Skip to main content

Advertisement

Log in

TRPV4: physiological role and therapeutic potential in respiratory diseases

  • Review
  • Published:
Naunyn-Schmiedeberg's Archives of Pharmacology Aims and scope Submit manuscript

Abstract

Members of the family of transient receptor potential (TRP) channels have been implicated in the pathophysiology of a host of lung diseases. The role of these multimodal cation channels in lung homeostasis is thought to stem from their ability to respond to changes in mechanical stimuli (i.e., shear and stretch), as well as to various protein and lipid mediators. The vanilloid subfamily member, TRPV4, which is highly expressed in the majority of lung cell types, is well positioned for critical involvement in several pulmonary conditions, including edema formation, control of pulmonary vascular tone, and the lung response to local or systemic inflammatory insults. In recent years, several pharmacological inhibitors of TRPV4 have been developed, and the current generation of compounds possess high affinity and specificity for TRPV4. As such, we have now entered a time where the therapeutic potential of TRPV4 inhibitors can be systematically examined in a variety of lung diseases. Due to this fact, this review seeks to describe the current state of the art with respect to the role of TRPV4 in pulmonary homeostasis and disease, and to highlight the current and future roles of TRPV4 inhibitors in disease treatment. We will first focus on genera aspects of TRPV4 structure and function, and then will discuss known roles for TRPV4 in pulmonary diseases, including pulmonary edema formation, pulmonary hypertension, and acute lung injury. Finally, both promising aspects and potential pitfalls of the clinical use of TRPV4 inhibitors will be examined.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Adapala RK, Talasila PK, Bratz IN, Zhang DX, Suzuki M, Meszaros JG, Thodeti CK (2011) PKCα mediates acetylcholine-induced activation of TRPV4-dependent calcium influx in endothelial cells. Am J Physiol Heart Circ Physiol 301:H757–H765. doi:10.1152/ajpheart.00142.2011

    PubMed Central  CAS  PubMed  Google Scholar 

  • Alessandri-Haber N, Dina OA, Chen X, Levine JD (2009) TRPC1 and TRPC6 channels cooperate with TRPV4 to mediate mechanical hyperalgesia and nociceptor sensitization. J Neurosci 29:6217–6228. doi:10.1523/JNEUROSCI.0893-09.2009

    PubMed Central  CAS  PubMed  Google Scholar 

  • Allardyce CS, Dyson PJ (2001) Ruthenium in medicine: current clinical uses and future prospects. Platin Met Rev 45:62–69

    CAS  Google Scholar 

  • Alvarez DF, King JA, Weber D, Addison E, Liedtke W, Townsley MI (2006) Transient receptor potential vanilloid 4-mediated disruption of the alveolar septal barrier: a novel mechanism of acute lung injury. Circ Res 99:988–995. doi:10.1161/01.RES.0000247065.11756.19

    PubMed Central  CAS  PubMed  Google Scholar 

  • ARDS Definition Task Force, Ranieri VM, Rubenfeld GD, Thompson BT, Ferguson ND, Caldwell E, Fan E, Camporota L, Slutsky AS (2012) Acute respiratory distress syndrome: the Berlin Definition. In: JAMA. pp 2526–2533

  • ARDSNet (2000) Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome. N Engl J Med 342:1301–1308. doi:10.1056/NEJM200005043421801

    Google Scholar 

  • Arniges M, Fernández-Fernández JM, Albrecht N, Schaefer M, Valverde MA (2006) Human TRPV4 channel splice variants revealed a key role of ankyrin domains in multimerization and trafficking. J Biol Chem 281:1580–1586. doi:10.1074/jbc.M511456200

    CAS  PubMed  Google Scholar 

  • Arniges M, Vázquez E, Fernández-Fernández JM, Valverde MA (2004) Swelling-activated Ca2+ entry via TRPV4 channel is defective in cystic fibrosis airway epithelia. J Biol Chem 279:54062–54068. doi:10.1074/jbc.M409708200

    CAS  PubMed  Google Scholar 

  • Balakrishna S, Song W, Achanta S, Doran SF, Liu B, Kaelberer MM, Yu Z, Sui A, Cheung M, Leishman E, Eidam HS, Ye G, Willette RN, Thorneloe KS, Bradshaw HB, Matalon S, Jordt S-E (2014) TRPV4 inhibition counteracts edema and inflammation and improves pulmonary function and oxygen saturation in chemically induced acute lung injury. Am J Physiol Lung Cell Mol Physiol. doi:10.1152/ajplung.00065.2014

    PubMed  Google Scholar 

  • Barnes PJ, Liu SF (1995) Regulation of pulmonary vascular tone. Pharmacol Rev 47:87–131

    CAS  PubMed  Google Scholar 

  • Bourne GW, Trifaró JM (1982) The gadolinium ion: a potent blocker of calcium channels and catecholamine release from cultured chromaffin cells. Neuroscience 7:1615–1622

