Skip to main content
Log in

Ventral tegmental area dopamine revisited: effects of acute and repeated stress

  • Review
  • Published:
Psychopharmacology Aims and scope Submit manuscript

Abstract

Aversive events rapidly and potently excite certain dopamine neurons in the ventral tegmental area (VTA), promoting phasic increases in the medial prefrontal cortex and nucleus accumbens. This is in apparent contradiction to a wealth of literature demonstrating that most VTA dopamine neurons are strongly activated by reward and reward-predictive cues while inhibited by aversive stimuli. How can these divergent processes both be mediated by VTA dopamine neurons? The answer may lie within the functional and anatomical heterogeneity of the VTA. We focus on VTA heterogeneity in anatomy, neurochemistry, electrophysiology, and afferent/efferent connectivity. Second, recent evidence for a critical role of VTA dopamine neurons in response to both acute and repeated stress will be discussed. Understanding which dopamine neurons are activated by stress, the neural mechanisms driving the activation, and where these neurons project will provide valuable insight into how stress can promote psychiatric disorders associated with the dopamine system, such as addiction and depression.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abercrombie ED, Keefe KA, DiFrischia DS, Zigmond MJ (1989) Differential effect of stress on in vivo dopamine release in striatum, nucleus accumbens, and medial frontal cortex. J Neurochem 52:1655–1658

    Article  PubMed  CAS  Google Scholar 

  • Albanese A, Minciacchi D (1983) Organization of the ascending projections from the ventral tegmental area: a multiple fluorescent retrograde tracer study in the rat. J Comp Neurol 216:406–420

    Article  PubMed  CAS  Google Scholar 

  • Anstrom KK, Miczek KA, Budygin EA (2009) Increased phasic dopamine signaling in the mesolimbic pathway during social defeat in rats. Neuroscience 161:3–12

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Anstrom KK, Woodward DJ (2005) Restraint increases dopaminergic burst firing in awake rats. Neuropsychopharmacology 30:1832–1840

    Article  PubMed  CAS  Google Scholar 

  • Arriaga-Avila V, Martinez-Abundis E, Cardenas-Morales B, Mercado-Gomez O, Aburto-Arciniega E, Miranda-Martinez A, Kendrick KM, Guevara-Guzman R (2014) Lactation reduces stress-caused dopaminergic activity and enhances GABAergic activity in the rat medial prefrontal cortex. J Mol Neurosci 52:515–524

    Article  PubMed  CAS  Google Scholar 

  • Azzi M, Betancur C, Sillaber I, Spanagel R, Rostene W, Berod A (1998) Repeated administration of the neurotensin receptor antagonist SR 48692 differentially regulates mesocortical and mesolimbic dopaminergic systems. J Neurochem 71:1158–1167

    Article  PubMed  CAS  Google Scholar 

  • Bannon MJ, Roth RH (1983) Pharmacology of mesocortical dopamine neurons. Pharmacol Rev 35:53–68

    PubMed  CAS  Google Scholar 

  • Berridge KC (1996) Food reward: brain substrates of wanting and liking. Neurosci Biobehav Rev 20:1–25

    Article  PubMed  CAS  Google Scholar 

  • Bland ST, Hargrave D, Pepin JL, Amat J, Watkins LR, Maier SF (2003) Stressor controllability modulates stress-induced dopamine and serotonin efflux and morphine-induced serotonin efflux in the medial prefrontal cortex. Neuropsychopharmacology 28:1589–1596

    Article  PubMed  CAS  Google Scholar 

  • Blessing WW, Chalmers JP, Howe PR (1978) Distribution of catecholamine-containing cell bodies in the rabbit central nervous system. J Comp Neurol 179:407–423

    Article  PubMed  CAS  Google Scholar 

  • Bogerts B (1981) A brainstem atlas of catecholaminergic neurons in man, using melanin as a natural marker. J Comp Neurol 197:63–80

    Article  PubMed  CAS  Google Scholar 

  • Bogerts B, Hantsch J, Herzer M (1983) A morphometric study of the dopamine-containing cell groups in the mesencephalon of normals, Parkinson patients, and schizophrenics. Biol Psychiatry 18:951–969

    PubMed  CAS  Google Scholar 

  • Brischoux F, Chakraborty S, Brierley DI, Ungless MA (2009) Phasic excitation of dopamine neurons in ventral VTA by noxious stimuli. Proc Natl Acad Sci U S A 106:4894–4899

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Butts KA, Phillips AG (2013) Glucocorticoid receptors in the prefrontal cortex regulate dopamine efflux to stress via descending glutamatergic feedback to the ventral tegmental area. Int J Neuropsychopharmacol 16:1799–1807

    Article  PubMed  CAS  Google Scholar 

  • Butts KA, Weinberg J, Young AH, Phillips AG (2011) Glucocorticoid receptors in the prefrontal cortex regulate stress-evoked dopamine efflux and aspects of executive function. Proc Natl Acad Sci U S A 108:18459–18464

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Cameron DL, Wessendorf MW, Williams JT (1997) A subset of ventral tegmental area neurons is inhibited by dopamine, 5-hydroxytryptamine and opioids. Neuroscience 77:155–166

    Article  PubMed  CAS  Google Scholar 

  • Cao JL, Covington HE 3rd, Friedman AK, Wilkinson MB, Walsh JJ, Cooper DC, Nestler EJ, Han MH (2010) Mesolimbic dopamine neurons in the brain reward circuit mediate susceptibility to social defeat and antidepressant action. J Neurosci 30:16453–16458

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Carlsson A, Dahlstroem A, Fuxe K, Lindqvist M (1965) Histochemical and biochemical detection of monoamine release from brain neurons. Life Sci 4:809–816

    Article  PubMed  CAS  Google Scholar 

  • Cenci MA, Kalen P, Mandel RJ, Bjorklund A (1992) Regional differences in the regulation of dopamine and noradrenaline release in medial frontal cortex, nucleus accumbens and caudate-putamen: a microdialysis study in the rat. Brain Res 581:217–228

    Article  PubMed  CAS  Google Scholar 

  • Chrousos GP, Gold PW (1992) The concepts of stress and stress system disorders. Overview of physical and behavioral homeostasis. JAMA 267:1244–1252

