Drobna Z, Walton FS, Paul DS, Xing W, Thomas DJ, Styblo M (2010) Metabolism of arsenic in human liver: the role of membrane transporters. Arch Toxicol 84(1):3–16

    Article  PubMed  CAS  Google Scholar 

  • Eblin KE, Bowen ME, Cromey DW, Bredfeldt TG, Mash EA, Lau SS, Gandolfi AJ (2006) Arsenite and monomethylarsonous acid generate oxidative stress response in human bladder cell culture. Toxicol Appl Pharmacol 217(1):7–14

    Article  PubMed  CAS  Google Scholar 

  • Edmonds JS, Morita M, Shibata Y (1987) Isolation and identification of arsenic-containing ribofuranosides and inorganic arsenic from Japanese edible seaweed Hijikia fusiforme. J Chem Soc, Perkin Trans 1:577–580

    Article  Google Scholar 

  • Engstrom KS, Broberg K, Concha G, Nermell B, Warholm M, Vahter M (2007) Genetic polymorphisms influencing arsenic metabolism: evidence from Argentina. Environ Health Perspect 115(4):599–605

    Article  CAS  Google Scholar 

  • Fendorf S, Michael HA, van Geen A (2010) Spatial and temporal variations of groundwater arsenic in South and Southeast Asia. Science 328(5982):1123–1127

    Article  PubMed  CAS  Google Scholar 

  • Fisher JC, Wallschlager D, Planer-Friedrich B, Hollibaugh JT (2008) A new role for sulfur in arsenic cycling. Environ Sci Technol 42(1):81–85

    Article  PubMed  CAS  Google Scholar 

  • Fomenko DE, Xing W, Adair BM, Thomas DJ, Gladyshev VN (2007) High-throughput identification of catalytic redox-active cysteine residues. Science 315(5810):387–389

    Article  PubMed  CAS  Google Scholar 

  • Francesconi KA, Tanggaar R, McKenzie CJ, Goessler W (2002) Arsenic metabolites in human urine after ingestion of an arsenosugar. Clin Chem 48(1):92–101

    PubMed  CAS  Google Scholar 

  • Fricke MW, Zeller M, Sun H, Lai VW, Cullen WR, Shoemaker JA, Witkowski MR, Creed JT (2005) Chromatographic separation and identification of products from the reaction of dimethylarsinic acid with hydrogen sulfide. Chem Res Toxicol 18(12):1821–1829

    Article  PubMed  CAS  Google Scholar 

  • Geoffroy MC, Jaffray EG, Walker KJ, Hay RT (2010) Arsenic-induced, SUMO-dependent recruitment of RNF4 into PML nuclear bodies. Mol Biol Cell 21(23):4227–4239

    Article  PubMed  CAS  Google Scholar 

  • Gregus Z, Nemeti B (2002) Purine nucleoside phosphorylase as a cytosolic arsenate reductase. Toxicol Sci 70:13–19

    Article  PubMed  CAS  Google Scholar 

  • Gurr JR, Bau DT, Liu F, Lynn S, Jan KY (1999) Dithiothreitol enhances arsenic trioxide-induced apoptosis in NB4 cells. Mol Pharmacol 56(1):102–109

    PubMed  CAS  Google Scholar 

  • Han MJ, Meng X, Lippincott L (2007) Determination of configuration of arsenite-glutathione complexes using ECSTM. Toxicol Lett 175(1–3):57–63

    Article  PubMed  CAS  Google Scholar 

  • Hansen HR, Raab A, Jaspars M, Milne BF, Feldmann J (2004) Sulfur-containing arsenical mistaken for dimethylarsinous acid [DMA(III)] and identified as a natural metabolite in urine: major implications for studies on arsenic metabolism and toxicity. Chem Res Toxicol 17(8):1086–1091

    Article  PubMed  CAS  Google Scholar 

  • Hansen JM, Zhang H, Jones DP (2006) Differential oxidation of thioredoxin-1, thioredoxin-2, and glutathione by metal ions. Free Radic Biol Med 40(1):138–145

    Article  PubMed  CAS  Google Scholar 

  • Hayakawa T, Kobayashi Y, Cui X, Hirano S (2005) A new metabolic pathway of arsenite: arsenic-glutathione complexes are substrates for human arsenic methyltransferase Cyt19. Arch Toxicol 79(4):183–191