    CAS  PubMed  Google Scholar 

  • Chen L, Kaßmann M, Sendeski M, Tsvetkov D, Marko L, Michalick L, Riehle M, Liedtke WB, Kuebler WM, Harteneck C, Tepel M, Patzak A, Gollasch M (2014) Functional transient receptor potential vanilloid 1 and transient receptor potential vanilloid 4 channels along different segments of the renal vasculature. Acta Physiol (Oxf). doi:10.1111/apha.12355

    Google Scholar 

  • Clapham DE (2003) TRP channels as cellular sensors. Nature 426:517–524. doi:10.1038/nature02196

    CAS  PubMed  Google Scholar 

  • Cuajungco MP, Grimm C, Oshima K, D’hoedt D, Nilius B, Mensenkamp AR, Bindels RJM, Plomann M, Heller S (2006) PACSINs bind to the TRPV4 cation channel: PACSIN 3 modulates the subcellular localization of TRPV4. J Biol Chem 281:18753–18762. doi:10.1074/jbc.M602452200

    CAS  PubMed  Google Scholar 

  • D’hoedt D, Owsianik G, Prenen J, Cuajungco MP, Grimm C, Heller S, Voets T, Nilius B (2008) Stimulus-specific modulation of the cation channel TRPV4 by PACSIN 3. J Biol Chem 283:6272–6280. doi:10.1074/jbc.M706386200

    PubMed  Google Scholar 

  • Damann N, Owsianik G, Li S, Poll C, Nilius B (2009) The calcium-conducting ion channel transient receptor potential canonical 6 is involved in macrophage inflammatory protein-2-induced migration of mouse neutrophils. Acta Physiol (Oxf) 195:3–11. doi:10.1111/j.1748-1716.2008.01918.x

    CAS  Google Scholar 

  • Denadai-Souza A, Martin L, de Paula MAV, de Avellar MCW, Muscará MN, Vergnolle N, Cenac N (2012) Role of transient receptor potential vanilloid 4 in rat joint inflammation. Arthritis Rheum 64:1848–1858. doi:10.1002/art.34345

    CAS  PubMed  Google Scholar 

  • Di Paolo G, De Camilli P (2006) Phosphoinositides in cell regulation and membrane dynamics. Nature 443:651–657. doi:10.1038/nature05185

    PubMed  Google Scholar 

  • Du J, Ma X, Shen B, Huang Y, Birnbaumer L, Yao X (2014) TRPV4, TRPC1, and TRPP2 assemble to form a flow-sensitive heteromeric channel. FASEB J. doi:10.1096/fj.14-251652

    Google Scholar 

  • Du J, Wong W-Y, Sun L, Huang Y, Yao X (2012) Protein kinase G inhibits flow-induced Ca2+ entry into collecting duct cells. J Am Soc Nephrol 23:1172–1180. doi:10.1681/ASN.2011100972

    PubMed Central  CAS  PubMed  Google Scholar 

  • Earley S, Heppner TJ, Nelson MT, Brayden JE (2005) TRPV4 forms a novel Ca2+ signaling complex with ryanodine receptors and BKCa channels. Circ Res 97:1270–1279. doi:10.1161/01.RES.0000194321.60300.d6

    CAS  PubMed  Google Scholar 

  • Everaerts W, Zhen X, Ghosh D, Vriens J, Gevaert T, Gilbert JP, Hayward NJ, McNamara CR, Xue F, Moran MM, Strassmaier T, Uykal E, Owsianik G, Vennekens R, De Ridder D, Nilius B, Fanger CM, Voets T (2010) Inhibition of the cation channel TRPV4 improves bladder function in mice and rats with cyclophosphamide-induced cystitis. Proc Natl Acad Sci U S A 107:19084–19089. doi:10.1073/pnas.1005333107

    PubMed Central  CAS  PubMed  Google Scholar 

  • Fan H-C, Zhang X, McNaughton PA (2009) Activation of the TRPV4 ion channel is enhanced by phosphorylation. J Biol Chem 284:27884–27891. doi:10.1074/jbc.M109.028803

    PubMed Central  CAS  PubMed  Google Scholar 

  • Fernandes J, Lorenzo IM, Andrade YN, Garcia-Elias A, Serra SA, Fernandez-Fernandez JM, Valverde MA (2008) IP3 sensitizes TRPV4 channel to the mechano- and osmotransducing messenger 5“-6-” epoxyeicosatrienoic acid. J Cell Biol 181:143–155. doi:10.1085/jgp.200409161

    PubMed Central  CAS  PubMed  Google Scholar 

  • Fernández-Fernández JM, Andrade YN, Arniges M, Fernandes J, Plata C, Rubio-Moscardo F, Vázquez E, Valverde MA (2008) Functional coupling of TRPV4 cationic channel and large conductance, calcium-dependent potassium channel in human bronchial epithelial cell lines. Pflugers Arch 457:149–159. doi:10.1007/s00424-008-0516-3

    PubMed  Google Scholar 

  • Fichna J, Mokrowiecka A, Cygankiewicz AI, Zakrzewski PK, Małecka-Panas E, Janecka A, Krajewska WM, Storr MA (2012) Transient receptor potential vanilloid 4 blockade protects against experimental colitis in mice: a new strategy for inflammatory bowel diseases treatment? Neurogastroenterol Motil 24:e557–e560. doi:10.1111/j.1365-2982.2012.01999.x

