Skip to main content
Log in

Chronic administration of atypical antipsychotics improves behavioral and synaptic defects of STOP null mice

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Introduction

Recent studies have suggested that schizophrenia is associated with alterations in the synaptic connectivity involving cytoskeletal proteins. The microtubule-associated protein stable tubule only polypeptide (STOP) plays a key role in neuronal architecture and synaptic plasticity, and it has been demonstrated that STOP gene deletion in mice leads to a phenotype mimicking aspects of positive and negative symptoms and cognitive deficits classically observed in schizophrenic patients. In STOP null mice, behavioral defects are associated with synaptic plasticity abnormalities including defects in long-term potentiation. In these mice, long-term administration of typical antipsychotics has been shown to partially alleviate behavioral defects but, as in humans, such a treatment was poorly active on deficits related to negative symptoms and cognitive impairments. Here, we assessed the effects of risperidone and clozapine, two atypical antipsychotics, on STOP null mice behavior and synaptic plasticity.

Results

Long-term administration of either drug results in alleviation of behavioral alterations mimicking some negative symptoms and partial amelioration of some cognitive defects in STOP null mice. Interestingly, clozapine treatment also improves synaptic plasticity of the STOP null animals by restoring long-term potentiation in the hippocampus.

Discussion

All together, the pharmacological reactivity of STOP null mice to antipsychotics evokes the pharmacological response of humans to such drugs. Totally, our study suggests that STOP null mice may provide a useful preclinical model to evaluate pharmacological properties of antipsychotic drugs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

APs:

Antipsychotics

DISC1:

Disrupted in schizophrenia 1

MAP6:

Microtubule-associated protein 6

PPI:

Prepulse inhibition

STOP:

Stable tubule only polypeptide

WT:

Wild type

LTP:

Long-term potentiation

References

  • Andrieux A, Salin PA, Vernet M, Kujala P, Baratier J, Gory-Fauré S, Bosc C, Pointu H, Proietto D, Schweitzer A, Denarier E, Klumperman J, Job D (2002) The suppression of brain cold-stable microtubules in mice induces synaptic defects associated with neuroleptic-sensitive behavioral disorders. Genes Dev 16:2350–2364

    Article  CAS  PubMed  Google Scholar 

  • Barnes TR, Curson DA, Liddle PF, Patel M (1989) The nature and prevalence of depression in chronic schizophrenic in-patients. Br J Psychiatry 154:486–491

    Article  CAS  PubMed  Google Scholar 

  • Begou M, Brun P, Bertrand JB, Job D, Schweitzer A, D'Amato T, Saoud M, Andrieux A, Suaud-Chagny MF (2007) Post-pubertal emergence of alterations in locomotor activity in stop null mice. Synapse 61:689–697

    Article  CAS  PubMed  Google Scholar 

  • Bégou M, Volle J, Bertrand JB, Brun P, Job D, Schweitzer A, Saoud M, D'Amato T, Andrieux A, Suaud-Chagny MF (2008) The stop null mice model for schizophrenia displays cognitive and social deficits partly alleviated by neuroleptics. Neuroscience 157:29–39

    Article  PubMed  Google Scholar 

  • Blackwood DH, Pickard BJ, Thomson PA, Evans KL, Porteous DJ, Muir WJ (2007) Are some genetic risk factors common to schizophrenia, bipolar disorder and depression? Evidence from DISC1, GRIK4 and NRG1. Neurotox Res 11:73–83

    Article  CAS  PubMed  Google Scholar 

  • Bouvrais-Veret C, Weiss S, Andrieux A, Schweitzer A, McIntosh JM, Job D, Giros B, Martres MP (2007) Sustained increase of alpha7 nicotinic receptors and choline-induced improvement of learning deficit in STOP knock-out mice. Neuropharmacology 52:1691–1700

    Article  CAS  PubMed  Google Scholar 

  • Brenner E, Sonnewald U, Schweitzer A, Andrieux A, Nehlig A (2007) Hypoglutamatergic activity in the STOP knockout mouse: a potential model for chronic untreated schizophrenia. J Neurosci Res 85:3487–3493

    Article  CAS  PubMed  Google Scholar 

  • Brun P, Bégou M, Andrieux A, Mouly-Badina L, Clerget M, Schweitzer A, Scarna H, Renaud B, Job D, Suaud-Chagny MF (2005) Dopaminergic transmission in STOP null mice. J Neurochem 94:63–73

