Skip to main content
Log in

Analysis of cyanobacterial pigments and proteins by electrophoretic and chromatographic methods

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Cyanobacteria are a diverse and ubiquitous group of prokaryotes with several unifying features. Amongst these is the macromolecular structure known as the phycobilisome, which is composed of water-soluble phycobiliproteins covalently bound by linker peptides or proteins in a configuration designed to optimize energy transfer to the photosynthetic reaction center of the organism. Phycobiliproteins are highly fluorescent by virtue of their covalently bound, linear tetrapyrrole chromophores known as bilins. Analysis of these prosthetic pigments, along with other non-water soluble pigments, such as the chlorophylls and carotenoids, can provide insight into microbial diversity. The effects of environmental growth conditions and stresses can also be probed by measuring pigment and protein concentrations. This review will focus, therefore, on applications of various chromatographic and electrophoretic methods for the analysis of cyanobacterial pigment and protein constituents. Although the greatest emphasis will be placed on the measurement of bilins and phycobiliproteins, this review will also consider other pigments and proteins important to cyanobacterial growth and survival, such as chlorophyll a, carotenoids, ectoenzymes, linker and membrane proteins, and extracellular proteins.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

APC:

allophycocyanin

CE-LIF:

capillary electrophoresis–laser-induced fluorescence

Chaps:

3-[(3-cholamidopropyl)dimethyammonio]propanesulfonic acid

ESI-MS:

electrospray ionization–mass spectrometry

HPLC:

high-performance liquid chromatography

MALDI-TOF:

matrix-assisted laser desorption ionization–time of flight

PC:

phycocyanin

PE:

phycoerythrin

PEC:

phycoerythrocyanin

PS I, II:

Photosystem I, II

SDS-PAGE:

sodium dodecyl sulfate polyacrylamide gel electrophoresis

TFA:

trifluoroacetic acid

References

  1. Bryant DA (1994) The molecular biology of cyanobacteria. Kluwer Academic, Dordrecht

    Google Scholar 

  2. Rothschild LJ, Mancinelli RL (1990) Nature 345:710–712

    Google Scholar 

  3. Raven PH, Evert RF, Eichhorn SE (1992) Biology of plants. Worth Publishers, New York

    Google Scholar 

  4. Sournia A (1970) Ann Biol 9:63–76

    Google Scholar 

  5. Whitton BA (1973) In: Carr NG, Whitton BA (eds) The biology of blue-green algae. Blackwell, Oxford, pp 353–367

  6. Drews G, Weckesser J (1982) In: Carr NG, Whitton BA (eds) The biology of cyanobacteria. University of California Press, Berkeley, chap 13

  7. Jensen TE (1993) In: Berner T (ed) Ultrastructure of microalgae. CRC Press, Boca Raton, chap 1

  8. Stanier (Cohen-Bazire) G (1988) In: Packer L, Glazer AN (eds) Methods in enzymology, vol 167. Academic, San Diego, chap 14

  9. Glazer AN (1988) In: Packer L, Glazer AN (eds) Methods in enzymology, vol 167. Academic, San Diego, chap 32

  10. Reuter W, Nickel-Reuter C (1993) J Photochem Photobiol B Biol 18:51–66

    Google Scholar 

  11. Bogorad L (1975) Annu Rev Plant Physiol 26:369–401

    Google Scholar 

  12. Nomsawai P, Tandeau de Marsac N, Thomas JC, Tanticharoen M, Cheevadhanarak S (1999) Plant Cell Physiol 40:1194–1202

    Google Scholar 

  13. Bermejo Román R, Alvárez-Pez JM, Acién Fernández FG, Molina Grima E (2002) J Biotechnol 93:73–85 (and references contained therein)

    Google Scholar 

  14. Sinha RP, Lebert M, Kumar A, Kumar HD, Häder D-P (1995) Biochem Mol Biol Int 37:697–706

    Google Scholar 

  15. Glazer AN (1988) In: Packer L, Glazer AN (eds) Methods in enzymology, vol 167. Academic, San Diego, chap 31

  16. Cohen-Bazire G, Bryant DA (1982) In: Carr NG, Whitton BA (eds) The biology of cyanobacteria. University of California Press, Berkeley, chap 7

  17. Kronick MN (1986) J Immunol Methods 92:1–13

    Google Scholar 

  18. Riethman HC, Mawhinney TP, Sherman LA (1988) J Bacteriol 170:2433–2440

    Google Scholar 

  19. Fujiwara T (1961) J Biochem 49:361–367

    Google Scholar 

  20. Fairchild CD, Jones IK, Glazer AN (1991) J Bacteriol 173:2985–2992

    Google Scholar 

  21. Scanlan DJ, Carr NG (1988) In: Packer L, Glazer AN (eds) Methods in enzymology, vol 167. Academic, San Diego, chap 65

  22. Lemberg R, Legge JW (1949) Hematin compounds and bile pigments. Interscience, New York

    Google Scholar 

  23. Glazer AN (1999) In: Cohen Z (ed) Chemicals from microalgae. Taylor & Francis, Philadelphia, p 263

  24. Glazer AN (1994) J Appl Phycol 6:105–112

    Google Scholar 

  25. Ho KK, Krogmann DW (1982) In: Carr NG, Whitton BA (eds) The biology of cyanobacteria. University of California Press, Berkeley, chap 8