    CAS  PubMed  Google Scholar 

  • Flockerzi V, Nilius B (2014) TRPs: truly remarkable proteins. Handb Exp Pharmacol 222:1–12. doi:10.1007/978-3-642-54215-2_1

    PubMed  Google Scholar 

  • Garcia-Elias A, Mrkonjic S, Jung C, Pardo-Pastor C, Vicente R, Valverde MA (2014) The TRPV4 channel. Handb Exp Pharmacol 222:293–319. doi:10.1007/978-3-642-54215-2_12

    PubMed  Google Scholar 

  • Garcia-Elias A, Mrkonjic S, Pardo-Pastor C, Inada H, Hellmich UA, Rubio-Moscardó F, Plata C, Gaudet R, Vicente R, Valverde MA (2013) Phosphatidylinositol-4,5-biphosphate-dependent rearrangement of TRPV4 cytosolic tails enables channel activation by physiological stimuli. Proc Natl Acad Sci U S A 110:9553–9558. doi:10.1073/pnas.1220231110

    PubMed Central  CAS  PubMed  Google Scholar 

  • Goldenberg N, Wang L, Ranke H, Tabuchi A, Kuebler WM (2014) TRPV4 channel activity is required for hypoxic pulmonary vasoconstriction. In: American Thoracic Society International Conference Abstracts. American Thoracic Society, pp A5548–A5548

  • Güler AD, Lee H, Iida T, Shimizu I, Tominaga M, Caterina M (2002) Heat-evoked activation of the ion channel, TRPV4. J Neurosci 22:6408–6414

    PubMed  Google Scholar 

  • Hamanaka K, Jian M-Y, Townsley MI, King JA, Liedtke W, Weber DS, Eyal FG, Clapp MM, Parker JC (2010) TRPV4 channels augment macrophage activation and ventilator-induced lung injury. Am J Physiol Lung Cell Mol Physiol 299:L353–L362. doi:10.1152/ajplung.00315.2009

    PubMed Central  CAS  PubMed  Google Scholar 

  • Hamanaka K, Jian M-Y, Weber DS, Alvarez DF, Townsley MI, Al-Mehdi AB, King JA, Liedtke W, Parker JC (2007) TRPV4 initiates the acute calcium-dependent permeability increase during ventilator-induced lung injury in isolated mouse lungs. Am J Physiol Lung Cell Mol Physiol 293:L923–L932. doi:10.1152/ajplung.00221.2007

    CAS  PubMed  Google Scholar 

  • Hampl V, Herget J (2000) Role of nitric oxide in the pathogenesis of chronic pulmonary hypertension. Physiol Rev 80:1337–1372

    CAS  PubMed  Google Scholar 

  • Hoenderop JGJ, Voets T, Hoefs S, Weidema F, Prenen J, Nilius B, Bindels RJM (2003) Homo- and heterotetrameric architecture of the epithelial Ca2+ channels TRPV5 and TRPV6. EMBO J 22:776–785. doi:10.1093/emboj/cdg080

    PubMed Central  CAS  PubMed  Google Scholar 

  • Huang W, Kingsbury MP, Turner MA, Donnelly JL, Flores NA, Sheridan DJ (2001) Capillary filtration is reduced in lungs adapted to chronic heart failure: morphological and haemodynamic correlates. Cardiovasc Res 49:207–217

    CAS  PubMed  Google Scholar 

  • Ivey CL, Roy BJ, Townsley MI (1998) Ablation of lung endothelial injury after pacing-induced heart failure is related to alterations in Ca2+ signaling. Am J Physiol 275:H844–H851

    CAS  PubMed  Google Scholar 

  • Jian M-Y, King JA, Al-Mehdi A-B, Liedtke W, Townsley MI (2008) High vascular pressure-induced lung injury requires P450 epoxygenase-dependent activation of TRPV4. Am J Respir Cell Mol Biol 38:386–392. doi:10.1165/rcmb.2007-0192OC

    PubMed Central  CAS  PubMed  Google Scholar 

  • Kaestle SM, Reich CA, Yin N, Habazettl H, Weimann J, Kuebler WM (2007) Nitric oxide-dependent inhibition of alveolar fluid clearance in hydrostatic lung edema. Am J Physiol Lung Cell Mol Physiol 293:L859–L869. doi:10.1152/ajplung.00008.2007

    CAS  PubMed  Google Scholar 

  • Kerem A, Yin J, Kaestle SM, Hoffmann J, Schoene AM, Singh B, Kuppe H, Borst MM, Kuebler WM (2010) Lung endothelial dysfunction in congestive heart failure: role of impaired Ca2+ signaling and cytoskeletal reorganization. Circ Res 106:1103–1116. doi:10.1161/CIRCRESAHA.109.210542

