Skip to main content
Log in

Origin of the linearity no threshold (LNT) dose–response concept

  • Review Article
  • Published:
Archives of Toxicology Aims and scope Submit manuscript

Abstract

This paper identifies the origin of the linearity at low-dose concept [i.e., linear no threshold (LNT)] for ionizing radiation-induced mutation. After the discovery of X-ray-induced mutations, Olson and Lewis (Nature 121(3052):673–674, 1928) proposed that cosmic/terrestrial radiation-induced mutations provide the principal mechanism for the induction of heritable traits, providing the driving force for evolution. For this concept to be general, a LNT dose relationship was assumed, with genetic damage proportional to the energy absorbed. Subsequent studies suggested a linear dose response for ionizing radiation-induced mutations (Hanson and Heys in Am Nat 63(686):201–213, 1929; Oliver in Science 71:44–46, 1930), supporting the evolutionary hypothesis. Based on an evaluation of spontaneous and ionizing radiation-induced mutation with Drosophila, Muller argued that background radiation had a negligible impact on spontaneous mutation, discrediting the ionizing radiation-based evolutionary hypothesis. Nonetheless, an expanded set of mutation dose–response observations provided a basis for collaboration between theoretical physicists (Max Delbruck and Gunter Zimmer) and the radiation geneticist Nicolai Timoféeff-Ressovsky. They developed interrelated physical science-based genetics perspectives including a biophysical model of the gene, a radiation-induced gene mutation target theory and the single-hit hypothesis of radiation-induced mutation, which, when integrated, provided the theoretical mechanism and mathematical basis for the LNT model. The LNT concept became accepted by radiation geneticists and recommended by national/international advisory committees for risk assessment of ionizing radiation-induced mutational damage/cancer from the mid-1950s to the present. The LNT concept was later generalized to chemical carcinogen risk assessment and used by public health and regulatory agencies worldwide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albert RE (1994) Carcinogen risk assessment in the U.S. Environmental Protection Agency. Crit Rev Toxicol 24(1):75–85

    Article  PubMed  CAS  Google Scholar 

  • Albert E, Train E, Anderson E (1977) Rationale developed by the Environmental Protection Agency for the assessment of carcinogenic risks. J Nat Cancer Inst 58:1537–1541

    PubMed  CAS  Google Scholar 

  • Anonymous (1979) Scientific bases for identification of potential carcinogens and estimation of risks. J Nat Cancer Inst 63(1):241–268

    Google Scholar 

  • Babcock EB, Collins JL (1929a) Does natural ionizing radiation control rate of mutation. Proc Nat Acad Sci 15(8):623–628

    Article  PubMed  CAS  Google Scholar 

  • Babcock EB, Collins JL (1929b) Natural ionising radiation and rate of mutation. Nature 124(3119):227–228

    Article  Google Scholar 

  • Bohr N (1933) Light and life. Nature 131(421–423):457–459

    Article  Google Scholar 

  • Bryan WR, Shimkin MB (1943) Quantitative analysis of dose-response data obtained with three carcinogenic hydrocarbons in strain C3H male mice. J Nat Cancer Inst 3(5):503–531

    CAS  Google Scholar 

  • Calabrese EJ (2005) Historical blunders: how toxicology got the dose-response relationship half right. Cell Mol Biol 51:643–654

    PubMed  CAS  Google Scholar 

  • Calabrese EJ (2009a) Getting the dose response wrong. Why hormesis became marginalized and the threshold model accepted. Arch Toxicol 83:227–247

    Article  PubMed  CAS  Google Scholar 

  • Calabrese EJ (2009b) The road to linearity: why linearity at low doses became the basis for carcinogen risk assessment. Arch Toxicol 83:203–225

    Article  PubMed  CAS  Google Scholar 

  • Calabrese EJ (2011) Toxicology rewrites its history and rethinks its future: giving equal focus to both harmful and beneficial effects. Environ Toxicol Chem 30(12):2658–2673

    Article  PubMed  CAS  Google Scholar 

  • Calabrese EJ (2013) How the US National Academy of Sciences misled the world community on cancer risk assessment: new findings challenge historical fundations of the linear dose response. Arch Toxicol (in press)

  • Caspari E, Stern C (1948) The influence of chronic irradiation with gamma rays at low dosages on the mutation rate in Drosophila melanogaster. Genetics 33:75–95