    Article  PubMed  CAS  Google Scholar 

  • Healy SM, Wildfang E, Zakharyan RA, Aposhian HV (1999) Diversity of inorganic arsenite biotransformation. Biol Trace Elem Res 68(3):249–266

    Article  PubMed  CAS  Google Scholar 

  • Hirano S, Kobayashi Y (2006) Cytotoxic effects of S-(dimethylarsino)-glutathione: a putative intermediate metabolite of inorganic arsenicals. Toxicology 227(1–2):45–52

    Article  PubMed  CAS  Google Scholar 

  • Hirano S, Cui X, Li S, Kanno S, Hayakawa T, Shraim A (2003) Difference in uptake and toxicity of trivalent and pentavalent inorganic arsenics in rat microvessel endothelial cells. Arch Toxicol 77:305–312

    PubMed  CAS  Google Scholar 

  • Hirano S, Kobayashi Y, Cui X, Kanno S, Hayakawa T, Shraim A (2004) The accumulation and toxicity of methylated arsenicals in endothelial cells: important role of thiol compounds. Toxicol Appl Pharmacol 198:458–467

    Article  PubMed  CAS  Google Scholar 

  • International-Council-on-Mining-and-Metals (2007) Gastrointestinal uptake and absorption, and catalogue of toxicokinetic models. Health risk assessment guidance for metals. Fact sheet 04. http://www.icmm.com/page/1213/health-risk-assessment-guidance-for-metals-herag

  • IPCS (2001) Arsenic and arsenic compounds, vol 224. World Health Organization, Geneva

    Google Scholar 

  • Ito K, Bernardi R, Morotti A, Matsuoka S, Saglio G, Ikeda Y, Rosenblatt J, Avigan DE, Teruya-Feldstein J, Pandolfi PP (2008) PML targeting eradicates quiescent leukaemia-initiating cells. Nature 453(7198):1072–1078

    Article  PubMed  CAS  Google Scholar 

  • Kala SV, Neely MW, Kala G, Prater CI, Atwood DW, Rice JS, Lieberman MW (2000) The MRP2/cMOAT transporter and arsenic-glutathione complex formation are required for biliary excretion of arsenic. J Biol Chem 275(43):33404–33408

    Article  PubMed  CAS  Google Scholar 

  • Kala SV, Kala G, Prater CI, Sartorelli AC, Lieberman MW (2004) Formation and urinary excretion of arsenic triglutathione and methylarsenic diglutathione. Chem Res Toxicol 17(2):243–249

    Article  PubMed  CAS  Google Scholar 

  • Kato K, Yamanaka K, Hasegawa A, Okada S (2003) Active arsenic species produced by GSH-dependent reduction of dimethylarsinic acid cause micronuclei formation in peripheral reticulocytes of mice. Mutat Res 539(1–2):55–63

    PubMed  CAS  Google Scholar 

  • Kenyon EM, Del Razo LM, Hughes MF (2005) Tissue distribution and urinary excretion of inorganic arsenic and its methylated metabolites in mice following acute oral administration of arsenate. Toxicol Sci 85(1):468–475

    Article  PubMed  CAS  Google Scholar 

  • Kitchin KT, Wallace K (2005) Arsenite binding to synthetic peptides based on the Zn finger region and the estrogen binding region of the human estrogen receptor-alpha. Toxicol Appl Pharmacol 206(1):66–72

    Article  PubMed  CAS  Google Scholar 

  • Kitchin KT, Wallace K (2006a) Arsenite binding to synthetic peptides: the effect of increasing length between two cysteines. J Biochem Mol Toxicol 20(1):35–38

    Article  PubMed  CAS  Google Scholar 

  • Kitchin KT, Wallace K (2006b) Dissociation of arsenite-peptide complexes: triphasic nature, rate constants, half-lives, and biological importance. J Biochem Mol Toxicol 20(1):48–56

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi Y, Hirano S (2008) Effects of endogenous hydrogen peroxide and glutathione on the stability of arsenic metabolites in rat bile. Toxicol Appl Pharmacol 232(1):33–40