    CAS  PubMed  Google Scholar 

  • Keserü B, Barbosa-Sicard E, Popp R, Fisslthaler B, Dietrich A, Gudermann T, Hammock BD, Falck JR, Weissmann N, Busse R, Fleming I (2008) Epoxyeicosatrienoic acids and the soluble epoxide hydrolase are determinants of pulmonary artery pressure and the acute hypoxic pulmonary vasoconstrictor response. FASEB J 22:4306–4315. doi:10.1096/fj.08-112821

    PubMed Central  PubMed  Google Scholar 

  • Klausen TK, Pagani A, Minassi A, Ech-Chahad A, Prenen J, Owsianik G, Hoffmann EK, Pedersen SF, Appendino G, Nilius B (2009) Modulation of the transient receptor potential vanilloid channel TRPV4 by 4alpha-phorbol esters: a structure-activity study. J Med Chem 52:2933–2939. doi:10.1021/jm9001007

    CAS  PubMed  Google Scholar 

  • Köhler R, Heyken W-T, Heinau P, Schubert R, Si H, Kacik M, Busch C, Grgic I, Maier T, Hoyer J (2006) Evidence for a functional role of endothelial transient receptor potential V4 in shear stress-induced vasodilatation. Arterioscler Thromb Vasc Biol 26:1495–1502. doi:10.1161/01.ATV.0000225698.36212.6a

    PubMed  Google Scholar 

  • Kuebler WM, Uhlig U, Goldmann T, Schael G, Kerem A, Exner K, Martin C, Vollmer E, Uhlig S (2003) Stretch activates nitric oxide production in pulmonary vascular endothelial cells in situ. Am J Respir Crit Care Med 168:1391–1398. doi:10.1164/rccm.200304-562OC

    PubMed  Google Scholar 

  • Kuebler WM, Ying X, Singh B, Issekutz AC, Bhattacharya J (1999) Pressure is proinflammatory in lung venular capillaries. J Clin Invest 104:495–502. doi:10.1172/JCI6872

    PubMed Central  CAS  PubMed  Google Scholar 

  • Lacampagne A, Gannier F, Argibay J, Garnier D, Le Guennec JY (1994) The stretch-activated ion channel blocker gadolinium also blocks L-type calcium channels in isolated ventricular myocytes of the guinea-pig. Biochim Biophys Acta 1191:205–208

    CAS  PubMed  Google Scholar 

  • Lansman JB, Hallam TJ, Rink TJ (1987) Single stretch-activated ion channels in vascular endothelial cells as mechanotransducers? Nature 325:811–813. doi:10.1038/325811a0

    CAS  PubMed  Google Scholar 

  • Liedtke W, Choe Y, Martí-Renom MA, Bell AM, Denis CS, Sali A, Hudspeth AJ, Friedman JM, Heller S (2000) Vanilloid receptor-related osmotically activated channel (VR-OAC), a candidate vertebrate osmoreceptor. Cell 103:525–535

    PubMed Central  CAS  PubMed  Google Scholar 

  • Liedtke W, Friedman JM (2003) Abnormal osmotic regulation in trpv4-/- mice. Proc Natl Acad Sci U S A 100:13698–13703. doi:10.1073/pnas.1735416100

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ma X, Cao J, Luo J, Nilius B, Huang Y, Ambudkar IS, Yao X (2010) Depletion of intracellular Ca2+ stores stimulates the translocation of vanilloid transient receptor potential 4-c1 heteromeric channels to the plasma membrane. Arterioscler Thromb Vasc Biol 30:2249–2255. doi:10.1161/ATVBAHA.110.212084

    CAS  PubMed  Google Scholar 

  • Ma X, Cheng K-T, Wong C-O, O’Neil RG, Birnbaumer L, Ambudkar IS, Yao X (2011) Cell Calcium 50:502–509. doi:10.1016/j.ceca.2011.08.006

    CAS  PubMed  Google Scholar 

  • McAlexander MA, Luttmann MA, Hunsberger GE, Undem BJ (2014) Transient receptor potential vanilloid 4 activation constricts the human bronchus via the release of cysteinyl leukotrienes. J Pharmacol Exp Ther 349:118–125. doi:10.1124/jpet.113.210203

    PubMed  Google Scholar 

  • Mendoza SA, Fang J, Gutterman DD, Wilcox DA, Bubolz AH, Li R, Suzuki M, Zhang DX (2010) TRPV4-mediated endothelial Ca2+ influx and vasodilation in response to shear stress. Am J Physiol Heart Circ Physiol 298:H466–H476. doi:10.1152/ajpheart.00854.2009

    PubMed Central  CAS  PubMed  Google Scholar 

  • Mercado J, Baylie R, Navedo MF, Yuan C, Scott JD, Nelson MT, Brayden JE, Santana LF (2014) Local control of TRPV4 channels by AKAP150-targeted PKC in arterial smooth muscle. J Gen Physiol 143:559–575. doi:10.1085/jgp.201311050

    PubMed Central  CAS  PubMed  Google Scholar 

  • Michalick L, Mertens M, Liedtke W, Kuebler WM (2013) Transient receptor potential cation channel vanilloid (TRPV) 4 in ventilator-induced lung injury (VILI). FASEB J 27:914.12