    Article  CAS  PubMed  Google Scholar 

  • Camargo LM, Wang Q, Brandon NJ (2008) What can we learn from the disrupted in schizophrenia 1 interactome: lessons for target identification and disease biology? Novartis Found Symp 289:208–216, discussion 216–21, 238–40

    Article  CAS  PubMed  Google Scholar 

  • Chiba S, Hashimoto R, Hattori S, Yohda M, Lipska B, Weinberger DR, Kunugi H (2006) Effect of antipsychotic drugs on DISC1 and dysbindin expression in mouse frontal cortex and hippocampus. J Neural Transm 113:1337–1346

    Article  CAS  PubMed  Google Scholar 

  • Clapcote SJ, Lipina TV, Millar JK, Mackie S, Christie S, Ogawa F, Lerch JP, Trimble K, Uchiyama M, Sakuraba Y, Kaneda H, Shiroishi T, Houslay MD, Henkelman RM, Sled JG, Gondo Y, Porteous DJ, Roder JC (2007) Behavioral phenotypes of Disc1 missense mutations in mice. Neuron 54:387–402

    Article  CAS  PubMed  Google Scholar 

  • Coyle JT, Tsai G (2004) NMDA receptor function, neuroplasticity, and the pathophysiology of schizophrenia. Int Rev Neurobiol 59:491–515

    Article  CAS  PubMed  Google Scholar 

  • Denarier E, Aguezzoul M, Jolly C, Vourc'h C, Roure A, Andrieux A, Bosc C, Job D (1998) Genomic structure and chromosomal mapping of the mouse STOP gene (Mtap6). Biochem Biophys Res Commun 243:791–796

    Article  CAS  PubMed  Google Scholar 

  • Duan X, Chang JH, Ge S, Faulkner RL, Kim JY, Kitabatake Y, Liu XB, Yang CH, Jordan JD, Ma DK, Liu CY, Ganesan S, Cheng HJ, Ming GL, Lu B, Song H (2007) Disrupted-in-schizophrenia 1 regulates integration of newly generated neurons in the adult brain. Cell 130:1146–1158

    Article  CAS  PubMed  Google Scholar 

  • Duncan GE, Zorn S, Lieberman JA (1999) Mechanisms of typical and atypical antipsychotic drug action in relation to dopamine and NMDA receptor hypofunction hypotheses of schizophrenia. Mol Psychiatry 4:418–428

    Article  CAS  PubMed  Google Scholar 

  • Eastwood SL, Lyon L, George L, Andrieux A, Job D, Harrison PJ (2007) Altered expression of synaptic protein mRNAs in STOP (MAP6) mutant mice. J Psychopharmacol 21:635–644

    Article  CAS  PubMed  Google Scholar 

  • Ellenbroek BA, Cools AR (1990) Animal models with construct validity for schizophrenia. Behav Pharmacol 1:469–490

    Article  PubMed  Google Scholar 

  • Ereshefsky L, Tran-Johnson TK, Watanabe MD (1990) Pathophysiologic basis for schizophrenia and the efficacy of antipsychotics. Clin Pharm 9:682–707

    CAS  PubMed  Google Scholar 

  • Fradley RL, O'Meara GF, Newman RJ, Andrieux A, Job D, Reynolds DS (2005) STOP knockout and NMDA NR1 hypomorphic mice exhibit deficits in sensorimotor gating. Behav Brain Res 163:257–264

    Article  CAS  PubMed  Google Scholar 

  • Frankle WG, Lerma J, Laruelle M (2003) The synaptic hypothesis of schizophrenia. Neuron 39:205–216

    Article  CAS  PubMed  Google Scholar 

  • Hikida T, Jaaro-Peled H, Seshadri S, Oishi K, Hookway C, Kong S, Wu D, Xue R, Andrade M, Tankou S, Mori S, Gallagher M, Ishizuka K, Pletnikov M, Kida S, Sawa A (2007) Dominant-negative DISC1 transgenic mice display schizophrenia-associated phenotypes detected by measures translatable to humans. Proc Natl Acad Sci USA 104:14501–14506

    Article  CAS  PubMed  Google Scholar 

  • Ishizuka K, Paek M, Kamiya A, Sawa A (2006) A review of disrupted-in-schizophrenia-1 (DISC1): neurodevelopment, cognition, and mental conditions. Biol Psychiatry 59:1189–1197

    Article  CAS  PubMed  Google Scholar 

  • Leucht S, Corves C, Arbter D, Engel RR, Li C, Davis JM (2009) Second-generation versus first-generation antipsychotic drugs for schizophrenia: a meta-analysis. Lancet 373:31–41