    Article  PubMed  CAS  Google Scholar 

  • Cohen JY, Haesler S, Vong L, Lowell BB, Uchida N (2012) Neuron-type-specific signals for reward and punishment in the ventral tegmental area. Nature 482:85–88

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Covington HE 3rd, Maze I, Sun H, Bomze HM, DeMaio KD, Wu EY, Dietz DM, Lobo MK, Ghose S, Mouzon E, Neve RL, Tamminga CA, Nestler EJ (2011) A role for repressive histone methylation in cocaine-induced vulnerability to stress. Neuron 71:656–670

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Crutcher KA, Humbertson AO Jr (1978) The organization of monoamine neurons within the brainstem of the North American opossum (Didelphis virginiana). J Comp Neurol 179:195–221

    Article  PubMed  CAS  Google Scholar 

  • Cuadra G, Zurita A, Gioino G, Molina V (2001) Influence of different antidepressant drugs on the effect of chronic variable stress on restraint-induced dopamine release in frontal cortex. Neuropsychopharmacology 25:384–394

    Article  PubMed  CAS  Google Scholar 

  • Cuadra G, Zurita A, Lacerra C, Molina V (1999) Chronic stress sensitizes frontal cortex dopamine release in response to a subsequent novel stressor: reversal by naloxone. Brain Res Bull 48:303–308

    Article  PubMed  CAS  Google Scholar 

  • Daftary SS, Panksepp J, Dong Y, Saal DB (2009) Stress-induced, glucocorticoid-dependent strengthening of glutamatergic synaptic transmission in midbrain dopamine neurons. Neurosci Lett 452:273–276

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Dazzi L, Motzo C, Imperato A, Serra M, Gessa GL, Biggio G (1995) Modulation of basal and stress-induced release of acetylcholine and dopamine in rat brain by abecarnil and imidazenil, two anxioselective gamma-aminobutyric acidA receptor modulators. J Pharmacol Exp Ther 273:241–247

    PubMed  CAS  Google Scholar 

  • Dazzi L, Serra M, Spiga F, Pisu MG, Jentsch JD, Biggio G (2001a) Prevention of the stress-induced increase in frontal cortical dopamine efflux of freely moving rats by long-term treatment with antidepressant drugs. Eur Neuropsychopharmacol 11:343–349

    Article  PubMed  CAS  Google Scholar 

  • Dazzi L, Seu E, Cherchi G, Biggio G (2004) Inhibition of stress-induced dopamine output in the rat prefrontal cortex by chronic treatment with olanzapine. Biol Psychiatry 55:477–483

    Article  PubMed  CAS  Google Scholar 

  • Dazzi L, Spiga F, Pira L, Ladu S, Vacca G, Rivano A, Jentsch JD, Biggio G (2001b) Inhibition of stress- or anxiogenic-drug-induced increases in dopamine release in the rat prefrontal cortex by long-term treatment with antidepressant drugs. J Neurochem 76:1212–1220

    Article  PubMed  CAS  Google Scholar 

  • Del Arco A, Mora F (2001) Dopamine release in the prefrontal cortex during stress is reduced by the local activation of glutamate receptors. Brain Res Bull 56:125–130

    Article  PubMed  Google Scholar 

  • Del Arco A, Segovia G, Garrido P, de Blas M, Mora F (2007) Stress, prefrontal cortex and environmental enrichment: studies on dopamine and acetylcholine release and working memory performance in rats. Behav Brain Res 176:267–273

    Article  PubMed  CAS  Google Scholar 

  • Del Arco A, Segovia G, Mora F (2001) Dopamine release during stress in the prefrontal cortex of the rat decreases with age. Neuroreport 12:4019–4022

    Article  PubMed  Google Scholar 

  • Deutch AY, Lee MC, Gillham MH, Cameron DA, Goldstein M, Iadarola MJ (1991) Stress selectively increases fos protein in dopamine neurons innervating the prefrontal cortex. Cereb Cortex 1:273–292

    Article  PubMed  CAS  Google Scholar 

  • Deutch AY, Tam SY, Roth RH (1985) Footshock and conditioned stress increase 3,4-dihydroxyphenylacetic acid (DOPAC) in the ventral tegmental area but not substantia nigra. Brain Res 333:143–146

    Article  PubMed  CAS  Google Scholar 

  • Di Chiara G, Imperato A (1988) Drugs abused by humans preferentially increase synaptic dopamine concentrations in the mesolimbic system of freely moving rats. Proc Natl Acad Sci U S A 85:5274–5278

    Article  PubMed  PubMed Central  Google Scholar 

  • Di Chiara G, Loddo P, Tanda G (1999) Reciprocal changes in prefrontal and limbic dopamine responsiveness to aversive and rewarding stimuli after chronic mild stress: implications for the psychobiology of depression. Biol Psychiatry 46:1624–1633

    Article  PubMed  Google Scholar 

  • Dong Y, Saal D, Thomas M, Faust R, Bonci A, Robinson T, Malenka RC (2004) Cocaine-induced potentiation of synaptic strength in dopamine neurons: behavioral correlates in GluRA(−/−) mice. Proc Natl Acad Sci U S A 101:14282–14287

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Dube L, Parent A (1982) The organization of monoamine-containing neurons in the brain of the salamander, Necturus maculosus. J Comp Neurol 211:21–30

    Article  PubMed  CAS  Google Scholar 

  • Dunn AJ, File SE (1983) Cold restraint alters dopamine metabolism in frontal cortex, nucleus accumbens and neostriatum. Physiol Behav 31:511–513

    Article  PubMed  CAS  Google Scholar 

  • Enrico P, Bouma M, de Vries JB, Westerink BH (1998) The role of afferents to the ventral tegmental area in the handling stress-induced increase in the release of dopamine in the medial prefrontal cortex: a dual-probe microdialysis study in the rat brain. Brain Res 779:205–213

    Article  PubMed  CAS  Google Scholar 

  • Fadda F, Argiolas A, Melis MR, Tissari AH, Onali PL, Gessa GL (1978) Stress-induced increase in 3,4-dihydroxyphenylacetic acid (DOPAC) levels in the cerebral cortex and in n. accumbens: reversal by diazepam. Life Sci 23:2219–2224