    Google Scholar 

  • Moiseenkova-Bell VY, Stanciu LA, Serysheva II, Tobe BJ, Wensel TG (2008) Structure of TRPV1 channel revealed by electron cryomicroscopy. Proc Natl Acad Sci 105:7451–7455. doi:10.1073/pnas.0711835105

    PubMed Central  CAS  PubMed  Google Scholar 

  • Naruse K, Sokabe M (1993) Involvement of stretch-activated ion channels in Ca2+ mobilization to mechanical stretch in endothelial cells. Am J Physiol 264:C1037–C1044

    CAS  PubMed  Google Scholar 

  • Nilius B, Prenen J, Wissenbach U, Bödding M, Droogmans G (2001) Differential activation of the volume-sensitive cation channel TRP12 (OTRPC4) and volume-regulated anion currents in HEK-293 cells. Pflugers Arch 443:227–233. doi:10.1007/s004240100676

    CAS  PubMed  Google Scholar 

  • Nilius B, Voets T (2013) The puzzle of TRPV4 channelopathies. EMBO Rep 14:845. doi:10.1038/embor.2013.134

    PubMed Central  CAS  Google Scholar 

  • Nilius B, Vriens J, Prenen J, Droogmans G, Voets T (2004) TRPV4 calcium entry channel: a paradigm for gating diversity. Am J Physiol Cell Physiol 286:C195–C205. doi:10.1152/ajpcell.00365.2003

    CAS  PubMed  Google Scholar 

  • O’Neil RG, Heller S (2005) The mechanosensitive nature of TRPV channels. Pflugers Arch 451:193–203. doi:10.1007/s00424-005-1424-4

    PubMed  Google Scholar 

  • Parker JC, Ivey CL (1997) Isoproterenol attenuates high vascular pressure-induced permeability increases in isolated rat lungs. J Appl Physiol 83:1962–1967

    CAS  PubMed  Google Scholar 

  • Parker JC, Ivey CL, Tucker JA (1998) Gadolinium prevents high airway pressure-induced permeability increases in isolated rat lungs. J Appl Physiol 84:1113–1118

    CAS  PubMed  Google Scholar 

  • Parton RG, Simons K (2007) The multiple faces of caveolae. Nat Rev Mol Cell Biol 8:185–194. doi:10.1038/nrm2122

    CAS  PubMed  Google Scholar 

  • Phelps CB, Wang RR, Choo SS, Gaudet R (2010) Differential regulation of TRPV1, TRPV3, and TRPV4 sensitivity through a conserved binding site on the ankyrin repeat domain. J Biol Chem 285:731–740. doi:10.1074/jbc.M109.052548

    PubMed Central  CAS  PubMed  Google Scholar 

  • Pochynyuk O, Zaika O, O’Neil RG, Mamenko M (2013) Novel insights into TRPV4 function in the kidney. Pflugers Arch 465:177–186. doi:10.1007/s00424-012-1190-z

    PubMed Central  CAS  PubMed  Google Scholar 

  • Ryskamp DA, Witkovsky P, Barabas P, Huang W, Koehler C, Akimov NP, Lee SH, Chauhan S, Xing W, Rentería RC, Liedtke W, Krizaj D (2011) The polymodal ion channel transient receptor potential vanilloid 4 modulates calcium flux, spiking rate, and apoptosis of mouse retinal ganglion cells. J Neurosci 31:7089–7101. doi:10.1523/JNEUROSCI.0359-11.2011

    PubMed Central  CAS  PubMed  Google Scholar 

  • Saliez J, Bouzin C, Rath G, Ghisdal P, Desjardins F, Rezzani R, Rodella LF, Vriens J, Nilius B, Feron O, Balligand J-L, Dessy C (2008) Role of caveolar compartmentation in endothelium-derived hyperpolarizing factor-mediated relaxation: Ca2+ signals and gap junction function are regulated by caveolin in endothelial cells. Circulation 117:1065–1074. doi:10.1161/CIRCULATIONAHA.107.731679

    CAS  PubMed  Google Scholar 

  • Sandoval R, Malik AB, Minshall RD, Kouklis P, Ellis CA, Tiruppathi C (2001) Ca(2+) signalling and PKCalpha activate increased endothelial permeability by disassembly of VE-cadherin junctions. J Physiol Lond 533:433–445

    PubMed Central  CAS  PubMed  Google Scholar 

  • Schaefer M (2005) Homo- and heteromeric assembly of TRP channel subunits. Pflugers Arch 451:35–42. doi:10.1007/s00424-005-1467-6

    CAS  PubMed  Google Scholar 

  • Schmitt F, Govindaswamy P, Süss-Fink G, Ang WH, Dyson PJ, Juillerat-Jeanneret L, Therrien B (2008) Ruthenium porphyrin compounds for photodynamic therapy of cancer. J Med Chem 51:1811–1816. doi:10.1021/jm701382p

    CAS  PubMed  Google Scholar 

  • Shigematsu H, Sokabe T, Danev R, Tominaga M, Nagayama K (2010) A 3.5-nm structure of rat TRPV4 cation channel revealed by Zernike phase-contrast cryoelectron microscopy. J Biol Chem 285:11210–11218. doi:10.1074/jbc.M109.090712