    Article  PubMed  CAS  Google Scholar 

  • Kobayashi Y, Cui X, Hirano S (2005) Stability of arsenic metabolites, arsenic triglutathione [As(GS)(3)] and methylarsenic diglutathione [CH(3)As(GS)(2)], in rat bile. Toxicology 211(1–2):115–123

    Article  PubMed  CAS  Google Scholar 

  • Komissarova EV, Li P, Uddin AN, Chen X, Nadas A, Rossman TG (2008) Gene expression levels in normal human lymphoblasts with variable sensitivities to arsenite: identification of GGT1 and NFKBIE expression levels as possible biomarkers of susceptibility. Toxicol Appl Pharmacol 226(2):199–205

    Article  PubMed  CAS  Google Scholar 

  • Kubachka KM, Kohan MC, Herbin-Davis K, Creed JT, Thomas DJ (2009) Exploring the in vitro formation of trimethylarsine sulfide from dimethylthioarsinic acid in anaerobic microflora of mouse cecum using HPLC-ICP-MS and HPLC-ESI-MS. Toxicol Appl Pharmacol 239(2):137–143

    Article  PubMed  CAS  Google Scholar 

  • Kumar P, Gao Q, Ning Y, Wang Z, Krebsbach PH, Polverini PJ (2008) Arsenic trioxide enhances the therapeutic efficacy of radiation treatment of oral squamous carcinoma while protecting bone. Mol Cancer Ther 7(7):2060–2069

    Article  PubMed  CAS  Google Scholar 

  • Lallemand-Breitenbach V, Jeanne M, Benhenda S, Nasr R, Lei M, Peres L, Zhou J, Zhu J, Raught B, de The H (2008) Arsenic degrades PML or PML-RARalpha through a SUMO-triggered RNF4/ubiquitin-mediated pathway. Nat Cell Biol 10(5):547–555

    Article  PubMed  CAS  Google Scholar 

  • Leslie EM, Haimeur A, Waalkes MP (2004) Arsenic transport by the human multidrug resistance protein 1 (MRP1/ABCC1). Evidence that a tri-glutathione conjugate is required. J Biol Chem 279(31):32700–32708

    Article  PubMed  CAS  Google Scholar 

  • Lin S, Shi Q, Nix FB, Styblo M, Beck MA, Herbin-Davis KM, Hall LL, Simeonsson JB, Thomas DJ (2002) A novel S-adenosyl-l-methionine:arsenic (III) methyltransferase from rat liver cytosol. J Biol Chem 277:10795–10803

    Article  PubMed  CAS  Google Scholar 

  • Liu J, Chen H, Miller DS, Saavedra JE, Keefer LK, Johnson DR, Klaassen CD, Waalkes MP (2001a) Overexpression of glutathione S-transferase II and multidrug resistance transport proteins is associated with acquired tolerance to inorganic arsenic. Mol Pharmacol 60(2):302–309

    PubMed  CAS  Google Scholar 

  • Liu J, Kadiiska MB, Liu Y, Lu T, Qu W, Waalkes MP (2001b) Stress-related gene expression in mice treated with inorganic arsenicals. Toxicol Sci 61(2):314–320

    Article  PubMed  CAS  Google Scholar 

  • Liu J, Liu Y, Powell DA, Waalkes MP, Klaassen CD (2002) Multidrug-resistance mdr1a/1b double knockout mice are more sensitive than wild type mice to acute arsenic toxicity, with higher arsenic accumulation in tissues. Toxicology 170(1–2):55–62

    Article  PubMed  CAS  Google Scholar 

  • Liu Z, Carbrey JM, Agre P, Rosen BP (2004) Arsenic trioxide uptake by human and rat aquaglyceroporins. Biochem Biophys Res Commun 316(4):1178–1185

    Article  PubMed  CAS  Google Scholar 

  • Liu Z, Sanchez MA, Jiang X, Boles E, Landfear SM, Rosen BP (2006) Mammalian glucose permease GLUT1 facilitates transport of arsenic trioxide and methylarsonous acid. Biochem Biophys Res Commun 351(2):424–430

    Article  PubMed  CAS  Google Scholar 

  • Lu M, Wang H, Li XF, Arnold LL, Cohen SM, Le XC (2007) Binding of dimethylarsinous Acid to Cys-13alpha of rat hemoglobin is responsible for the retention of arsenic in rat blood. Chem Res Toxicol 20(1):27–37