    Article  PubMed  CAS  Google Scholar 

  • Fallon JH (1981) Collateralization of monoamine neurons: mesotelencephalic dopamine projections to caudate, septum, and frontal cortex. J Neurosci 1:1361–1368

    PubMed  CAS  Google Scholar 

  • Feder A, Nestler EJ, Charney DS (2009) Psychobiology and molecular genetics of resilience. Nat Rev Neurosci 10:446–457

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Feenstra MG, Botterblom MH, van Uum JF (1998) Local activation of metabotropic glutamate receptors inhibits the handling-induced increased release of dopamine in the nucleus accumbens but not that of dopamine or noradrenaline in the prefrontal cortex: comparison with inhibition of ionotropic receptors. J Neurochem 70:1104–1113

    Article  PubMed  CAS  Google Scholar 

  • Feenstra MG, Vogel M, Botterblom MH, Joosten RN, de Bruin JP (2001) Dopamine and noradrenaline efflux in the rat prefrontal cortex after classical aversive conditioning to an auditory cue. Eur J Neurosci 13:1051–1054

    Article  PubMed  CAS  Google Scholar 

  • Felten DL, Laties AM, Carpenter MB (1974) Monoamine-containing cell bodies in the squirrel monkey brain. Am J Anat 139:153–165

    Article  PubMed  CAS  Google Scholar 

  • Finlay JM, Zigmond MJ, Abercrombie ED (1995) Increased dopamine and norepinephrine release in medial prefrontal cortex induced by acute and chronic stress: effects of diazepam. Neuroscience 64:619–628

    Article  PubMed  CAS  Google Scholar 

  • Ford CP, Mark GP, Williams JT (2006) Properties and opioid inhibition of mesolimbic dopamine neurons vary according to target location. J Neurosci 26:2788–2797

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Fulford AJ, Marsden CA (1998) Effect of isolation-rearing on conditioned dopamine release in vivo in the nucleus accumbens of the rat. J Neurochem 70:384–390

    Article  PubMed  CAS  Google Scholar 

  • Fuxe K, Ljunggren L (1965) Cellular localization of monoamines in the upper brain stem of the pigeon. J Comp Neurol 125:355–381

    Article  PubMed  CAS  Google Scholar 

  • Fuxe K, Owman C (1965) Cellular localization of monoamines in the area postrema of certain mammals. J Comp Neurol 125:337–353

    Article  PubMed  CAS  Google Scholar 

  • Garrido P, De Blas M, Ronzoni G, Cordero I, Anton M, Gine E, Santos A, Del Arco A, Segovia G, Mora F (2013) Differential effects of environmental enrichment and isolation housing on the hormonal and neurochemical responses to stress in the prefrontal cortex of the adult rat: relationship to working and emotional memories. J Neural Transm 120:829–843

    Article  PubMed  CAS  Google Scholar 

  • Garver DL, Sladek JR Jr (1975) Monoamine distribution in primate brain. I Catecholamine-containing perikarya in the brain stem of Macaca speciosa. J Comp Neurol 159:289–304

    Article  PubMed  CAS  Google Scholar 

  • German DC, Schlusselberg DS, Woodward DJ (1983) Three-dimensional computer reconstruction of midbrain dopaminergic neuronal populations: from mouse to man. J Neural Transm 57:243–254

    Article  PubMed  CAS  Google Scholar 

  • Gonon FG (1988) Nonlinear relationship between impulse flow and dopamine released by rat midbrain dopaminergic neurons as studied by in vivo electrochemistry. Neuroscience 24:19–28

    Article  PubMed  CAS  Google Scholar 

  • Grace AA, Onn SP (1989) Morphology and electrophysiological properties of immunocytochemically identified rat dopamine neurons recorded in vitro. J Neurosci 9:3463–3481

    PubMed  CAS  Google Scholar 

  • Graziane NM, Polter AM, Briand LA, Pierce RC, Kauer JA (2013) Kappa opioid receptors regulate stress-induced cocaine seeking and synaptic plasticity. Neuron 77:942–954

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Gresch PJ, Sved AF, Zigmond MJ, Finlay JM (1994) Stress-induced sensitization of dopamine and norepinephrine efflux in medial prefrontal cortex of the rat. J Neurochem 63:575–583

    Article  PubMed  CAS  Google Scholar 

  • Guarraci FA, Kapp BS (1999) An electrophysiological characterization of ventral tegmental area dopaminergic neurons during differential pavlovian fear conditioning in the awake rabbit. Behav Brain Res 99:169–179

    Article  PubMed  CAS  Google Scholar 

  • Hamamura T, Fibiger HC (1993) Enhanced stress-induced dopamine release in the prefrontal cortex of amphetamine-sensitized rats. Eur J Pharmacol 237:65–71

    Article  PubMed  CAS  Google Scholar 

  • Hnasko TS, Hjelmstad GO, Fields HL, Edwards RH (2012) Ventral tegmental area glutamate neurons: electrophysiological properties and projections. J Neurosci 32:15076–15085

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Holly EN, DeBold JF, Miczek KA (2015) Increased mesocorticolimbic dopamine during acute and repeated social defeat stress: modulation by corticotropin releasing factor receptors in the ventral tegmental area. Psychopharmacology (Berl) 232(24):4469–4479

  • Hubbard JE, Di Carlo V (1974) Fluorescence histochemistry of monoamine-containing cell bodies in the brain stem of the squirrel monkey (Saimiri sciureus). II. Catecholamine-containing groups. J Comp Neurol 153:369–384

    Article  PubMed  CAS  Google Scholar 

  • Ikemoto S (2002) Ventral striatal anatomy of locomotor activity induced by cocaine, D-amphetamine, dopamine and D1/D2 agonists. Neuroscience 113:939–955

    Article  PubMed  CAS  Google Scholar 

  • Ikemoto S (2007) Dopamine reward circuitry: two projection systems from the ventral midbrain to the nucleus accumbens-olfactory tubercle complex. Brain Res Rev 56:27–78

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Ikemoto S, Donahue KM (2005) A five-minute, but not a fifteen-minute, conditioning trial duration induces conditioned place preference for cocaine administration into the olfactory tubercle. Synapse 56:57–59