    PubMed Central  CAS  PubMed  Google Scholar 

  • Shin SH, Lee EJ, Hyun S, Chun J, Kim Y, Kang SS (2012) Phosphorylation on the Ser 824 residue of TRPV4 prefers to bind with F-actin than with microtubules to expand the cell surface area. Cell Signal 24:641–651. doi:10.1016/j.cellsig.2011.11.002

    CAS  PubMed  Google Scholar 

  • Shukla AK, Kim J, Ahn S, Xiao K, Shenoy SK, Liedtke W, Lefkowitz RJ (2010) Arresting a transient receptor potential (TRP) channel: -Arrestin 1 mediates ubiquitination and functional down-regulation of TRPV4. J Biol Chem 285:30115–30125. doi:10.1074/jbc.M110.141549

    PubMed Central  CAS  PubMed  Google Scholar 

  • Simonneau G, Gatzoulis MA, Adatia I, Celermajer D, Denton C, Ghofrani A, Gomez Sanchez MA, Krishna Kumar R, Landzberg M, Machado RF, Olschewski H, Robbins IM, Souza R (2013) Updated clinical classification of pulmonary hypertension. J Am Coll Cardiol 62:D34–D41. doi:10.1016/j.jacc.2013.10.029

    PubMed  Google Scholar 

  • Sonkusare SK, Bonev AD, Ledoux J, Liedtke W, Kotlikoff MI, Heppner TJ, Hill-Eubanks DC, Nelson MT (2012) Elementary Ca2+ signals through endothelial TRPV4 channels regulate vascular function. Science 336:597–601. doi:10.1126/science.1216283

    PubMed Central  CAS  PubMed  Google Scholar 

  • Sonkusare SK, Dalsgaard T, Bonev AD, Hill-Eubanks DC, Kotlikoff MI, Scott JD, Santana LF, Nelson MT (2014) AKAP150-dependent cooperative TRPV4 channel gating is central to endothelium-dependent vasodilation and is disrupted in hypertension. Sci Signal 7:ra66. doi:10.1126/scisignal.2005052

    PubMed  Google Scholar 

  • Spinsanti G, Zannolli R, Panti C, Ceccarelli I, Marsili L, Bachiocco V, Frati F, Aloisi AM (2008) Quantitative real-time PCR detection of TRPV1-4 gene expression in human leukocytes from healthy and hyposensitive subjects. Mol Pain 4:51. doi:10.1186/1744-8069-4-51

    PubMed Central  PubMed  Google Scholar 

  • Stewart AP, Smith GD, Sandford RN, Edwardson JM (2010) Atomic force microscopy reveals the alternating subunit arrangement of the TRPP2-TRPV4 heterotetramer. Biophys J 99:790–797. doi:10.1016/j.bpj.2010.05.012

    PubMed Central  CAS  PubMed  Google Scholar 

  • Strotmann R, Harteneck C, Nunnenmacher K, Schultz G, Plant TD (2000) OTRPC4, a nonselective cation channel that confers sensitivity to extracellular osmolarity. Nat Cell Biol 2:695–702. doi:10.1038/35036318

    CAS  PubMed  Google Scholar 

  • Strotmann R, Schultz G, Plant TD (2003) Ca2+-dependent potentiation of the nonselective cation channel TRPV4 is mediated by a C-terminal calmodulin binding site. J Biol Chem 278:26541–26549. doi:10.1074/jbc.M302590200

    CAS  PubMed  Google Scholar 

  • Sylvester JT, Shimoda LA, Aaronson PI, Ward JPT (2012) Hypoxic pulmonary vasoconstriction. Physiol Rev 92:367–520. doi:10.1152/physrev.00041.2010

    CAS  PubMed  Google Scholar 

  • Tang C, To WK, Meng F, Wang Y, Gu Y (2010) A role for receptor-operated Ca2+ entry in human pulmonary artery smooth muscle cells in response to hypoxia. Physiol Res 59:909–918

    CAS  PubMed  Google Scholar 

  • Tang C, Yin J, Kuebler WM (2013) Role of Transient receptor potential vanilloid 4 in neutrophil activation and acute lung injury. FASEB J 27

  • Thodeti CK, Matthews B, Ravi A, Mammoto A, Ghosh K, Bracha AL, Ingber DE (2009) TRPV4 channels mediate cyclic strain-induced endothelial cell reorientation through integrin-to-integrin signaling. Circ Res 104:1123–1130. doi:10.1161/CIRCRESAHA.108.192930

    PubMed Central  CAS  PubMed  Google Scholar 

  • Thorneloe KS, Cheung M, Bao W, Alsaid H, Lenhard S, Jian M-Y, Costell M, Maniscalco-Hauk K, Krawiec JA, Olzinski A, Gordon E, Lozinskaya I, Elefante L, Qin P, Matasic DS, James C, Tunstead J, Donovan B, Kallal L, Waszkiewicz A, Vaidya K, Davenport EA, Larkin J, Burgert M, Casillas LN, Marquis RW, Ye G, Eidam HS, Goodman KB, Toomey JR, Roethke TJ, Jucker BM, Schnackenberg CG, Townsley MI, Lepore JJ, Willette RN (2012) An orally active TRPV4 channel blocker prevents and resolves pulmonary edema induced by heart failure. Sci Transl Med 4:159ra148. doi:10.1126/scitranslmed.3004276