    Article  PubMed  CAS  Google Scholar 

  • Mao JH, Sun XY, Liu JX, Zhang QY, Liu P, Huang QH, Li KK, Chen Q, Chen Z, Chen SJ (2010) As4S4 targets RING-type E3 ligase c-CBL to induce degradation of BCR-ABL in chronic myelogenous leukemia. Proc Natl Acad Sci USA 107(50):21683–21688

    Article  PubMed  CAS  Google Scholar 

  • Marnell LL, Garcia-Vargas GG, Chowdhury UK, Zakharyan RA, Walsh B, Avram MD, Kopplin MJ, Cebrian ME, Silbergeld EK, Aposhian HV (2003) Polymorphisms in the human monomethylarsonic acid (MMA V) reductase/hGSTO1 gene and changes in urinary arsenic profiles. Chem Res Toxicol 16(12):1507–1513

    Article  PubMed  CAS  Google Scholar 

  • Marshall G, Ferreccio C, Yuan Y, Bates MN, Steinmaus C, Selvin S, Liaw J, Smith AH (2007) Fifty-year study of lung and bladder cancer mortality in Chile related to arsenic in drinking water. J Natl Cancer Inst 99(12):920–928

    Article  PubMed  CAS  Google Scholar 

  • Mizumura A, Watanabe T, Kobayashi Y, Hirano S (2010) Identification of arsenite-and arsenic diglutathione-binding proteins in human hepatocarcinoma cells. Toxicol Appl Pharmacol 242(2):119–125

    Article  PubMed  CAS  Google Scholar 

  • Munro KL, Mariana A, Klavins AI, Foster AJ, Lai B, Vogt S, Cai Z, Harris HH, Dillon CT (2008) Microprobe XRF mapping and XAS investigations of the intracellular metabolism of arsenic for understanding arsenic-induced toxicity. Chem Res Toxicol 21(9):1760–1769

    Article  PubMed  CAS  Google Scholar 

  • Nakamura K, Yoshio H, Ling P, Yamauchi H (2009) Methyl transfer from a hydrophobic vitamin B-12 derivative to arsenic trioxide. J Organomet Chem 694(6):916–921

    Article  CAS  Google Scholar 

  • Naranmandura H, Suzuki KT (2008) Formation of dimethylthioarsenicals in red blood cells. Toxicol Appl Pharmacol 227(3):390–399

    Article  PubMed  CAS  Google Scholar 

  • Naranmandura H, Suzuki N, Suzuki KT (2006) Trivalent arsenicals are bound to proteins during reductive methylation. Chem Res Toxicol 19(8):1010–1018

    Article  PubMed  CAS  Google Scholar 

  • Naranmandura H, Carew MW, Xu S, Lee J, Leslie EM, Weinfeld M, Le XC (2011) Comparative toxicity of arsenic metabolites in human bladder cancer EJ-1 cells. Chem Res Toxicol 24(9):1586–1596

    Article  PubMed  CAS  Google Scholar 

  • Ochi T, Kaise T, Oya Ohta Y (1994) Glutathione plays different roles in the induction of the cytotoxic effects of inorganic and organic arsenic compounds in cultured BALB/c 3T3 cells. Experientia 50(2):115–120

    Article  PubMed  CAS  Google Scholar 

  • Oremland RS, Stolz JF (2003) The ecology of arsenic. Science 300(5621):939–944

    Article  PubMed  CAS  Google Scholar 

  • Ortiz JG, Opoka R, Kane D, Cartwright IL (2009) Investigating arsenic susceptibility from a genetic perspective in Drosophila reveals a key role for glutathione synthetase. Toxicol Sci 107(2):416–426

    Article  PubMed  CAS  Google Scholar 

  • Percy AJ, Gailer J (2008) Methylated trivalent arsenic-glutathione complexes are more stable than their arsenite analog. Bioinorg Chem Appl 539082

  • Phillips DJH (1990) Arsenic in aquatic organisms—a review, emphasizing chemical speciation. Aquat Toxicol 16(3):151–186

    Article  CAS  Google Scholar 

  • Pinyayev TS, Kohan MJ, Herbin-Davis K, Creed JT, Thomas DJ (2011) Preabsorptive metabolism of sodium arsenate by anaerobic microbiota of mouse cecum forms a variety of methylated and thiolated arsenicals. Chem Res Toxicol 24(4):475–477