    Article  PubMed  CAS  Google Scholar 

  • Ikemoto S, Qin M, Liu ZH (2006) Primary reinforcing effects of nicotine are triggered from multiple regions both inside and outside the ventral tegmental area. J Neurosci 26:723–730

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Ikemoto S, Wise RA (2002) Rewarding effects of the cholinergic agents carbachol and neostigmine in the posterior ventral tegmental area. J Neurosci 22:9895–9904

    PubMed  CAS  Google Scholar 

  • Imperato A, Angelucci L, Casolini P, Zocchi A, Puglisi-Allegra S (1992) Repeated stressful experiences differently affect limbic dopamine release during and following stress. Brain Res 577:194–199

    Article  PubMed  CAS  Google Scholar 

  • Imperato A, Cabib S, Puglisi-Allegra S (1993) Repeated stressful experiences differently affect the time-dependent responses of the mesolimbic dopamine system to the stressor. Brain Res 601:333–336

    Article  PubMed  CAS  Google Scholar 

  • Imperato A, Puglisi-Allegra S, Casolini P, Angelucci L (1991) Changes in brain dopamine and acetylcholine release during and following stress are independent of the pituitary-adrenocortical axis. Brain Res 538:111–117

    Article  PubMed  CAS  Google Scholar 

  • Imperato A, Puglisi-Allegra S, Casolini P, Zocchi A, Angelucci L (1989) Stress-induced enhancement of dopamine and acetylcholine release in limbic structures: role of corticosterone. Eur J Pharmacol 165:337–338

    Article  PubMed  CAS  Google Scholar 

  • Imperato A, Puglisi-Allegra S, Zocchi A, Scrocco MG, Casolini P, Angelucci L (1990) Stress activation of limbic and cortical dopamine release is prevented by ICS 205–930 but not by diazepam. Eur J Pharmacol 175:211–214

    Article  PubMed  CAS  Google Scholar 

  • Inglis FM, Moghaddam B (1999) Dopaminergic innervation of the amygdala is highly responsive to stress. J Neurochem 72:1088–1094

    Article  PubMed  CAS  Google Scholar 

  • Jackson ME, Moghaddam B (2004) Stimulus-specific plasticity of prefrontal cortex dopamine neurotransmission. J Neurochem 88:1327–1334

    Article  PubMed  CAS  Google Scholar 

  • Jacobowitz DM, MacLean PD (1978) A brainstem atlas of catecholaminergic neurons and serotonergic perikarya in a pygmy primate (Cebuella pygmaea). J Comp Neurol 177:397–416

    Article  PubMed  CAS  Google Scholar 

  • Jedema HP, Grace AA (2003) Chronic exposure to cold stress alters electrophysiological properties of locus coeruleus neurons recorded in vitro. Neuropsychopharmacology 28:63–72

    Article  PubMed  Google Scholar 

  • Jezierski G, Zehle S, Bock J, Braun K, Gruss M (2007) Early stress and chronic methylphenidate cross-sensitize dopaminergic responses in the adolescent medial prefrontal cortex and nucleus accumbens. J Neurochem 103:2234–2244

    Article  PubMed  CAS  Google Scholar 

  • Johnson SW, North RA (1992) Opioids excite dopamine neurons by hyperpolarization of local interneurons. J Neurosci 12:483–488

    PubMed  CAS  Google Scholar 

  • Jones S, Kauer JA (1999) Amphetamine depresses excitatory synaptic transmission via serotonin receptors in the ventral tegmental area. J Neurosci 19:9780–9787

    PubMed  CAS  Google Scholar 

  • Jordan S, Kramer GL, Zukas PK, Petty F (1994) Previous stress increases in vivo biogenic amine response to swim stress. Neurochem Res 19:1521–1525

    Article  PubMed  CAS  Google Scholar 

  • Kalivas PW, Duffy P (1995) D1 receptors modulate glutamate transmission in the ventral tegmental area. J Neurosci 15:5379–5388

    PubMed  CAS  Google Scholar 

  • Kawahara Y, Kawahara H, Westerink BH (1999) Comparison of effects of hypotension and handling stress on the release of noradrenaline and dopamine in the locus coeruleus and medial prefrontal cortex of the rat. Naunyn Schmiedebergs Arch Pharmacol 360:42–49

    Article  PubMed  CAS  Google Scholar 

  • King D, Zigmond MJ, Finlay JM (1997) Effects of dopamine depletion in the medial prefrontal cortex on the stress-induced increase in extracellular dopamine in the nucleus accumbens core and shell. Neuroscience 77:141–153

    Article  PubMed  CAS  Google Scholar 

  • Kitai ST, Shepard PD, Callaway JC, Scroggs R (1999) Afferent modulation of dopamine neuron firing patterns. Curr Opin Neurobiol 9:690–697

    Article  PubMed  CAS  Google Scholar 

  • Klitenick MA, Taber MT, Fibiger HC (1996) Effects of chronic haloperidol on stress- and stimulation-induced increases in dopamine release: tests of the depolarization block hypothesis. Neuropsychopharmacology 15:424–428

    Article  PubMed  CAS  Google Scholar 

  • Koolhaas JM, Bartolomucci A, Buwalda B, de Boer SF, Flugge G, Korte SM, Meerlo P, Murison R, Olivier B, Palanza P, Richter-Levin G, Sgoifo A, Steimer T, Stiedl O, van Dijk G, Wohr M, Fuchs E (2011) Stress revisited: a critical evaluation of the stress concept. Neurosci Biobehav Rev 35:1291–1301

    Article  PubMed  CAS  Google Scholar 

  • Kramarcy NR, Delanoy RL, Dunn AJ (1984) Footshock treatment activates catecholamine synthesis in slices of mouse brain regions. Brain Res 290:311–319

    Article  PubMed  CAS  Google Scholar 

  • Krishnan V, Han MH, Graham DL, Berton O, Renthal W, Russo SJ, Laplant Q, Graham A, Lutter M, Lagace DC, Ghose S, Reister R, Tannous P, Green TA, Neve RL, Chakravarty S, Kumar A, Eisch AJ, Self DW, Lee FS, Tamminga CA, Cooper DC, Gershenfeld HK, Nestler EJ (2007) Molecular adaptations underlying susceptibility and resistance to social defeat in brain reward regions. Cell 131:391–404