    PubMed  Google Scholar 

  • Thorneloe KS, Sulpizio AC, Lin Z, Figueroa DJ, Clouse AK, McCafferty GP, Chendrimada TP, Lashinger ESR, Gordon E, Evans L, Misajet BA, Demarini DJ, Nation JH, Casillas LN, Marquis RW, Votta BJ, Sheardown SA, Xu X, Brooks DP, Laping NJ, Westfall TD (2008) N-((1S)-1-{[4-((2S)-2-{[(2,4-dichlorophenyl)sulfonyl]amino}-3-hydroxypropanoyl)-1-piperazinyl]carbonyl}-3-methylbutyl)-1-benzothiophene-2-carboxamide (GSK1016790A), a novel and potent transient receptor potential vanilloid 4 channel agonist induces urinary bladder contraction and hyperactivity: part I. J Pharmacol Exp Ther 326:432–442. doi:10.1124/jpet.108.139295

    CAS  PubMed  Google Scholar 

  • Tiruppathi C, Ahmmed GU, Vogel SM, Malik AB (2006) Ca2+ signaling, TRP channels, and endothelial permeability. Microcirculation 13:693–708. doi:10.1080/10739680600930347

    CAS  PubMed  Google Scholar 

  • Urban N, Hill K, Wang L, Kuebler WM, Schaefer M (2012) Novel pharmacological TRPC inhibitors block hypoxia-induced vasoconstriction. Cell Calcium 51:194–206. doi:10.1016/j.ceca.2012.01.001

    CAS  PubMed  Google Scholar 

  • Voets T, Prenen J, Vriens J, Watanabe H, Janssens A, Wissenbach U, Bödding M, Droogmans G, Nilius B (2002) Molecular determinants of permeation through the cation channel TRPV4. J Biol Chem 277:33704–33710. doi:10.1074/jbc.M204828200

    CAS  PubMed  Google Scholar 

  • Vriens J, Watanabe H, Janssens A, Droogmans G, Voets T, Nilius B (2004) Cell swelling, heat, and chemical agonists use distinct pathways for the activation of the cation channel TRPV4. Proc Natl Acad Sci U S A 101:396–401. doi:10.1073/pnas.0303329101

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wang L, Yin J, Nickles HT, Ranke H, Tabuchi A, Hoffmann J, Tabeling C, Barbosa-Sicard E, Chanson M, Kwak BR, Shin H-S, Wu S, Isakson BE, Witzenrath M, de Wit C, Fleming I, Kuppe H, Kuebler WM (2012) Hypoxic pulmonary vasoconstriction requires connexin 40-mediated endothelial signal conduction. J Clin Invest 122:4218–4230. doi:10.1172/JCI59176

    PubMed Central  CAS  PubMed  Google Scholar 

  • Wang Y, Fu X, Gaiser S, Kottgen M, Kramer-Zucker A, Walz G, Wegierski T (2007) OS-9 regulates the transit and polyubiquitination of TRPV4 in the endoplasmic reticulum. J Biol Chem 282:36561–36570. doi:10.1074/jbc.M703903200

    CAS  PubMed  Google Scholar 

  • Ware LB, Matthay MA (2000) The acute respiratory distress syndrome. N Engl J Med 342:1334–1349. doi:10.1056/NEJM200005043421806

    CAS  PubMed  Google Scholar 

  • Watanabe H, Vriens J, Janssens A, Wondergem R, Droogmans G, Nilius B (2003a) Modulation of TRPV4 gating by intra- and extracellular Ca2+. Cell Calcium 33:489–495

    CAS  PubMed  Google Scholar 

  • Watanabe H, Vriens J, Prenen J, Droogmans G, Voets T, Nilius B (2003b) Anandamide and arachidonic acid use epoxyeicosatrienoic acids to activate TRPV4 channels. Nature 424:434–438. doi:10.1038/nature01807

    CAS  PubMed  Google Scholar 

  • Watanabe H, Vriens J, Suh SH, Benham CD, Droogmans G, Nilius B (2002) Heat-evoked activation of TRPV4 channels in a HEK293 cell expression system and in native mouse aorta endothelial cells. J Biol Chem 277:47044–47051. doi:10.1074/jbc.M208277200

    CAS  PubMed  Google Scholar 

  • Wegierski T, Hill K, Schaefer M, Walz G (2006) The HECT ubiquitin ligase AIP4 regulates the cell surface expression of select TRP channels. EMBO J 25:5659–5669. doi:10.1038/sj.emboj.7601429