    Article  PubMed  CAS  Google Scholar 

  • Raab A, Wright SH, Jaspars M, Meharg AA, Feldmann J (2007) Pentavalent arsenic can bind to biomolecules. Angew Chem Int Ed Engl 46(15):2594–2597

    Article  PubMed  CAS  Google Scholar 

  • Rabieh S, Hirner AV, Matschullat J (2008) Determination of arsenic species in human urine using high performance liquid chromatography (HPLC) coupled with inductively coupled plasma mass spectrometry (ICP-MS). J Anal At Spectrom 23(4):544–549

    Article  CAS  Google Scholar 

  • Raml R, Rumpler A, Goessler W, Vahter M, Li L, Ochi T, Francesconi KA (2007) Thio-dimethylarsinate is a common metabolite in urine samples from arsenic-exposed women in Bangladesh. Toxicol Appl Pharmacol 222(3):374–380

    Article  PubMed  CAS  Google Scholar 

  • Raml R, Raber G, Rumpler A, Bauernhofer T, Goessler W, Francesconi KA (2009) Individual variability in the human metabolism of an arsenic-containing carbohydrate, 2′,3′-dihydroxypropyl 5-deoxy-5-dimethylarsinoyl-beta-D-riboside, a naturally occurring arsenical in seafood. Chem Res Toxicol 22(9):1534–1540

    Article  PubMed  CAS  Google Scholar 

  • Rappa G, Lorico A, Flavell RA, Sartorelli AC (1997) Evidence that the multidrug resistance protein (MRP) functions as a co-transporter of glutathione and natural product toxins. Cancer Res 57(23):5232–5237

    PubMed  CAS  Google Scholar 

  • Ren X, Aleshin M, Jo WJ, Dills R, Kalman DA, Vulpe CD, Smith MT, Zhang L (2011) Involvement of N-6 adenine-specific DNA methyltransferase 1 (N6AMT1) in arsenic biomethylation and its role in arsenic-induced toxicity. Environ Health Perspect 119(6):771–777

    Article  PubMed  CAS  Google Scholar 

  • Sakurai T, Qu W, Sakurai MH, Waalkes MP (2002) A major human arsenic metabolite, dimethylarsinic acid, requires reduced glutathione to induce apoptosis. Chem Res Toxicol 15(5):629–637

    Article  PubMed  CAS  Google Scholar 

  • Schmeisser E, Goessler W, Francesconi KA (2006) Human metabolism of arsenolipids present in cod liver. Anal Bioanal Chem 385(2):367–376

    Article  PubMed  CAS  Google Scholar 

  • Scott N, Hatlelid KM, MacKenzie NE, Carter DE (1993) Reactions of arsenic(III) and arsenic(V) species with glutathione. Chem Res Toxicol 6(1):102–106

    Article  PubMed  CAS  Google Scholar 

  • Shiobara Y, Ogra Y, Suzuki KT (2001) Animal species difference in the uptake of dimethylarsinous acid (DMA(III)) by red blood cells. Chem Res Toxicol 14(10):1446–1452

    Article  PubMed  CAS  Google Scholar 

  • Shraim A, Cui X, Li S, Ng JC, Wang HP, Jin YL, Liu YC, Guo L, Li DS, Wang SQ, Zhang RZ, Hirano S (2003) Arsenic speciation in the urine and hair of individuals exposed to airborne arsenic through coal-burning in Guizhou, PR China. Toxicol Lett 137(1–2):35–48

    Article  PubMed  CAS  Google Scholar 

  • Song X, Geng Z, Li X, Hu X, Bian N, Zhang X, Wang Z (2010) New insights into the mechanism of arsenite methylation with the recombinant human arsenic (+3) methyltransferase (hAS3MT). Biochimie 92(10):1397–1406

    Article  PubMed  CAS  Google Scholar 

  • Spuches AM, Kruszyna HG, Rich AM, Wilcox DE (2005) Thermodynamics of the As(III)-thiol interaction: arsenite and monomethylarsenite complexes with glutathione, dihydrolipoic acid, and other thiol ligands. Inorg Chem 44(8):2964–2972