    Article  CAS  PubMed  Google Scholar 

  • Lewis CM, Levinson DF, Wise LH, DeLisi LE, Straub RE, Hovatta I, Williams NM, Schwab SG, Pulver AE, Faraone SV, Brzustowicz LM, Kaufmann CA, Garver DL, Gurling HM, Lindholm E, Coon H, Moises HW, Byerley W, Shaw SH, Mesen A, Sherrington R, O'Neill FA, Walsh D, Kendler KS, Ekelund J, Paunio T, Lonnqvist J, Peltonen L, O'Donovan MC, Owen MJ, Wildenauer DB, Maier W, Nestadt G, Blouin JL, Antonarakis SE, Mowry BJ, Silverman JM, Crowe RR, Cloninger CR, Tsuang MT, Malaspina D, Harkavy-Friedman JM, Svrakic DM, Bassett AS, Holcomb J, Kalsi G, McQuillin A, Brynjolfson J, Sigmundsson T, Petursson H, Jazin E, Zoega T, Helgason T (2003) Genome scan meta-analysis of schizophrenia and bipolar disorder, part II: schizophrenia. Am J Hum Genet 73:34–48

    Article  CAS  PubMed  Google Scholar 

  • Mackie S, Millar JK, Porteous DJ (2007) Role of DISC1 in neural development and schizophrenia. Curr Opin Neurobiol 17:95–102

    Article  CAS  PubMed  Google Scholar 

  • Martins-de-Souza D, Gattaz WF, Schmitt A, Rewerts C, Maccarrone G, Dias-Neto E, Turck CW (2009) Prefrontal cortex shotgun proteome analysis reveals altered calcium homeostasis and immune system imbalance in schizophrenia. Eur Arch Psychiatry Clin Neurosci 259:151–163

    Article  PubMed  Google Scholar 

  • Matsuzaki S, Tohyama M (2007) Molecular mechanism of schizophrenia with reference to disrupted-in-schizophrenia 1 (DISC1). Neurochem Int 51:165–172

    Article  CAS  PubMed  Google Scholar 

  • Meltzer HY (2004) What's atypical about atypical antipsychotic drugs? Curr Opin Pharmacol 4:53–57

    Article  CAS  PubMed  Google Scholar 

  • Miczek KA, de Wit H (2008) Challenges for translational psychopharmacology research—some basic principles. Psychopharmacology (Berl) 199:291–301

    Article  CAS  Google Scholar 

  • Millan MJ, Dekeyne A, Papp M, La Rochelle CD, MacSweeny C, Peglion JL, Brocco M (2001) S33005, a novel ligand at both serotonin and norepinephrine transporters: II. Behavioral profile in comparison with venlafaxine, reboxetine, citalopram, and clomipramine. J Pharmacol Exp Ther 298:581–591

    CAS  PubMed  Google Scholar 

  • Mirnics K, Middleton FA, Lewis DA, Levitt P (2001) Analysis of complex brain disorders with gene expression microarrays: schizophrenia as a disease of the synapse. Trends Neurosci 24:479–486

    Article  CAS  PubMed  Google Scholar 

  • Mueser KT, McGurk SR (2004) Schizophrenia. Lancet 363:2063–2072

    Article  PubMed  Google Scholar 

  • Nicolas LB, Kolb Y, Prinssen EP (2006) A combined marble burying–locomotor activity test in mice: a practical screening test with sensitivity to different classes of anxiolytics and antidepressants. Eur J Pharmacol 547:106–115

    Article  CAS  PubMed  Google Scholar 

  • Noda Y, Yamada K, Furukawa H, Nabeshima T (1995) Enhancement of immobility in a forced swimming test by subacute or repeated treatment with phencyclidine: a new model of schizophrenia. Br J Pharmacol 116:2531–2537

    CAS  PubMed  Google Scholar 

  • Noda Y, Mamiya T, Furukawa H, Nabeshima T (1997) Effects of antidepressants on phencyclidine-induced enhancement of immobility in a forced swimming test in mice. Eur J Pharmacol 324:135–140

    Article  CAS  PubMed  Google Scholar 

  • Owen MJ, Craddock N, O'Donovan MC (2005a) Schizophrenia: genes at last? Trends Genet 21:518–525

    Article  CAS  PubMed  Google Scholar 

  • Owen MJ, O'Donovan MC, Harrison PJ (2005b) Schizophrenia: a genetic disorder of the synapse? BMJ 330:158–159

