Skip to main content

Advertisement

Log in

Regulation of glutamate transporter 1 via BDNF-TrkB signaling plays a role in the anti-apoptotic and antidepressant effects of ketamine in chronic unpredictable stress model of depression

  • Original Investigation
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Rationale

Growing evidence suggests that downregulated clearance of glutamate and signaling pathways involving brain-derived neurotrophic factor (BDNF) and its receptor TrkB play a role in morphological changes in the hippocampus of depressed patients. The N-methyl-D-aspartate (NMDA) receptor antagonist ketamine is the most attractive antidepressant, although precise mechanisms are unknown.

Objective

In this study, we examined whether hippocampal BDNF-TrkB signaling underlies the antidepressant effects of ketamine via upregulating glutamate transporter 1 (GLT-1) in rats, subjected to the chronic unpredictable stress (CUS) for 42 days. The rats received a single injection of ketamine (10 mg/kg, i.p.) and/or a TrkB inhibitor, K252a (1 μl, 2 mM, intracerebroventicular (i.c.v.)) on day 43. Behavioral tests and brain sample collection were evaluated 24 h later.

Results

The CUS-exposed rats exhibited depression- and anxiety-like behaviors; decreased number of glial fibrillary acidic protein (GFAP)-positive (but not NeuN-positive) cells in the dentate gyrus (DG), CA1, and CA3 areas; increased number of cleaved caspase-3-positive astrocytes; reduced spine density; lower ratio of Bcl2 to Bax; and decreased levels of BDNF, phosphorylated cAMP response element binging protein (CREB), GLT-1, and postsynaptic density 95 (PSD95) proteins in the hippocampus. Ketamine alleviated the CUS-induced abnormalities. The effects of ketamine were antagonized by pretreatment with K252a.

Conclusions

Our findings suggest that regulation of GLT-1 on astrocytes, responsible for 90 % of glutamate reuptake from the synapse, through BDNF-TrkB signaling is involved in mediation of the therapeutic effects of ketamine on behavioral abnormalities and morphological changes in the hippocampus of the CUS-exposed rats.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Autry AE, Adachi M, Nosyreva E, Na ES, Los MF, Cheng PF, Kavalali ET, Monteggia LM (2011) NMDA receptor blockade at rest triggers rapid behavioural antidepressant responses. Nature 475:91–95

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Banasr M, Duman RS (2007) Regulation of neurogenesis and gliogenesis by stress and antidepressant treatment. CNS Neurol Disord Drug Targets 6:311–320

    Article  PubMed  CAS  Google Scholar 

  • Banasr M, Valentine GW, Li XY, Gourley SL, Taylor JR, Duman RS (2007) Chronic unpredictable stress decreases cell proliferation in the cerebral cortex of the adult rat. Biol Psychiatry 62:496–504

    Article  PubMed  CAS  Google Scholar 

  • Castren E, Voikar V, Rantamaki T (2007) Role of neurotrophic factors in depression. Curr Opin Pharmacol 7:18–21

    Article  PubMed  CAS  Google Scholar 

  • Chen JX, Yao LH, Xu BB, Qian K, Wang HL, Liu ZC, Wang XP, Wang GH (2014) Glutamate transporter 1-mediated antidepressant-like effect in a rat model of chronic unpredictable stress. J Huazhong Univ Sci Technolog Med Sci 34:838–844

    Article  PubMed  Google Scholar 

  • Czeh B, Simon M, Schmelting B, Hiemke C, Fuchs E (2006) Astroglial plasticity in the hippocampus is affected by chronic psychosocial stress and concomitant fluoxetine treatment. Neuropsychopharmacology 31:1616–1626

    Article  PubMed  CAS  Google Scholar 

  • Danbolt NC (2001) Glutamate uptake. Prog Neurobiol 65:1–105

    Article  PubMed  CAS  Google Scholar 

  • Duman RS (2014) Pathophysiology of depression and innovative treatments: remodeling glutamatergic synaptic connections. Dialogues Clin Neurosci 16:11–27