    Article  PubMed  CAS  Google Scholar 

  • Stamatelos SK, Brinkerhoff CJ, Isukapalli SS, Georgopoulos PG (2011) Mathematical model of uptake and metabolism of arsenic(III) in human hepatocytes—incorporation of cellular antioxidant response and threshold-dependent behavior. BMC Syst Biol 5:16

    Article  PubMed  CAS  Google Scholar 

  • Styblo M, Del Razo LM, LeCluyse EL, Hamilton GA, Wang C, Cullen WR, Thomas DJ (1999) Metabolism of arsenic in primary cultures of human and rat hepatocytes. Chem Res Toxicol 12(7):560–565

    Article  PubMed  CAS  Google Scholar 

  • Suner MA, Devesa V, Munoz O, Velez D, Montoro R (2001) Application of column switching in high-performance liquid chromatography with on-line thermo-oxidation and detection by HG-AAS and HG-AFS for the analysis of organoarsenical species in seafood samples. J Anal At Spectrom 16(4):390–397

    Article  CAS  Google Scholar 

  • Suzuki KT, Mandal BK, Katagiri A, Sakuma Y, Kawakami A, Ogra Y, Yamaguchi K, Sei Y, Yamanaka K, Anzai K, Ohmichi M, Takayama H, Aimi N (2004) Dimethylthioarsenicals as arsenic metabolites and their chemical preparations. Chem Res Toxicol 17(7):914–921

    Article  PubMed  CAS  Google Scholar 

  • Suzuki KT, Iwata K, Naranmandura H, Suzuki N (2007) Metabolic differences between two dimethylthioarsenicals in rats. Toxicol Appl Pharmacol 218(2):166–173

    Article  PubMed  CAS  Google Scholar 

  • Suzuki N, Naranmandura H, Hirano S, Suzuki KT (2008) Theoretical calculations and reaction analysis on the interaction of pentavalent thioarsenicals with biorelevant thiol compounds. Chem Res Toxicol 21(2):550–553

    Article  PubMed  CAS  Google Scholar 

  • Tatham MH, Geoffroy MC, Shen L, Plechanovova A, Hattersley N, Jaffray EG, Palvimo JJ, Hay RT (2008) RNF4 is a poly-SUMO-specific E3 ubiquitin ligase required for arsenic-induced PML degradation. Nat Cell Biol 10(5):538–546

    Article  PubMed  CAS  Google Scholar 

  • Thomas DJ (2009) Unraveling arsenic–glutathione connections. Toxicol Sci 107(2):309–311

    Article  PubMed  CAS  Google Scholar 

  • Vahter M, Couch R, Nermell B, Nilsson R (1995) Lack of methylation of inorganic arsenic in the chimpanzee. Toxicol Appl Pharmacol 133(2):262–268

    Article  PubMed  CAS  Google Scholar 

  • Van de Wiele T, Gallawa CM, Kubachka KM, Creed JT, Basta N, Dayton EA, Whitacre S, Du Laing G, Bradham K (2010) Arsenic metabolism by human gut microbiota upon in vitro digestion of contaminated soils. Environ Health Perspect 118(7):1004–1009

    Article  PubMed  CAS  Google Scholar 

  • Vanhoefer U, Cao S, Minderman H, Toth K, Skenderis BS 2nd, Slovak ML, Rustum YM (1996) d, l-buthionine-(S, R)-sulfoximine potentiates in vivo the therapeutic efficacy of doxorubicin against multidrug resistance protein-expressing tumors. Clin Cancer Res 2(12):1961–1968

    PubMed  CAS  Google Scholar 

  • Villa-Bellosta R, Sorribar V (2010) Arsenate transport by sodium/phosphate cotransporter type IIb. Toxicol Appl Pharmacol 247(1):36–40

    Article  PubMed  CAS  Google Scholar 

  • Watanabe T, Ohta Y, Mizumura A, Kobayashi Y, Hirano S (2011) Analysis of arsenic metabolites in HepG2 and AS3MT-transfected cells. Arch Toxicol 85(6):577–588

    Article  PubMed  CAS  Google Scholar 

  • Wei M, Wanibuchi H, Yamamoto S, Li W, Fukushima S (1999) Urinary bladder carcinogenicity of dimethylarsinic acid in male F344 rats. Carcinogenesis 20(9):1873–1876