    Article  PubMed  CAS  Google Scholar 

  • Lammel S, Hetzel A, Hackel O, Jones I, Liss B, Roeper J (2008) Unique properties of mesoprefrontal neurons within a dual mesocorticolimbic dopamine system. Neuron 57:760–773

    Article  PubMed  CAS  Google Scholar 

  • Lammel S, Ion DI, Roeper J, Malenka RC (2011) Projection-specific modulation of dopamine neuron synapses by aversive and rewarding stimuli. Neuron 70:855–862

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Lammel S, Lim BK, Malenka RC (2014) Reward and aversion in a heterogeneous midbrain dopamine system. Neuropharmacology 76 Pt B:351–359

    Article  PubMed  CAS  Google Scholar 

  • Lefranc G, L'Hermite A, Tusques J (1969) Demonstration of monoaminergic neurons in the eel brain by means of the fluorescence technic. Comptes rendus des seances de la Societe de biologie et de ses filiales 163:1193–1196

    PubMed  CAS  Google Scholar 

  • Lillrank SM, Lipska BK, Kolachana BS, Weinberger DR (1999) Attenuated extracellular dopamine levels after stress and amphetamine in the nucleus accumbens of rats with neonatal ventral hippocampal damage. J Neural Transm 106:183–196

    Article  PubMed  CAS  Google Scholar 

  • Lindvall O, Bjorklund A (1974) The organization of the ascending catecholamine neuron systems in the rat brain as revealed by the glyoxylic acid fluorescence method. Acta Physiol Scand Suppl 412:1–48

    PubMed  CAS  Google Scholar 

  • Malinow R, Malenka RC (2002) AMPA receptor trafficking and synaptic plasticity. Annu Rev Neurosci 25:103–126

    Article  PubMed  CAS  Google Scholar 

  • Mangiavacchi S, Masi F, Scheggi S, Leggio B, De Montis MG, Gambarana C (2001) Long-term behavioral and neurochemical effects of chronic stress exposure in rats. J Neurochem 79:1113–1121

    Article  PubMed  CAS  Google Scholar 

  • Mantz J, Thierry AM, Glowinski J (1989) Effect of noxious tail pinch on the discharge rate of mesocortical and mesolimbic dopamine neurons: selective activation of the mesocortical system. Brain Res 476:377–381

    Article  PubMed  CAS  Google Scholar 

  • Margolis EB, Lock H, Hjelmstad GO, Fields HL (2006) The ventral tegmental area revisited: is there an electrophysiological marker for dopaminergic neurons? J Physiol 577:907–924

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Margolis EB, Mitchell JM, Ishikawa J, Hjelmstad GO, Fields HL (2008) Midbrain dopamine neurons: projection target determines action potential duration and dopamine D(2) receptor inhibition. J Neurosci 28:8908–8913

    Article  PubMed  CAS  Google Scholar 

  • Marsteller DA, Gerasimov MR, Schiffer WK, Geiger JM, Barnett CR, Schaich Borg J, Scott S, Ceccarelli J, Volkow ND, Molina PE, Alexoff DL, Dewey SL (2002) Acute handling stress modulates methylphenidate-induced catecholamine overflow in the medial prefrontal cortex. Neuropsychopharmacology 27:163–170

    Article  PubMed  CAS  Google Scholar 

  • Mason JW (1971) A re-evaluation of the concept of "non-specificity" in stress theory. J Psychiatr Res 8:323–333

    Article  PubMed  CAS  Google Scholar 

  • Matuszewich L, Filon ME, Finn DA, Yamamoto BK (2002) Altered forebrain neurotransmitter responses to immobilization stress following 3,4-methylenedioxymethamphetamine. Neuroscience 110:41–48

    Article  PubMed  CAS  Google Scholar 

  • McEwen BS (1998) Stress, adaptation, and disease. Allostasis and allostatic load. Ann N Y Acad Sci 840:33–44

    Article  PubMed  CAS  Google Scholar 

  • Mendlin A, Martin FJ, Jacobs BL (1999) Dopaminergic input is required for increases in serotonin output produced by behavioral activation: an in vivo microdialysis study in rat forebrain. Neuroscience 93:897–905

    Article  PubMed  CAS  Google Scholar 

  • Merali Z, Lacosta S, Anisman H (1997) Effects of interleukin-1beta and mild stress on alterations of norepinephrine, dopamine and serotonin neurotransmission: a regional microdialysis study. Brain Res 761:225–235

    Article  PubMed  CAS  Google Scholar 

  • Miczek KA, Nikulina EM, Shimamoto A, Covington HE 3rd (2011) Escalated or suppressed cocaine reward, tegmental BDNF, and accumbal dopamine caused by episodic versus continuous social stress in rats. J Neurosci 31:9848–9857

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Mirenowicz J, Schultz W (1996) Preferential activation of midbrain dopamine neurons by appetitive rather than aversive stimuli. Nature 379:449–451

    Article  PubMed  CAS  Google Scholar 

  • Mokler DJ, Torres OI, Galler JR, Morgane PJ (2007) Stress-induced changes in extracellular dopamine and serotonin in the medial prefrontal cortex and dorsal hippocampus of prenatally malnourished rats. Brain Res 1148:226–233

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Moore H, Rose HJ, Grace AA (2001) Chronic cold stress reduces the spontaneous activity of ventral tegmental dopamine neurons. Neuropsychopharmacology 24:410–419

    Article  PubMed  CAS  Google Scholar 

  • Motzo C, Porceddu ML, Maira G, Flore G, Concas A, Dazzi L, Biggio G (1996) Inhibition of basal and stress-induced dopamine release in the cerebral cortex and nucleus accumbens of freely moving rats by the neurosteroid allopregnanolone. J Psychopharmacol 10:266–272

    Article  PubMed  CAS  Google Scholar 

  • Murphy EK, Sved AF, Finlay JM (2003) Corticotropin-releasing hormone receptor blockade fails to alter stress-evoked catecholamine release in prefrontal cortex of control or chronically stressed rats. Neuroscience 116:1081–1087