    PubMed  CAS  Google Scholar 

  • Coffey P (2008) Cathedrals of Science: The Personalities and Rivalries that Made Modern Science. Oxford University Press, Oxford

    Google Scholar 

  • Collinson E, Dainton FS, Smith DR, Tazuke S (1962) Evidence for unit negative charge on hydrogen atom formed by action of ionising radiation on aqueous systems. Proc Chem Soc 140–144

  • Crowther JA (1924) Some consideration relative to the action of x-rays on tissue cells. Proc Roy Soc Sect B 96:207–211

    Article  Google Scholar 

  • Crowther JA (1926) The action of X-rays on Colpidium colpoda. Proc Roy Soc Ser B 100(704):390–404

    Article  Google Scholar 

  • Crowther JA (1927) A theory of the action of X-rays on living cells. Proc Camb Philos Soc 23:284–287

    Article  Google Scholar 

  • Czapski G, Schwarz HA (1962) The nature of the reducing radical in water radiolysis. J Phys Chem 66:471–479

    Article  Google Scholar 

  • De Bont R, van Larebeke N (2004) Endogenous DNA damage in humans: a review of quantitative data. Mutagenesis 19(3):169–185

    Article  PubMed  Google Scholar 

  • Delbruck M (1940) Radiation and the hereditary mechanism. Am Nat 74(753):350–362

    Article  Google Scholar 

  • Delbruck M (1970) A physicist’s renewed look at biology: twenty years later. Science 168(3937):1312–1315

    Article  PubMed  CAS  Google Scholar 

  • Dessauer F (1922) Uber einige Wirkungen von Strahlen I. Z. Physik 12:38

    Google Scholar 

  • Dixon HH (1929) Cosmic radiations and evolution. Nature 123(3113):981

    Article  Google Scholar 

  • Dixon HH (1930) The mechanism of variation. Nature 125(3165):992–993

    Article  Google Scholar 

  • Environmental Protection Agency (US EPA) (1976) Health risk and economic impact assessments of suspected carcinogens. Interim Procedures & Guidelines. [FRL 548-2] Fed Reg 41:21402–21405

  • Environmental Protection Agency (US EPA) (1979) Water quality criteria. Request for Comments. Notice. [FRL 1062-5] Fed Reg 44(52):15926–15931

  • Environmental Protection Agency (US EPA) (1979) Control of trihalomethanes in drinking water. National Interim Primary Drinking Water Regulations. [FRL 1312-2] Fed Reg 44(231):68624–68710

  • FDA (US Food and Drug Administration) (1973) Compounds used in food-producing animals. Procedures for determining acceptability of assay methods used for assuring the absence of residues in edible products of such animals. Proposed rule. Fed Reg 19:19226–19230

    Google Scholar 

  • FDA (U.S. Food and Drug Administration) (1977) Chapter I—Food and Drug Administration, Department of Health, Education, and Welfare. Subchapter A-General. Subchapter E-Animal Drugs, Feeds, and Related Products. Chemical compounds in food producing animals. Criteria and procedures for evaluating assays for carcinogenic residues in edible products of animals [Docket No. 77 N-0026] Fed Reg 42(35):10412–10437

  • FDA (U.S. Food and Drug Administration) (1979) Department of Health, Education, and Welfare. Chemical Compounds in Food Producing Animals. Criteria and Procedures for Evaluating Assays for Carcinogenic Residues [Docket No. 77 N-0026] Fed Reg 44(55):17070–17114

  • Gausemeier B (2010) Genetics as a modernization program: biological research at the Kaiser Wilhelm Institutes and the political economy of the Nazi state. Hist Stud Nat Sci 40(4):429–456

    PubMed  Google Scholar 

  • Glocker R (1927) Das Grundgesetz der physikalischen Wirkung von Röntgenstrahlen verschiedener Wellenlänge und seine Beziehung zum biologisched Effekt. Strahlentherapie 26:147–155

    Google Scholar 

  • Goodspeed TH, Olson AR (1928) The production of variation in nicotiane species by x-ray treatment of sex cells. Proc Nat Acad Sci 14:66–69

    Article  PubMed  CAS  Google Scholar 

  • Haas Fl, Clark JB, Wyss O, Stone WS (1950) Mutations and mutagenic agents in bacteria. Am Nat 84(817):261–274