    Article  PubMed  CAS  Google Scholar 

  • Yamanaka K, Hoshino M, Okamoto M, Sawamura R, Hasegawa A, Okada S (1990) Induction of DNA damage by dimethylarsine, a metabolite of inorganic arsenics, is for the major part likely due to its peroxyl radical. Biochem Biophys Res Commun 168(1):58–64

    Article  PubMed  CAS  Google Scholar 

  • Yathavakilla SKV, Fricke M, Creed PA, Heitkemper DT, Shockey NV, Schwegel C, Caruso JA, Creed JT (2008) Arsenic speciation and identification of monomethylarsonous acid and monomethylthioarsonic acid in a complex matrix. Anal Chem 80(3):775–782

    Article  PubMed  CAS  Google Scholar 

  • Yehiayan L, Pattabiraman M, Kavallieratos K, Wang XT, Boise LH, Cai Y (2009) Speciation, formation, stability and analytical challenges of human arsenic metabolites. J Anal At Spectrom 24(10):1397–1405

    Article  PubMed  CAS  Google Scholar 

  • Yehiayan L, Membreno N, Matulis SM, Boise LH, Cai Y (2011) Extraction tool and matrix effects on arsenic speciation analysis in cell lines. Anal Chim Acta 699(2):187–192

    Article  PubMed  CAS  Google Scholar 

  • Yu L, Kalla K, Guthrie E, Vidrine A, Klimecki WT (2003) Genetic variation in genes associated with arsenic metabolism: glutathione s-transferase omega 1–1 and purine nucleoside phosphorylase polymorphisms in European and indigenous americans. Environ Health Perspect 111(11):1421–1427

    Article  PubMed  CAS  Google Scholar 

  • Yuan C, Lu X, Qin J, Rosen BP, Le XC (2008) Volatile arsenic species released from Escherichia coli expressing the AsIII S-adenosylmethionine methyltransferase gene. Environ Sci Technol 42(9):3201–3206

    Article  PubMed  CAS  Google Scholar 

  • Zakharyan RA, Aposhian HV (1999) Arsenite methylation by methylvitamin B-12 and glutathione does not require an enzyme. Toxicol Appl Pharm 154(3):287–291

    Article  CAS  Google Scholar 

  • Zakharyan RA, Wildfang E, Aposhian HV (1996) Enzymatic methylation of arsenic compounds. Toxicol Appl Pharmacol 140(1):77–84

    Article  CAS  Google Scholar 

  • Zakharyan RA, Sampayo Reyes A, Healy SM, Tsaprailis G, Board PG, Liebler DC, Aposhian HV (2001) Human monomethylarsonic acid (MMAV) reductase is a member of the glutathione-S-transferase superfamily. Chem Res Toxicol 14:1051–1057

    Article  PubMed  CAS  Google Scholar 

  • Zakharyan RA, Tsaprailis G, Chowdhury UK, Hernandez A, Aposhian HV (2005) Interactions of sodium selenite, glutathione, arsenic species, and omega class human glutathione transferase. Chem Res Toxicol 18(8):1287–1295

    Article  PubMed  CAS  Google Scholar 

  • Zhang XW, Yan XJ, Zhou ZR, Yang FF, Wu ZY, Sun HB, Liang WX, Song AX, Lallemand-Breitenbach V, Jeanne M, Zhang QY, Yang HY, Huang QH, Zhou GB, Tong JH, Zhang Y, Wu JH, Hu HY, de The H, Chen SJ, Chen Z (2010) Arsenic trioxide controls the fate of the PML-RARalpha oncoprotein by directly binding PML. Science 328(5975):240–243

    Article  PubMed  CAS  Google Scholar 

  • Zhou X, Sun X, Cooper KL, Wang F, Liu KJ, Hudson LG (2011) Arsenite interacts selectively with zinc finger proteins containing C3H1 or C4 motifs. J Biol Chem 286(26):22855–22863

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was partially supported by Grant-in-Aid from Ministry of Education, Culture, Sports, Science, and Technology (23390167-002).

Conflict of interest

The authors declare no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seishiro Hirano.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Watanabe, T., Hirano, S. Metabolism of arsenic and its toxicological relevance. Arch Toxicol 87, 969–979 (2013). https://doi.org/10.1007/s00204-012-0904-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-012-0904-5

Keywords

Navigation