    Article  PubMed  CAS  Google Scholar 

  • Naef L, Gratton A, Walker CD (2013) Exposure to high fat during early development impairs adaptations in dopamine and neuroendocrine responses to repeated stress. Stress 16:540–548

    Article  PubMed  CAS  Google Scholar 

  • Nair-Roberts RG, Chatelain-Badie SD, Benson E, White-Cooper H, Bolam JP, Ungless MA (2008) Stereological estimates of dopaminergic, GABAergic and glutamatergic neurons in the ventral tegmental area, substantia nigra and retrorubral field in the rat. Neuroscience 152:1024–1031

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Navratilova E, Xie JY, Okun A, Qu C, Eyde N, Ci S, Ossipov MH, King T, Fields HL, Porreca F (2012) Pain relief produces negative reinforcement through activation of mesolimbic reward-valuation circuitry. Proc Natl Acad Sci U S A 109:20709–20713

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Niehaus JL, Murali M, Kauer JA (2010) Drugs of abuse and stress impair LTP at inhibitory synapses in the ventral tegmental area. Eur J Neurosci 32:108–117

    Article  PubMed  PubMed Central  Google Scholar 

  • Nobin A, Bjorklund A (1973) Topography of the monoamine neuron systems in the human brain as revealed in fetuses. Acta Physiol Scand Suppl 388:1–40

    PubMed  CAS  Google Scholar 

  • Oades RD, Halliday GM (1987) Ventral tegmental (A10) system: neurobiology. 1. Anatomy and connectivity. Brain Res 434:117–165

    Article  PubMed  CAS  Google Scholar 

  • Olson L, Nystrom B, Seiger A (1973) Monoamine fluorescence histochemistry of human post mortem brain. Brain Res 63:231–247

    Article  PubMed  CAS  Google Scholar 

  • Pacak K, Palkovits M (2001) Stressor specificity of central neuroendocrine responses: implications for stress-related disorders. Endocr Rev 22:502–548

    Article  PubMed  CAS  Google Scholar 

  • Page ME, Lucki I (2002) Effects of acute and chronic reboxetine treatment on stress-induced monoamine efflux in the rat frontal cortex. Neuropsychopharmacology 27:237–247

    Article  PubMed  CAS  Google Scholar 

  • Pare WP, Glavin GB (1986) Restraint stress in biomedical research: a review. Neurosci Biobehav Rev 10:339–370

    Article  PubMed  CAS  Google Scholar 

  • Pehek EA, Nocjar C, Roth BL, Byrd TA, Mabrouk OS (2006) Evidence for the preferential involvement of 5-HT2A serotonin receptors in stress- and drug-induced dopamine release in the rat medial prefrontal cortex. Neuropsychopharmacology 31:265–277

    Article  PubMed  CAS  Google Scholar 

  • Petty F, Jordan S, Kramer GL, Zukas PK, Wu J (1997) Benzodiazepine prevention of swim stress-induced sensitization of cortical biogenic amines: an in vivo microdialysis study. Neurochem Res 22:1101–1104

    Article  PubMed  CAS  Google Scholar 

  • Phillipson OT (1979a) Afferent projections to the ventral tegmental area of Tsai and interfascicular nucleus: a horseradish peroxidase study in the rat. J Comp Neurol 187:117–143

    Article  PubMed  CAS  Google Scholar 

  • Phillipson OT (1979b) The cytoarchitecture of the interfascicular nucleus and ventral tegmental area of Tsai in the rat. J Comp Neurol 187:85–98

    Article  PubMed  CAS  Google Scholar 

  • Phillipson OT (1979c) A Golgi study of the ventral tegmental area of Tsai and interfascicular nucleus in the rat. J Comp Neurol 187:99–115

    Article  PubMed  CAS  Google Scholar 

  • Pin C, Jones BE, Jouvet M (1968) [Neurons containing monoamines in cat brain stem. I. Topographic study by histofluorescence and histochemistry]. J Physiol 60(Suppl 2):519

    Google Scholar 

  • Poitras D, Parent A (1978) Atlas of the distribution of monoamine-containing nerve cell bodies in the brain stem of the cat. J Comp Neurol 179:699–717

    Article  PubMed  CAS  Google Scholar 

  • Polter AM, Kauer JA (2014) Stress and VTA synapses: implications for addiction and depression. Eur J Neurosci 39:1179–1188

    Article  PubMed  PubMed Central  Google Scholar 

  • Pozzi L, Acconcia S, Ceglia I, Invernizzi RW, Samanin R (2002) Stimulation of 5-hydroxytryptamine (5-HT(2C)) receptors in the ventrotegmental area inhibits stress-induced but not basal dopamine release in the rat prefrontal cortex. J Neurochem 82:93–100

    Article  PubMed  CAS  Google Scholar 

  • Puglisi-Allegra S, Imperato A, Angelucci L, Cabib S (1991) Acute stress induces time-dependent responses in dopamine mesolimbic system. Brain Res 554:217–222

    Article  PubMed  CAS  Google Scholar 

  • Razzoli M, Andreoli M, Michielin F, Quarta D, Sokal DM (2011) Increased phasic activity of VTA dopamine neurons in mice 3 weeks after repeated social defeat. Behav Brain Res 218:253–257

    Article  PubMed  CAS  Google Scholar 

  • Renoldi G, Invernizzi RW (2006) Blockade of tachykinin NK1 receptors attenuates stress-induced rise of extracellular noradrenaline and dopamine in the rat and gerbil medial prefrontal cortex. J Neurosci Res 84:961–968

    Article  PubMed  CAS  Google Scholar 

  • Rodd ZA, Bell RL, Kuc KA, Zhang Y, Murphy JM, McBride WJ (2005) Intracranial self-administration of cocaine within the posterior ventral tegmental area of Wistar rats: evidence for involvement of serotonin-3 receptors and dopamine neurons. J Pharmacol Exp Ther 313:134–145

    Article  PubMed  CAS  Google Scholar 

  • Rodd-Henricks ZA, McKinzie DL, Crile RS, Murphy JM, McBride WJ (2000) Regional heterogeneity for the intracranial self-administration of ethanol within the ventral tegmental area of female Wistar rats. Psychopharmacology (Berl) 149:217–224

