Skip to main content
Log in

Aberrant approach-avoidance conflict resolution following repeated cocaine pre-exposure

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Addiction is characterized by persistence to seek drug reinforcement despite negative consequences. Drug-induced aberrations in approach and avoidance processing likely facilitate the sustenance of addiction pathology. Currently, the effects of repeated drug exposure on the resolution of conflicting approach and avoidance motivational signals have yet to be thoroughly investigated.

Objective

The present study sought to investigate the effects of cocaine pre-exposure on conflict resolution using novel approach-avoidance paradigms.

Methods

We used a novel mixed-valence conditioning paradigm to condition cocaine-pre-exposed rats to associate visuo-tactile cues with either the delivery of sucrose reward or shock punishment in the arms in which the cues were presented. Following training, exploration of an arm containing a superimposition of the cues was assessed as a measure of conflict resolution behavior. We also used a mixed-valence runway paradigm wherein cocaine-pre-exposed rats traversed an alleyway toward a goal compartment to receive a pairing of sucrose reward and shock punishment. Latency to enter the goal compartment across trials was taken as a measure of motivational conflict.

Results

Our results reveal that cocaine pre-exposure attenuated learning for the aversive cue association in our conditioning paradigm and enhanced preference for mixed-valence stimuli in both paradigms.

Conclusions

Repeated cocaine pre-exposure allows appetitive approach motivations to gain greater influence over behavioral output in the context of motivational conflict, due to aberrant positive and negative incentive motivational processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • American Psychiatric Association (2013) Diagnostic and statistical manual of mental disorders, 5th edn. American Psychiatric Publishing, Arlington

    Google Scholar 

  • Bellone C, Luscher C (2006) Cocaine triggered AMPA receptor redistribution is reversed in vivo by mGluR-dependent long-term depression. Nat Neurosci 9(5):636–641

    Article  CAS  PubMed  Google Scholar 

  • Berridge KC (2007) The debate over dopamine’s role in reward: the case for incentive salience. Psychopharmacology (Berl) 191(3):391–431

    Article  CAS  Google Scholar 

  • Bordreau AC, Wolf ME (2005) Behavioral sensitization to cocaine is associated with increased AMPA receptor surface expression in the nucleus accumbens. J Neurosci 25(40):9144–9151

    Article  Google Scholar 

  • Borgland SL, Malenka RC, Bonci A (2004) Acute and chronic cocaine-induced potentiation of synaptic strength in the ventral tegmental area: electrophysiological and behavioral correlates in individual rats. J Neurosci 24(34):7482–7490

    Article  CAS  PubMed  Google Scholar 

  • Chen BT, Bowers MS, Martin M, Hopf FW, Guillory AM, Carelli RM, Bonci A (2008) Cocaine but not natural reward self-administration nor passive cocaine infusion produces persistent LTP in the VTA. Neuron 59(2):288–297

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Conrad KL, Tseng KY, Uejima JL, Reimers JM, Heng LJ, Shaham Y, Wolf ME (2008) Formation of accumbens GluR2-lacking AMPA receptors mediates incubation of cocaine craving. Nature 454(7200):118–121

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Deroche V, Le Moal M, Piazza PV (1999) Cocaine self-administration increases the incentive motivational properties of the drug in rats. Eur J Neurosci 11(8):2731–2736

    Article  CAS  PubMed  Google Scholar 

  • Ettenberg A (2004) Opponent process properties of self-administered cocaine. Neurosci Biobehav Rev 27(8):721–728

    Article  CAS  PubMed  Google Scholar 

  • Ettenberg A, Geist TD (1991) Animal model for investigating the anxiogenic effects of self-administered cocaine. Psychopharmacology (Berl) 103(4):455–461

    Article  CAS  Google Scholar 

  • Everitt B, Robbins T (2013) From the ventral to the dorsal striatum: devolving views of their roles in drug addiction. Neurosci Biobehav Rev 37(9 Pt A):1946–1954

    Article  PubMed  Google Scholar 

  • Fiorino DF, Philips AG (1999) Facilitation of sexual behavior and enhanced dopamine efflux in the nucleus accumbens of male rats after d-amphetamine-induced behavioral sensitization. J Neurosci 19(1):456–463

    CAS  PubMed  Google Scholar 

  • Gratton A, Wise RA (1994) Drug- and behavior-associated changes in dopamine-related electrochemical signals during intravenous cocaine self-administration in rats. J Neurosci 14(7):4130–4146

    CAS  PubMed  Google Scholar 

  • Harmer CJ, Phillips GD (1998) Enhanced appetitive conditioning following repeated pretreatment with d-amphetamine. Behav Pharmacol 9(4):299–308