    PubMed Central  CAS  PubMed  Google Scholar 

  • Willette RN, Bao W, Nerurkar S, Yue T-L, Doe CP, Stankus G, Turner GH, Ju H, Thomas H, Fishman CE, Sulpizio A, Behm DJ, Hoffman S, Lin Z, Lozinskaya I, Casillas LN, Lin M, Trout REL, Votta BJ, Thorneloe K, Lashinger ESR, Figueroa DJ, Marquis R, Xu X (2008) Systemic activation of the transient receptor potential vanilloid subtype 4 channel causes endothelial failure and circulatory collapse: part 2. J Pharmacol Exp Ther 326:443–452. doi:10.1124/jpet.107.134551

    CAS  PubMed  Google Scholar 

  • Xia Y, Fu Z, Hu J, Huang C, Paudel O, Cai S, Liedtke W, Sham JSK (2013) TRPV4 channel contributes to serotonin-induced pulmonary vasoconstriction and the enhanced vascular reactivity in chronic hypoxic pulmonary hypertension. Am J Physiol Cell Physiol. doi:10.1152/ajpcell.00099.2013

    PubMed Central  PubMed  Google Scholar 

  • Yang X-R, Lin AHY, Hughes JM, Flavahan NA, Cao Y-N, Liedtke W, Sham JSK (2012) Upregulation of osmo-mechanosensitive TRPV4 channel facilitates chronic hypoxia-induced myogenic tone and pulmonary hypertension. Am J Physiol Lung Cell Mol Physiol 302:L555–L568. doi:10.1152/ajplung.00005.2011

    PubMed Central  CAS  PubMed  Google Scholar 

  • Yang X-R, Lin M-J, McIntosh LS, Sham JSK (2006) Functional expression of transient receptor potential melastatin- and vanilloid-related channels in pulmonary arterial and aortic smooth muscle. Am J Physiol Lung Cell Mol Physiol 290:L1267–L1276. doi:10.1152/ajplung.00515.2005

    CAS  PubMed  Google Scholar 

  • Yang XC, Sachs F (1989) Block of stretch-activated ion channels in Xenopus oocytes by gadolinium and calcium ions. Science 243:1068–1071

    CAS  PubMed  Google Scholar 

  • Yellen G (2002) The voltage-gated potassium channels and their relatives. Nature 419:35–42. doi:10.1038/nature00978

    CAS  PubMed  Google Scholar 

  • Yeung T, Terebiznik M, Yu L, Silvius J, Abidi WM, Philips M, Levine T, Kapus A, Grinstein S (2006) Receptor activation alters inner surface potential during phagocytosis. Science 313:347–351. doi:10.1126/science.1129551

    CAS  PubMed  Google Scholar 

  • Yin J, Hoffmann J, Kaestle SM, Neye N, Wang L, Baeurle J, Liedtke W, Wu S, Kuppe H, Pries AR, Kuebler WM (2008) Negative-feedback loop attenuates hydrostatic lung edema via a cGMP-dependent regulation of transient receptor potential vanilloid 4. Circ Res 102:966–974. doi:10.1161/CIRCRESAHA.107.168724

    CAS  PubMed  Google Scholar 

  • Yin J, Kuebler WM (2010) Mechanotransduction by TRP channels: general concepts and specific role in the vasculature. Cell Biochem Biophys 56:1–18. doi:10.1007/s12013-009-9067-2

    CAS  PubMed  Google Scholar 

  • Yu H, Wang L, Kapus A, Kuebler WM (2012) Role of CFTR and sphingolipids in hypoxic pulmonary vasoconstriction. FASEB J 26:700.3

    Google Scholar 

  • Zaika O, Mamenko M, Berrout J, Boukelmoune N, O’Neil RG, Pochynyuk O (2013) TRPV4 dysfunction promotes renal cystogenesis in autosomal recessive polycystic kidney disease. J Am Soc Nephrol 24:604–616. doi:10.1681/ASN.2012050442

    PubMed Central  CAS  PubMed  Google Scholar 

  • Zhao L, Sullivan MN, Chase M, Gonzales AL, Earley S (2014) Calcineurin/NFAT-coupled TRPV4 Ca(2+) sparklets stimulate airway smooth muscle cell proliferation. Am J Respir Cell Mol Biol. doi:10.1165/rcmb.2013-0416OC

    Google Scholar 

  • Zhu G, ICGN Investigators, Gulsvik A, Bakke P, Ghatta S, Anderson W, Lomas DA, Silverman EK, Pillai SG (2009) Association of TRPV4 gene polymorphisms with chronic obstructive pulmonary disease. Hum Mol Genet 18:2053–2062. doi:10.1093/hmg/ddp111

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

NMG is supported by The PSI Foundation and The Canadian Anesthesiologists’ Society. WMK is supported by operating grants from the Deutsche Forschungsgemeinschaft (DFG), the Canadian Institutes of Health Research (CIHR), and the Heart & Stroke Foundation Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolfgang M. Kuebler.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Goldenberg, N.M., Ravindran, K. & Kuebler, W.M. TRPV4: physiological role and therapeutic potential in respiratory diseases. Naunyn-Schmiedeberg's Arch Pharmacol 388, 421–436 (2015). https://doi.org/10.1007/s00210-014-1058-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00210-014-1058-1

Keywords

Navigation