    Article  CAS  Google Scholar 

  • Rodd-Henricks ZA, McKinzie DL, Li TK, Murphy JM, McBride WJ (2002) Cocaine is self-administered into the shell but not the core of the nucleus accumbens of Wistar rats. J Pharmacol Exp Ther 303:1216–1226

    Article  PubMed  CAS  Google Scholar 

  • Rouge-Pont F, Deroche V, Le Moal M, Piazza PV (1998) Individual differences in stress-induced dopamine release in the nucleus accumbens are influenced by corticosterone. Eur J Neurosci 10:3903–3907

    Article  PubMed  CAS  Google Scholar 

  • Rybkin II, Zhou Y, Volaufova J, Smagin GN, Ryan DH, Harris RB (1997) Effect of restraint stress on food intake and body weight is determined by time of day. Am J Physiol 273:R1612–R1622

    PubMed  CAS  Google Scholar 

  • Saal D, Dong Y, Bonci A, Malenka RC (2003) Drugs of abuse and stress trigger a common synaptic adaptation in dopamine neurons. Neuron 37:577–582

    Article  PubMed  CAS  Google Scholar 

  • Salamone JD, Correa M (2012) The mysterious motivational functions of mesolimbic dopamine. Neuron 76:470–485

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Saulskaya N, Marsden CA (1995) Conditioned dopamine release: dependence upon N-methyl-D-aspartate receptors. Neuroscience 67:57–63

    Article  PubMed  CAS  Google Scholar 

  • Schultz W (1997) Dopamine neurons and their role in reward mechanisms. Curr Opin Neurobiol 7:191–197

    Article  PubMed  CAS  Google Scholar 

  • Schultz W (1998) Predictive reward signal of dopamine neurons. J Neurophysiol 80:1–27

    PubMed  CAS  Google Scholar 

  • Schultz W, Romo R (1987) Responses of nigrostriatal dopamine neurons to high-intensity somatosensory stimulation in the anesthetized monkey. J Neurophysiol 57:201–217

    PubMed  CAS  Google Scholar 

  • Sellings LH, Clarke PB (2003) Segregation of amphetamine reward and locomotor stimulation between nucleus accumbens medial shell and core. J Neurosci 23:6295–6303

    PubMed  CAS  Google Scholar 

  • Sellings LH, McQuade LE, Clarke PB (2006) Evidence for multiple sites within rat ventral striatum mediating cocaine-conditioned place preference and locomotor activation. J Pharmacol Exp Ther 317:1178–1187

    Article  PubMed  CAS  Google Scholar 

  • Selye H (1936) A syndrome produced by diverse nocuous agents. Nature 138:32–32

    Article  Google Scholar 

  • Sesack SR, Grace AA (2010) Cortico-Basal Ganglia reward network: microcircuitry. Neuropsychopharmacology 35:27–47

    Article  PubMed  PubMed Central  Google Scholar 

  • Shaham Y, Erb S, Stewart J (2000) Stress-induced relapse to heroin and cocaine seeking in rats: a review. Brain Res Brain Res Rev 33:13–33

    Article  PubMed  CAS  Google Scholar 

  • Shimada S, Ishikawa M, Tanaka C (1976) Histochemical mapping of dopamine neurons and fiber pathways in dog mesencephalon. J Comp Neurol 168:533–543

    Article  PubMed  CAS  Google Scholar 

  • Shimamoto A, Debold JF, Holly EN, Miczek KA (2011) Blunted accumbal dopamine response to cocaine following chronic social stress in female rats: exploring a link between depression and drug abuse. Psychopharmacology (Berl) 218:271–279

    Article  CAS  Google Scholar 

  • Sinha R (2007) The role of stress in addiction relapse. Curr Psychiatry Rep 9:388–395

    Article  PubMed  Google Scholar 

  • Sinha R (2009) Modeling stress and drug craving in the laboratory: implications for addiction treatment development. Addict Biol 14:84–98

    Article  PubMed  PubMed Central  Google Scholar 

  • Sorg BA, Kalivas PW (1991) Effects of cocaine and footshock stress on extracellular dopamine levels in the ventral striatum. Brain Res 559:29–36

    Article  PubMed  CAS  Google Scholar 

  • Sorg BA, Kalivas PW (1993) Effects of cocaine and footshock stress on extracellular dopamine levels in the medial prefrontal cortex. Neuroscience 53:695–703

    Article  PubMed  CAS  Google Scholar 

  • Stuber GD, Hnasko TS, Britt JP, Edwards RH, Bonci A (2010) Dopaminergic terminals in the nucleus accumbens but not the dorsal striatum corelease glutamate. J Neurosci 30:8229–8233

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Swanson CJ, Perry KW, Schoepp DD (2004) The mGlu2/3 receptor agonist, LY354740, blocks immobilization-induced increases in noradrenaline and dopamine release in the rat medial prefrontal cortex. J Neurochem 88:194–202

    Article  PubMed  CAS  Google Scholar 

  • Swanson LW (1982) The projections of the ventral tegmental area and adjacent regions: a combined fluorescent retrograde tracer and immunofluorescence study in the rat. Brain Res Bull 9:321–353

    Article  PubMed  CAS  Google Scholar 

  • Taber E (1961) The cytoarchitecture of the brain stem of the cat. I. Brain stem nuclei of cat. J Comp Neurol 116:27–69

    Article  PubMed  CAS  Google Scholar 

  • Takahashi H, Takada Y, Nagai N, Urano T, Takada A (1998) Effects of nicotine and footshock stress on dopamine release in the striatum and nucleus accumbens. Brain Res Bull 45:157–162

    Article  PubMed  CAS  Google Scholar 

  • Takahata R, Moghaddam B (1998) Glutamatergic regulation of basal and stimulus-activated dopamine release in the prefrontal cortex. J Neurochem 71:1443–1449

    Article  PubMed  CAS  Google Scholar 

  • Tanaka C, Ishikawa M, Shimada S (1982) Histochemical mapping of catecholaminergic neurons and their ascending fiber pathways in the rhesus monkey brain. Brain Res Bull 9:255–270