    PubMed  PubMed Central  Google Scholar 

  • Duman RS, Monteggia LM (2006) A neurotrophic model for stress-related mood disorders. Biol Psychiatry 59:1116–1127

    Article  PubMed  CAS  Google Scholar 

  • Duman RS, Voleti B (2012) Signaling pathways underlying the pathophysiology and treatment of depression: novel mechanisms for rapid-acting agents. Trends Neurosci 35:47–56

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Garcia LS, Comim CM, Valvassori SS, Reus GZ, Barbosa LM, Andreazza AC, Stertz L, Fries GR, Gavioli EC, Kapczinski F, Quevedo J (2008) Acute administration of ketamine induces antidepressant-like effects in the forced swimming test and increases BDNF levels in the rat hippocampus. Prog Neuropsychopharmacol Biol Psychiatry 32:140–144

    Article  PubMed  CAS  Google Scholar 

  • Hashimoto K (2010) Brain-derived neurotrophic factor as a biomarker for mood disorders: a historical overview and future directions. Psychiatry Clin Neurosci 64:341–357

    Article  PubMed  CAS  Google Scholar 

  • Hashimoto K (2013) Therapeutic implications for NMDA receptors in mood disorders. Expert Rev Neurother 13:735–737

    Article  PubMed  CAS  Google Scholar 

  • Hashimoto K (2014) Targeting of NMDA receptors in new treatments for schizophrenia. Expert Opin Ther Targets 18:1049–1063

    Article  PubMed  CAS  Google Scholar 

  • Hashimoto K (2015) Serine enantiomers as diagnostic biomarkers for schizophrenia and bipolar disorder. Eur Arch Psychiatry Clin Neurosci. doi:10.1007/s00406-015-0602-4

    Google Scholar 

  • Hashimoto K, Malchow B, Falkai P, Schmitt A (2013) Glutamate modulators as potential therapeutic drugs in schizophrenia and affective disorders. Eur Arch Psychiatry Clin Neurosci 263:367–377

    Article  PubMed  Google Scholar 

  • Haydon PG, Carmignoto G (2006) Astrocyte control of synaptic transmission and neurovascular coupling. Physiol Rev 86:1009–1031

    Article  PubMed  CAS  Google Scholar 

  • Holmseth S, Scott HA, Real K, Lehre KP, Leergaard TB, Bjaalie JG, Danbolt NC (2009) The concentrations and distributions of three C-terminal variants of the GLT1 (EAAT2; slc1a2) glutamate transporter protein in rat brain tissue suggest differential regulation. Neuroscience 162:1055–1071

    Article  PubMed  CAS  Google Scholar 

  • Huang H, Zhao J, Jiang L, Xie Y, Xia Y, Lv R, Dong L (2015) Paeoniflorin improves menopause depression in ovariectomized rats under chronic unpredictable mild stress. Int J Clin Exp Med 8:5103–5111

    PubMed  CAS  PubMed Central  Google Scholar 

  • Hunsberger JG, Austin DR, Chen G, Manji HK (2009) Cellular mechanisms underlying affective resiliency: the role of glucocorticoid receptor- and mitochondrially-mediated plasticity. Brain Res 1293:76–84

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Iwata M, Shirayama Y, Ishida H, Hazama GI, Nakagome K (2011) Hippocampal astrocytes are necessary for antidepressant treatment for learned helplessness rats. Hippocampus 21:877–884

    PubMed  CAS  Google Scholar 

  • John CS, Sypek EI, Carlezon WA, Cohen BM, Öngür D, Bechtholt AJ (2015) Blockade of the GLT-1 transporter in the central nucleus of the amygdala induces both anxiety and depressive-like symptoms. Neuropsychopharmacology 40:1700–1708

    Article  PubMed  CAS  Google Scholar 

  • Kessler RC, Berglund P, Demler O, Jin R, Koretz D, Merikangas KR, Rush AJ, Walters EE, Wang PS, National Comorbidity Survey Replication (2003) The epidemiology of major depressive disorder: results from the National Comorbidity Survey Replication (NCS-R). JAMA 289:3095–3105