    Article  PubMed  Google Scholar 

  • Patil ST, Zhang L, Martenyi F, Lowe SL, Jackson KA, Andreev BV, Avedisova AS, Bardenstein LM, Gurovich IY, Morozova MA, Mosolov SN, Neznanov NG, Reznik AM, Smulevich AB, Tochilov VA, Johnson BG, Monn JA, Schoepp DD (2007) Activation of mGlu2/3 receptors as a new approach to treat schizophrenia: a randomized phase 2 clinical trial. Nat Med 13:1102–1107

    Article  CAS  PubMed  Google Scholar 

  • Peuskens J, Demily C, Thibaut F (2005) Treatment of cognitive dysfunction in schizophrenia. Clin Ther 27:S25–S37

    Article  CAS  PubMed  Google Scholar 

  • Porsolt RD, Bertin A, Jalfre M (1977) Behavioral despair in mice: a primary screening test for antidepressants. Arch Int Pharmacodyn Ther 229:327–336

    CAS  PubMed  Google Scholar 

  • Porsolt RD, Anton G, Blavet N, Jalfre M (1978) Behavioural despair in rats: a new model sensitive to antidepressant treatments. Eur J Pharmacol 47:379–391

    Article  CAS  PubMed  Google Scholar 

  • Powell KJ, Hori SE, Leslie R, Andrieux A, Schellinck H, Thorne M, Robertson GS (2007) Cognitive impairments in the STOP null mouse model of schizophrenia. Behav Neurosci 121:826–835

    Article  PubMed  Google Scholar 

  • Sakaguchi M, Koseki M, Wakamatsu M, Matsumura E (2006) Effects of systemic administration of beta-casomorphin-5 on learning and memory in mice. Eur J Pharmacol 530:81–87

    Article  CAS  PubMed  Google Scholar 

  • Sergi MJ, Rassovsky Y, Widmark C, Reist C, Erhart S, Braff DL, Marder SR, Green MF (2007) Social cognition in schizophrenia: relationships with neurocognition and negative symptoms. Schizophr Res 90:316–324

    Article  PubMed  Google Scholar 

  • Shimizu H, Iwayama Y, Yamada K, Toyota T, Minabe Y, Nakamura K, Nakajima M, Hattori E, Mori N, Osumi N, Yoshikawa T (2006) Genetic and expression analyses of the STOP (MAP6) gene in schizophrenia. Schizophr Res 84:244–252

    Article  PubMed  Google Scholar 

  • Shinoda T, Taya S, Tsuboi D, Hikita T, Matsuzawa R, Kuroda S, Iwamatsu A, Kaibuchi K (2007) DISC1 regulates neurotrophin-induced axon elongation via interaction with Grb2. J Neurosci 27:4–14

    Article  CAS  PubMed  Google Scholar 

  • Talbot K, Cho DS, Ong WY, Benson MA, Han LY, Kazi HA, Kamins J, Hahn CG, Blake DJ, Arnold SE (2006) Dysbindin-1 is a synaptic and microtubular protein that binds brain snapin. Hum Mol Genet 15:3041–3054

    Article  CAS  PubMed  Google Scholar 

  • Taya S, Shinoda T, Tsuboi D, Asaki J, Nagai K, Hikita T, Kuroda S, Kuroda K, Shimizu M, Hirotsune S, Iwamatsu A, Kaibuchi K (2007) DISC1 regulates the transport of the NUDEL/LIS1/14-3-3epsilon complex through kinesin-1. J Neurosci 27:15–26

    Article  CAS  PubMed  Google Scholar 

  • Volavka J, Czobor P, Sheitman B, Lindenmayer JP, Citrome L, McEvoy JP, Cooper TB, Chakos M, Lieberman JA (2002) Clozapine, olanzapine, risperidone, and haloperidol in the treatment of patients with chronic schizophrenia and schizoaffective disorder. Am J Psychiatry 159:255–262

    Article  PubMed  Google Scholar 

  • Young R, Batkai S, Dukat M, Glennon RA (2006) TDIQ (5, 6, 7, 8-tetrahydro-1, 3-dioxolo[4, 5-g]isoquinoline) exhibits anxiolytic-like activity in a marble-burying assay in mice. Pharmacol Biochem Behav 84:62–73

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank C. Dumont and D. Proietto for technical help.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Karine Bressand or Annie Andrieux.

Additional information

Karine Bressand and Annie Andrieux shared the supervision of this study equally.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Delotterie, D., Ruiz, G., Brocard, J. et al. Chronic administration of atypical antipsychotics improves behavioral and synaptic defects of STOP null mice. Psychopharmacology 208, 131–141 (2010). https://doi.org/10.1007/s00213-009-1712-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-009-1712-3

Keywords

Navigation