    Article  CAS  Google Scholar 

  • Hamblin JD (2007) A dispassionate and objective effort: negotiating the first study on the biological effects of atomic radiation. J Hist Biol 40:147–177

    Article  PubMed  Google Scholar 

  • Hanawalt PC (1994) Evolution of concepts in DNA repair. Environ Mol Mut 23(Suppl 24):78–85

    Article  Google Scholar 

  • Hanson FB (1933) Radiation-genetics. Phys Rev 13(4):466–496

    Google Scholar 

  • Hanson FB, Heys F (1928) Effects of radium in producing lethal mutations in Drosophila melanogaster. Science 68(1753):115–116

    Article  PubMed  CAS  Google Scholar 

  • Hanson FB, Heys F (1929) An analysis of the effects of the different rays of radium in producing lethal mutations in Drosophila. Am Nat 63(686):201–213

    Article  CAS  Google Scholar 

  • Hanson FB, Heys F (1930) A possible relation between natural (earth) radiation and gene mutations. Science 71(1828):43–44

    Article  PubMed  CAS  Google Scholar 

  • Hanson FB, Heys F (1932) Radium and lethal mutations in Drosophila. Further evidence of the proportionality rule from a study of the effects of equivalent doses differently applied. Am Nat 66(705):335–345

    Article  Google Scholar 

  • Hanson FB, Heys F, Stanton E (1931) The effects of increasing x-ray voltages on the production of lethal mutations in Drosophila melanogaster. Amer Nat 65(697):134–143

    Article  Google Scholar 

  • Howarth JL, Miller H, Walter J (1950) Some measurements of gamma-ray doses received by a radiotherapist during radium operations. Br J Radiol 23(268):245–255

    Article  Google Scholar 

  • International Commission on Radiological Protection (ICRP) (1962) Radiation protection; Recommendations of the Commission (as amended 1959 and revised 1962). Pergamon Press, Inc., New York

    Google Scholar 

  • Key JM (1951) Neutron and X-ray experiments in barley. Hereditas 37(3):421–464

    Article  Google Scholar 

  • Kimball RF (1952) Genetic effects of radiation. Ann Rev Nucl Sci 1:479–494

    Article  CAS  Google Scholar 

  • Lea DE (1940) A radiation method for determining the number of genes in the X chromosome of Drosophila. J Gen 39(2):181–188

    Article  Google Scholar 

  • Lea DE (1946) Actions of radiations on living cells. Cambridge University Press, Cambridge

    Google Scholar 

  • Lewis GN (1926) The anatomy of science. Silliman Lectures. Yale University Press, New Haven

    Google Scholar 

  • Lewis EB (1957a) Leukemia and ionizing radiation. Science 125(3255):965–972

    Article  PubMed  CAS  Google Scholar 

  • Lewis EB (1957b) Testimony: Statement of Dr. Edward Lewis, California Institute of Technology. Hearings before the Special Subcommittee on Radiation of the Joint Committee on Atomic Energy, Congress of the United States. 85th Congress, 1st session, Part 1. United States Government Printing Office, Washington

  • Lind SC (1929) The chemical effects of radium radiation. Am J Roentgen Rad Ther 21:480–483

    CAS  Google Scholar 

  • Lindahl T (1996) The Croonian lecture, 1996: endogenous damage to DNA. Phil Trans Biol Sci 351(1347):1529–1538

    Article  CAS  Google Scholar 

  • Lyon MF (2003) James Neel and the doubling dose concept. Mut Res 543:115–120

    Article  CAS  Google Scholar 

  • Mantel N, Bryan WR (1961) Safety testing of carcinogenic agents. J Nat Cancer Inst 27(2):455–470

    PubMed  CAS  Google Scholar 

  • Martius H (1931) Keimschadigung durch Rontgenstrahlen. Strahlentherapie 41:47–66

    Google Scholar 

  • Muller HJ (1922) Variation due to change in the individual gene. Am Nat 56:32–50

    Article  Google Scholar 

  • Muller HJ (1927) Artificial transmutation of the gene. Science 66(1699):84–87

    Article  PubMed  CAS  Google Scholar 

  • Muller HJ (1928a) The problem of genic modification. Supplementband l der Zeitschrift fur Induktive Abstammungs und Vererbungslehre Manuscript Department, Lilly Library. Indiana University, Bloomington, pp 234–260