    Article  PubMed  Google Scholar 

  • Kosten TA, Galloway MP, Duman RS, Russell DS, D’Sa C (2008) Repeated unpredictable stress and antidepressants differentially regulate expression of the Bcl-2 family of apoptotic genes in rat cortical, hippocampal, and limbic brain structures. Neuropsychopharmacology 33:1545–1558

    Article  PubMed  CAS  Google Scholar 

  • Kreisel T, Frank MG, Licht T, Reshef R, Ben-Menachem-Zidon O, Baratta MV, Maier SF, Yirmiya R (2014) Dynamic microglial alterations underlie stress-induced depressive-like behavior and suppressed neurogenesis. Mol Psychiatry 19:699–709

    Article  PubMed  CAS  Google Scholar 

  • Krishnan V, Nestler EJ (2008) The molecular neurobiology of depression. Nature 455:894–902

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Krystal JH, Sanacorra G, Duman RS (2013) Rapid-acting glutamatergic antidepressants: the path to ketamine and beyond. Biol Psychiatry 73:1133–1141

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Li N, He X, Zhang Y, Qi X, Li H, Zhu X, He S (2011a) Brain-derived neurotrophic factor signalling mediates antidepressant effects of lamotrigine. Int J Neuropsychopharmacol 14:1091–1098

    Article  PubMed  CAS  Google Scholar 

  • Li N, Liu RJ, Dwyer JM, Banasr M, Lee B, Son H, Li XY, Aghajanian G, Duman RS (2011b) Glutamate N-methyl-D-aspartate receptor antagonists rapidly reverse behavioral and synaptic deficits caused by chronic stress exposure. Biol Psychiatry 69:754–761

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Lonze BE, Ginty DD (2002) Function and regulation of CREB family transcription factors in the nervous system. Neuron 35:605–623

    Article  PubMed  CAS  Google Scholar 

  • Lowy MT, Gault L, Yamamoto BK (1993) Adrenalectomy attenuates stress-induced elevations in extracellular glutamate concentrations in the hippocampus. J Neurochem 61:1957–1960

    Article  PubMed  CAS  Google Scholar 

  • Lucassen PJ, Heine VM, Muller MB, van der Beek EM, Wiegant VM, De Kloet ER, Joels M, Fuchs E, Swaab DF, Czeh B (2006) Stress, depression and hippocampal apoptosis. CNS Neurol Disord Drug Targets 5:531–546

    Article  PubMed  Google Scholar 

  • Maeng S, Hunsberger JG, Pearson B, Yuan P, Wang Y, Wei Y, McCammon J, Schloesser RJ, Zhou R, Du J, Chen G, McEwen B, Reed JC, Manji HK (2008a) BAG1 plays a critical role in regulating recovery from both manic-like and depression-like behavioral impairments. Proc Natl Acad Sci U S A 105:8766–8771

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Maeng S, Zarate CA Jr, Du J, Schloesser RJ, McCammon J, Chen G, Manji HK (2008b) Cellular mechanisms underlying the antidepressant effects of ketamine: role of alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptors. Biol Psychiatry 63:349–352

    Article  PubMed  CAS  Google Scholar 

  • McEwen BS (2007) Physiology and neurobiology of stress and adaptation: central role of the brain. Physiol Rev 87:873–904

    Article  PubMed  Google Scholar 

  • Mineur YS, Picciotto MR, Sanacora G (2007) Antidepressant-like effects of ceftriaxone in male C57BL/6J mice. Biol Psychiatry 61:250–252

    Article  PubMed  CAS  Google Scholar 

  • Monteggia LM, Zarate C Jr (2015) Antidepressant actions of ketamine; from molecular mechanisms to clinical practice. Curr Opin Neurobiol 30:139–143