    Article  CAS  PubMed  Google Scholar 

  • Harmer CJ, Phillips GD (1999) Enhanced dopamine efflux in the amygdala by a predictive, but not a non-predictive, stimulus: facilitation by prior repeated D-amphetamine. Neuroscience 90(1):119–130

    Article  CAS  PubMed  Google Scholar 

  • Harmer CJ, Hitchcott PK, Morutto SL, Phillips GD (1997) Repeated d-amphetamine enhances stimulated mesoamygdaloid dopamine transmission. Psychopharmacology (Berl) 132(3):247–254

    Article  CAS  Google Scholar 

  • Hearing M, Kotecki L, Fernandez M, de Velasco E, Fajardo-Serrano A, Chung HJ, Luján R, Wickman K (2013) Repeated cocaine weakens GABA(B)-Girk signaling in layer 5/6 pyramidal neurons in the prelimbic cortex. Neuron 80(1):159–170

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Hikida T, Kimura K, Wada N, Funabiki K, Nakanishi S (2010) Distinct roles of synaptic transmission in direct and indirect striatal pathways to reward and aversive behavior. Neuron 66(6):896–907

    Article  CAS  PubMed  Google Scholar 

  • Koob GF, Volkow ND (2010) Neurocircuitry of addiction. Neuropsychopharmacology 35(1):217–238

    Article  PubMed Central  PubMed  Google Scholar 

  • Kourrich S, Rothwell PE, Klug JR, Thomas MJ (2007) Cocaine experience controls bidirectional synaptic plasticity in the nucleus accumbens. J Neurosci 27(30):7921–7928

    Article  CAS  PubMed  Google Scholar 

  • Lett BT (1989) Repeated exposures intensify rather than diminish the rewarding effects of amphetamine, morphine, and cocaine. Psychopharmacology (Berl) 98(3):357–362

    Article  CAS  Google Scholar 

  • Lobo MK, Nestler EJ (2011) The striatal balancing act in drug addiction: distinct roles of direct and indirect pathway medium spiny neurons. Front Neuroanat 5:41

    Article  PubMed Central  PubMed  Google Scholar 

  • Lobo MK, Covington HE 3rd, Chaudhury D, Friedman AK, Sun H, Damez-Werno D, Nestler EJ (2010) Cell type-specific loss of BDNF signaling mimics optogenetic control of cocaine reward. Science 330(6002):385–390

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Luscher C, Malenka RC (2011) Drug-evoked synaptic plasticity in addiction: from molecular changes to circuit remodeling. Neuron 69(4):650–663

    Article  PubMed Central  PubMed  Google Scholar 

  • Peters J, LaLumiere RT, Kalivas PW (2008) Infralimbic prefrontal cortex is responsible for inhibiting cocaine seeking in extinguished rats. J Neurosci 28(23):6046–6053

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Robinson TE, Berridge KC (1993) The neural basis of drug craving: an incentive-sensitization theory of addiction. Brain Res Brain Res Rev 18(3):247–291

    Article  CAS  PubMed  Google Scholar 

  • Rushworth MF, Noonan MP, Boorman ED, Walton ME, Behrens TE (2011) Frontal cortex and reward-guided learning and decision-making. Neuron 70(6):1054–1069

    Article  CAS  PubMed  Google Scholar 

  • Seymour CM, Wagner JJ (2008) Simultaneous expression of cocaine-induced behavioral sensitization and conditioned place preference in individual rats. Brain Res 1213:57–68

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Ungless MA, Whistler JL, Malenka RC, Bonci A (2001) Single cocaine exposure in vivo induces long-term potentiation in dopamine neurons. Nature 411(6837):583–587

    Article  CAS  PubMed  Google Scholar 

  • Volkow ND, Baler RD (2014) Addiction science: uncovering neurobiological complexity. Neuropharmacology 76(Pt B):235–249

    Article  CAS  PubMed  Google Scholar 

  • Wheeler RA, Carelli RM (2009) Dissecting motivational circuitry to understand substance abuse. Neuropharmacology 56(Suppl 1):149–159

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wyvell CL, Berridge KC (2001) Incentive sensitization by previous amphetamine exposure: increased cue-triggered “wanting” for sucrose reward. J Neurosci 21(19):7831–7840

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by NSERC Discovery Grants 402642 and 240790 awarded to RI and SE.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rutsuko Ito.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, D., Schumacher, A., Erb, S. et al. Aberrant approach-avoidance conflict resolution following repeated cocaine pre-exposure. Psychopharmacology 232, 3573–3583 (2015). https://doi.org/10.1007/s00213-015-4006-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-015-4006-y

Keywords

Navigation