  • Muller HJ (1928b) The production of mutations by x-rays. Proc Nat Acad Sci 14(9):714–726

    Article  PubMed  CAS  Google Scholar 

  • Muller HJ (1928c) The measurement of gene mutation rate in Drosophila, its high variability, and its dependence upon temperature. Genetics 13:279–357

    PubMed  CAS  Google Scholar 

  • Muller HJ (1930) Radiation and genetics. Am Nat 64(692):220–251

    Article  Google Scholar 

  • Muller HJ (1951) Radiation damage to the genetic material. In: Baitsell GA (ed) Science in progress, vol 7. Yale University Press, New Haven, pp 93–177

    Google Scholar 

  • Muller HJ (1954) The manner of dependence on the permissible dose of radiation on the amount of genetic damage. Acta Radiol 41:5–20

    PubMed  CAS  Google Scholar 

  • Muller HJ, Altenburg E (1930) The frequency of translocations produced by x-rays in Drosophila. Genetics 15:283–331

    PubMed  CAS  Google Scholar 

  • Muller HJ, Mott-Smith LM (1930) Evidence that natural radioactivity is inadequate to explain the frequency of “natural” mutations. Proc Nat Acad Sci 16:277–285

    Article  PubMed  CAS  Google Scholar 

  • Muller HJ, Timoféeff-Ressovsky N, Delbruck M, Bohr N (1936) Summary of discussions on mutations. Copenhagen 28–29. Manuscripts Department-Muller manuscripts, The Lilly Library, Indiana University, Bloomington

  • National Academy of Sciences (1983) Risk Assessment in the Federal Government. Managing the process. NAS Press, Washington

    Google Scholar 

  • National Academy of Sciences (NAS)/National Research Council (NRC) (1956) The biological effects of atomic radiation (BEAR): a report to the public. NAS/NRC, Washington DC

    Google Scholar 

  • National Academy of Sciences Safe Drinking Water Committee (NAS SDWC) (1977) Drinking water and health, vol 1. National Academy of Sciences, Washington

    Google Scholar 

  • National Academy of Sciences Safe Drinking Water Committee (NAS SDWC) (1982) Drinking water and health, vol 2. National Academy of Sciences, Washington

    Google Scholar 

  • Oliver CP (1930) The effect of varying the duration of x-ray treatment upon the frequency of mutation. Science 71:44–46

    Article  PubMed  CAS  Google Scholar 

  • Oliver CP (1931) An analysis of the effect of varying the duration of x-ray treatment upon the frequency of mutations. Ph.D. Thesis. University of Texas, Austin

  • Oliver CP (1934) Radiation genetics. Quart Rev Biol 9(4):381–408

    Article  Google Scholar 

  • Olson AR, Lewis GN (1928) Natural reactivity and the origin of species. Nature 121(3052):673–674

    Article  Google Scholar 

  • Patterson JT (1928) The effects of x-rays in producing mutations in the somatic cells of Drosophila. Science 68:41–43

    Article  PubMed  CAS  Google Scholar 

  • Patterson JT (1931) Continuous versus interrupted irradiation and the rate of mutation in Drosophila. Biol Bull 61(2):133–138

    Article  Google Scholar 

  • Patterson JT (1933) The mechanism of mosaic formation in Drosophila. Genetics 18(1):0032–0052

    CAS  Google Scholar 

  • Plough HH, Ives PT (1934) Heat induced mutations in Drosophila. Proc Nat Acad Sci 20:268–273

    Article  PubMed  CAS  Google Scholar 

  • Proctor RN (1999) The Nazi War on cancer. Princeton University Press, Princeton

    Google Scholar 

  • Russell WL (1956) Comparison of x-ray-induced mutation rates in Drosophila and mice. Am Nat 90(suppl):69–80

    Article  Google Scholar 

  • Russell WL (1963) Genetic hazards of radiation. Proc Am Phil Soc 107(1):11–17

    Google Scholar 

  • Sankaranarayanan K, Chakraborty R (2000a) Ionizing radiation and genetic risks XI. The doubling dose estimates from the mid-1950s to the present and the conceptual change to the use of human data on spontaneous mutation rates and mouse data on induced mutation rates for doubling dose calculations. Mut Res 453:107–127