    Article  PubMed  CAS  Google Scholar 

  • Müller MB, Lucassen PJ, Yassouridis A, Hoogendijk WJ, Holsboer F, Swaab DF (2001) Neither major depression nor glucocorticoid treatment affects the cellular integrity of the human hippocampus. Eur J Neurosci 14:1603–1612

    Article  PubMed  Google Scholar 

  • Murer MG, Yan Q, Raisman-Vozari R (2001) Brain-derived neurotrophic factor in the control human brain, and in Alzheimer’s disease and Parkinson’s disease. Prog Neurobiol 63:71–124

    Article  PubMed  CAS  Google Scholar 

  • Nestler EJ, Carlezon WA Jr (2006) The mesolimbic dopamine reward circuit in depression. Biol Psychiatry 59:1151–1159

    Article  PubMed  CAS  Google Scholar 

  • Nestler EJ, Barrot M, DiLeone RJ, Eisch AJ, Gold SJ, Monteggia LM (2002) Neurobiology of depression. Neuron 34:13–25

    Article  PubMed  CAS  Google Scholar 

  • Ohgi Y, Futamura T, Hashimoto K (2015) Glutamate signaling in synaptogenesis and NMDA receptors as potential therapeutic targets for psychiatric disorders. Curr Mol Med 15:206–221

    Article  PubMed  CAS  Google Scholar 

  • Ota KT, Duman RS (2013) Environmental and pharmacological modulations of cellular plasticity: role in the pathophysiology and treatment of depression. Neurobiol Dis 57:28–37

    Article  PubMed  CAS  Google Scholar 

  • Paxinos G, Watson C (1998) The rat brain in stereotaxic coordinates, 4th edn. Academic, San Diego

    Google Scholar 

  • Pittenger C, Duman RS (2008) Stress, depression, and neuroplasticity: a convergence of mechanisms. Neuropsychopharmacology 33:88–109

    Article  PubMed  CAS  Google Scholar 

  • Popoli M, Yan Z, McEwen B, Sanacora G (2011) The stressed synaptose: the impact of stress and glucocorticoids on glutamate transmission. Nat Rev Neurosci 13:22–37

    Article  PubMed  PubMed Central  Google Scholar 

  • Rajkowska G, Miguel-Hidalgo J (2007) Gliogenesis and glial pathology in depression. CNS Neurol Disord Drug Targets 6:219

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Rothstein JD, Patel S, Regan MR, Haenggeli C, Huang YH, Bergles DE, Jin L, Dykes Hoberg M, Vidensky S, Chung DS, Toan SV, Bruijn LI, Su ZZ, Gupta P, Fisher PB (2005) β-lactam antibiotics offer neuroprotection by increasing glutamate transporter expression. Nature 433:73–77

    Article  PubMed  CAS  Google Scholar 

  • Sapolsky RM (2000) Glucocorticoids and hippocampal atrophy in neuropsychiatric disorders. Arch Gen Psychiatry 57:925–935

    Article  PubMed  CAS  Google Scholar 

  • Sapolsky RM (2003) Stress and plasticity in the limbic system. Neurochem Res 28:1735–1742

    Article  PubMed  CAS  Google Scholar 

  • Shachnai L, Shimamoto K, Kanner BI (2005) Sulfhydryl modification of cysteine mutants of a neuronal glutamate transporter reveals an inverse relationship between sodium dependent conformational changes and the glutamate-gated anion conductance. Neuropharmacology 49:862–871

    Article  PubMed  CAS  Google Scholar 

  • Shirayama Y, Yang C, Zhang JC, Ren Q, Yao W, Hashimoto K (2015) Alterations in brain-derived neurotrophic factor (BDNF) and its precursor proBDNF in the brain regions of a learned helplessness rat model and the antidepressant effects of a TrkB agonist and antagonist. Eur Neuropsychopharmacol. doi:10.1016/j.euroneuro.2015.09.002