    Article  PubMed  CAS  Google Scholar 

  • Tanimoto H, Heisenberg M, Gerber B (2004) Experimental psychology: event timing turns punishment to reward. Nature 430:983

    Article  PubMed  CAS  Google Scholar 

  • Thierry AM, Tassin JP, Blanc G, Glowinski J (1976) Selective activation of mesocortical DA system by stress. Nature 263:242–244

    Article  PubMed  CAS  Google Scholar 

  • Thorndike EL (1932) Columbia University. Teachers College. Institute of Psychological Research., Carnegie Corporation of New York, The fundamentals of learning. Teachers college, Columbia university, New York

    Google Scholar 

  • Tidey JW, Miczek KA (1996) Social defeat stress selectively alters mesocorticolimbic dopamine release: an in vivo microdialysis study. Brain Res 721:140–149

    Article  PubMed  CAS  Google Scholar 

  • Tidey JW, Miczek KA (1997) Acquisition of cocaine self-administration after social stress: role of accumbens dopamine. Psychopharmacology (Berl) 130:203–212

    Article  CAS  Google Scholar 

  • Tsai C (1925a) The descending tracts of teh thalamus and midbrain of the opossum, Didelphis virginiana. J Comp Neurol 39:217–248

    Article  Google Scholar 

  • Tsai C (1925b) The optic tract and centers of the opossum, Didelphis virginiana. J Comp Neurol 39:173–216

    Article  Google Scholar 

  • Ungless MA, Argilli E, Bonci A (2010) Effects of stress and aversion on dopamine neurons: implications for addiction. Neurosci Biobehav Rev 35:151–156

    Article  PubMed  CAS  Google Scholar 

  • Ungless MA, Grace AA (2012) Are you or aren't you? Challenges associated with physiologically identifying dopamine neurons. Trends Neurosci 35:422–430

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Ungless MA, Magill PJ, Bolam JP (2004) Uniform inhibition of dopamine neurons in the ventral tegmental area by aversive stimuli. Science 303:2040–2042

    Article  PubMed  CAS  Google Scholar 

  • Valenti O, Gill KM, Grace AA (2012) Different stressors produce excitation or inhibition of mesolimbic dopamine neuron activity: response alteration by stress pre-exposure. Eur J Neurosci 35:1312–1321

    Article  PubMed  PubMed Central  Google Scholar 

  • Venator DK, Lewis DA, Finlay JM (1999) Effects of partial dopamine loss in the medial prefrontal cortex on local baseline and stress-evoked extracellular dopamine concentrations. Neuroscience 93:497–505

    Article  PubMed  CAS  Google Scholar 

  • Ventura AL, de Mello FG, de Melo Reis RA (2013) Methods of dopamine research in retina cells. Methods Mol Biol 964:25–42

    Article  PubMed  CAS  Google Scholar 

  • Watabe-Uchida M, Zhu L, Ogawa SK, Vamanrao A, Uchida N (2012) Whole-brain mapping of direct inputs to midbrain dopamine neurons. Neuron 74:858–873

    Article  PubMed  CAS  Google Scholar 

  • Watt MJ, Roberts CL, Scholl JL, Meyer DL, Miiller LC, Barr JL, Novick AM, Renner KJ, Forster GL (2014) Decreased prefrontal cortex dopamine activity following adolescent social defeat in male rats: role of dopamine D2 receptors. Psychopharmacology (Berl) 231:1627–1636

    Article  CAS  Google Scholar 

  • Wedzony K, Mackowiak M, Fijal K, Golembiowska K (1996) Evidence that conditioned stress enhances outflow of dopamine in rat prefrontal cortex: a search for the influence of diazepam and 5-HT1A agonists. Synapse 24:240–247

    Article  PubMed  CAS  Google Scholar 

  • Wu WR, Li N, Sorg BA (2003) Prolonged effects of repeated cocaine on medial prefrontal cortex dopamine response to cocaine and a stressful predatory odor challenge in rats. Brain Res 991:232–239

    Article  PubMed  CAS  Google Scholar 

  • Wu YL, Yoshida M, Emoto H, Tanaka M (1999) Psychological stress selectively increases extracellular dopamine in the 'shell', but not in the 'core' of the rat nucleus accumbens: a novel dual-needle probe simultaneous microdialysis study. Neurosci Lett 275:69–72

    Article  PubMed  CAS  Google Scholar 

  • Yamanashi K, Miyamae T, Misu Y, Goshima Y (2001) Tonic function of nicotinic receptors in stress-induced release of L-DOPA from the nucleus accumbens in freely moving rats. Eur J Pharmacol 424:199–202

    Article  PubMed  CAS  Google Scholar 

  • Young AM (2004) Increased extracellular dopamine in nucleus accumbens in response to unconditioned and conditioned aversive stimuli: studies using 1 min microdialysis in rats. J Neurosci Methods 138:57–63

    Article  PubMed  CAS  Google Scholar 

  • Young AM, Joseph MH, Gray JA (1993) Latent inhibition of conditioned dopamine release in rat nucleus accumbens. Neuroscience 54:5–9

    Article  PubMed  CAS  Google Scholar 

  • Zangen A, Solinas M, Ikemoto S, Goldberg SR, Wise RA (2006) Two brain sites for cannabinoid reward. J Neurosci 26:4901–4907

    Article  PubMed  CAS  Google Scholar 

  • Zhang TA, Placzek AN, Dani JA (2010) In vitro identification and electrophysiological characterization of dopamine neurons in the ventral tegmental area. Neuropharmacology 59:431–436

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Zweifel LS, Fadok JP, Argilli E, Garelick MG, Jones GL, Dickerson TM, Allen JM, Mizumori SJ, Bonci A, Palmiter RD (2011) Activation of dopamine neurons is critical for aversive conditioning and prevention of generalized anxiety. Nat Neurosci 14:620–626

    Article  PubMed  CAS  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Elizabeth N. Holly.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Holly, E.N., Miczek, K.A. Ventral tegmental area dopamine revisited: effects of acute and repeated stress. Psychopharmacology 233, 163–186 (2016). https://doi.org/10.1007/s00213-015-4151-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00213-015-4151-3

Keywords

Navigation