    Article  CAS  Google Scholar 

  • Sankaranarayanan K, Chakraborty R (2000b) Ionizing radiation and genetic risks. XII. The concept of “potential recoverability correction factor” (PRCF) and its use for predicting the risk of radiation-inducible genetic disease in human live births. Mut Res 453:129–179

    Article  CAS  Google Scholar 

  • Sankaranarayanan K, Wassom JS (2008) Reflections on the impact of advances in the assessment of genetic risks of exposure to ionizing radiation on international radiation protection recommendations between the mid-1950s and the present. Mut Res 658:1–27

    Article  CAS  Google Scholar 

  • Sowby FD (1965) Radiation protection in Canada. Part VII. Setting standards for radiation protection. Can Med Assoc J 92:505–507

    PubMed  CAS  Google Scholar 

  • Spencer WP, Stern C (1948) Experiments to test the validity of the linear R-dose/mutation at low dosage. Genetics 33:43–74

    PubMed  CAS  Google Scholar 

  • Stadler LJ (1930) Some genetic effects of x-rays in plants. J Heredity 21:3–19

    Google Scholar 

  • Stadler LJ (1931) Chromosome number and the mutation rule in avena and triticum. Proc Nat Acad Sci 15:876–881

    Article  Google Scholar 

  • Stern C (1950) Principles of human genetics. WH Freeman and Company, San Francisco

    Google Scholar 

  • Stern C (1960) Principles of human genetics, 2nd edn. WH Freeman and Company, San Francisco

    Google Scholar 

  • The Lindau Mediatheque (1955) 5th Lindau Nobel Laureate meeting. The effect of radiation and other present day influences upon the human genetic constitution. http://www.mediatheque.lindau-nobel.org/#/Video?id=102

  • Timoféeff-Ressovsky NW, Zimmer KG, Delbruck M (1935) Uber die Natur der Genmutation und der Genstruktur. Nachrichten von der Gesellschaft der Wissenschaften zu Gottingen:Mathematische-Physikalische Klass, Fachgruppe VI, Biologie 1(13):189–245. [English translation: On the Nature of Gene Mutation and Gene Structure. Reprinted in Sloan PR, Fogel B (editors). (2011). Creating a Physical Biology. The three-man paper and early molecular biology. The University of Chicago Press, Chicago.]

  • United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) (1962) Report, 17th session, Supplement No. 16, New York

  • United Nations Scientific Committee on the Effects of Atomic Radiation (UNSCEAR) (1964) Report, 19th session, Supplement No. 14, New York

  • Uphoff DE, Stern C (1949) The genetic effects of low intensity in irradiation. Science 109:609–610

    Article  PubMed  CAS  Google Scholar 

  • Von Schwerin A (2010) Medical physicists, biology, and the physiology of the cell (1920–1940). Ident Mut 231–258

  • Watson JD, Crick FHC (1953) Molecular structure of nucleic acids. A structure for deoxyribose nucleic acid. Nature 171(4356):737738

    Article  Google Scholar 

  • Weinstein A (1928) The production of mutations and rearrangements of genes by x-rays. Science 67:376–377

    Article  PubMed  CAS  Google Scholar 

  • Weiss J (1944) Radiochemistry of aqueous solutions. Nature 153:748–750

    Article  CAS  Google Scholar 

  • Whittemore GF (1986) The national committee on radiation protection, 1928–1960: From professional guidelines to government regulation. Ph.D. Dissertation. Harvard University, Cambridge, Massachusetts

  • Zimmer KG (1941) Ergebnisse und Grenzen der treffertheoretischen Deutung von strahlenbiologischen Dosis-Effekt-Kurven. Biol Zentral 63:78

    Google Scholar 

  • Zimmer KG (1966) The target theory. In: Cairns J, Stent GS, Watson JD (eds) Phage and the origins of molecular biology. Cold Spring Harbor Laboratory Press, New York, pp 33–42

    Google Scholar 

Download references

Acknowledgments

The research on the topic of hormesis has been supported by awards from the US Air Force and ExxonMobil Foundation over a number of years. Sponsors had no involvement in study design, collection, analysis, interpretation, writing and decision to submit.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward J. Calabrese.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Calabrese, E.J. Origin of the linearity no threshold (LNT) dose–response concept. Arch Toxicol 87, 1621–1633 (2013). https://doi.org/10.1007/s00204-013-1104-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00204-013-1104-7

Keywords

Navigation