    PubMed  Google Scholar 

  • Silva R, Mesquita AR, Bessa J, Sousa JC, Sotiropoulos I, Leao P, Almeida OF, Sousa N (2008) Lithium blocks stress-induced changes in depressive-like behavior and hippocampal cell fate: the role of glycogen-synthase-kinase-3beta. Neuroscience 152:656–669

    Article  PubMed  CAS  Google Scholar 

  • Tao X, Finkbeiner S, Arnold DB, Shaywitz AJ, Greenberg ME (1998) Ca2+ influx regulates BDNF transcription by a CREB family transcription factor-dependent mechanism. Neuron 20:709–726

    Article  PubMed  CAS  Google Scholar 

  • Venero C, Borrell J (1999) Rapid glucocorticoid effects on excitatory amino acid levels in the hippocampus: a microdialysis study in freely moving rats. Eur J Neurosci 11:2465–2473

    Article  PubMed  CAS  Google Scholar 

  • Walter M, Li S, Demenescu LR (2014) Multistage drug effects of ketamine in the treatment of major depression. Eur Arch Psychiatry Clin Neurosci 264(Suppl 1):S55–S65

    Article  PubMed  Google Scholar 

  • Yang C, Shirayama Y, Zhang JC, Ren Q, Hashimoto K (2015) Regional differences in brain-derived neurotrophic factor levels and dendritic spine density confer resilience to inescapable stress. Int J Neuropsychopharmacol. doi:10.1093/ijnp/pyu121

  • Zarate CA Jr, Du J, Quiroz J, Gray NA, Denicoff KD, Singh J, Charney DS, Manji HK (2003) Regulation of cellular plasticity cascades in the pathophysiology and treatment of mood disorders: role of the glutamatergic system. Ann N Y Acad Sci 1003:273–291

    Article  PubMed  CAS  Google Scholar 

  • Zhang GF, Liu WX, Qiu LL, Guo J, Wang XM, Sun HL, Yang JJ, Zhou ZQ (2015a) Repeated ketamine administration redeems the time lag for citalopram’s antidepressant-like effects. Eur Psychiatry 30:504–510

    Article  PubMed  Google Scholar 

  • Zhang JC, Wu J, Fujita Y, Yao W, Ren Q, Yang C, Li SX, Shirayama Y, Hashimoto K (2015b) Antidepressant effects of TrkB ligands on depression-like behavior and dendritic changes in mice after inflammation. Int J Neuropsychopharmacol. doi:10.1093/ijnp/pyu077

  • Zhang JC, Yao W, Dong C, Yang C, Ren Q, Ma M, Han M, Hashimoto K (2015c) Xomparison of ketamine, 7,8-dihydroxyflavone, ANA-12 antidepressant effects in the social defeat stress model of depression. Psychopharmacology (Berlin). doi:10.1007/s00213-015-4062-3

    Google Scholar 

  • Zhou Y, Danbolt NC (2013) GABA and glutamate transporters in brain. Front Endocrinol (Lausanne) 4:165

    Google Scholar 

  • Zhou ZQ, Zhang GF, Li XM, Liu XY, Wang N, Qiu LL, Liu WX, Zuo ZY, Yang JJ (2015) Loss of phenotype of parvalbumin interneurons in rat prefrontal cortex is involved in antidepressant and propsychotic-like behaviors following acute and repeated ketamine administration. Mol Neurobiol 51:808–819

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This study was supported by a grant from the National Natural Science Foundation of China (Nos. 81271216 and 81471105) and a Grant-in-Aid from the Minister of Education, Culture, Sports, Science, and Technology of Japan (to K.H., No. 24116006).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Kenji Hashimoto or Jian-Jun Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, WX., Wang, J., Xie, ZM. et al. Regulation of glutamate transporter 1 via BDNF-TrkB signaling plays a role in the anti-apoptotic and antidepressant effects of ketamine in chronic unpredictable stress model of depression. Psychopharmacology 233, 405–415 (2016). https://doi.org/10.1007/s00213-015-4128-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-015-4128-2

Keywords

Navigation