  26. Jeffrey SW, Mantoura RFC, Wright SW (eds) (1997) Phytoplankton pigments in oceanography, Monographs on oceanographic methodology. UNESCO

  27. Thornber JP, Markwell JP, Reinman S (1979) Photochem Photobiol 29:1205–1216

    Google Scholar 

  28. Rusckowski M, Zilinskas BA (1979) New chlorophyll-protein complexes from the cyanophyte, Nostoc sp. Abstracts of the 7th annual meeting of the American Society of Photobiology, Pacific Grove, CA, p179

  29. Carpenter EJ, O’Neil JM, Dawson R, Capone DG, Siddiqui PJ, Roenneberg T, Bergman B (1993) Mar Ecol Prog Ser 95:295–304

    Google Scholar 

  30. Nicholls BW (1973) In: Carr NG, Whitton BA (eds) The biology of blue-green algae. Blackwells, Oxford, pp 144–161

  31. Holm-Hansen O, Lorenzen CJ, Holmes RW, Strickland JDH (1965) J du Cons Intl Pour l’Expl de la Mer 30:3–15

    Google Scholar 

  32. Wright SW, Jeffrey SW, Mantoura RFC, Llewellyn CA, Bjornland T, Repeta D, Welschmeyer N (1991) Mar Ecol Prog Ser 77:183–196

    Google Scholar 

  33. Goericke R, Repeta DJ (1993) Mar Ecol Prog Ser 101:307–313

    Google Scholar 

  34. Van Heukelem L, Thomas CS (2001) J Chromatogr A 910:31–49

    Google Scholar 

  35. Albertsson P (2003) Photosynth Res 76:217–225

    Google Scholar 

  36. Svedberg T, Lewis NB (1928) J Am Chem Soc 50:525–536

    Google Scholar 

  37. Tiselius A (1930) The moving boundary method of studying the electrophoresis of proteins. Inaugural dissertation, Uppsala University, Uppsala

  38. Hjertén S (1958) Arkiv Kemi 13:151–152

    Google Scholar 

  39. Kursar TA, Alberte RS (1983) Plant Physiol 72:409–414

    Google Scholar 

  40. Alberte RS, Wood AM, Kursar TA, Guillard RRL (1984) Plant Physiol 75:732–739

    Google Scholar 

  41. Ong L, Glazer A (1991) J Biol Chem 266:9515–9527

    Google Scholar 

  42. Exton RJ, Houghton WM, Esaias W, Hayward LWD (1983) Limnol Oceanogr 28:1225–1231

    Google Scholar 

  43. Stewart DE, Farmer FH (1984) Limnol Oceanogr 29:392–397

    Google Scholar 

  44. Beer S, Eshel A (1985) Aust J Mar Fresh Res 36:785–792

    Google Scholar 

  45. Wyman M (1992) Limnol Oceanogr 37:1300–1306

    Google Scholar 

  46. MacColl R, Guard-Friar D (1983) Biochem 22:5568–5572

    Google Scholar 

  47. Rhiel E, Kunz J, Wehrmeyer W (1989) Bot Acta 102:46–53

    Google Scholar 

  48. Glazer AN, Hixson CS (1977) J Biol Chem 252:32–42

    Google Scholar 

  49. Swanson RV, Glazer AN (1990) Anal Biochem 188:295–299

    Google Scholar 

  50. Redlinger T, Gantt E (1981) Plant Physiol 68:1375–1379

    Google Scholar 

  51. Zolla L, Bianchetti M (2001) J Chromatogr A 912:269–279

    Google Scholar 

  52. Zolla L, Bianchetti M, Rinalducci S (2002) Eur J Biochem 269:1534–1542

    Google Scholar 

  53. Sun L, Wang S (2003) J Photochem Photobiol B Biol 72:45–53

    Google Scholar 

  54. MacColl R, Eisele LE, Menikh A (2003) Biopolymers 72:352–365

    Google Scholar 

  55. Viskari PJ, Kinkade CS, Colyer CL (2001) Electrophoresis 22:2327–2335

    Google Scholar 

  56. Viskari PJ, Colyer CL (2002) J Chromatogr A 972:269–276

    Google Scholar 

  57. Galland-Irmouli AV, Pons L, Luçon M, Villaume C, Mrabet NT, Guéant JL, Fleurence J (2000) J Chromatogr B 739:117–123

    Google Scholar 

  58. Pueyo JJ, Gómez-Moreno C (1991) Prep Biochem 21:191–204

    Google Scholar 

  59. Jung TM, Dailey MO (1989) J Immunol Methods 121:9–18

    Google Scholar 

  60. Campanella L, Crescentini G, Avino P, Angiello L (2000) Ann Chim 90:153–161

    Google Scholar 

  61. Viskari PJ, Colyer CL (2003) Anal Biochem 319:263–271

    Google Scholar 

  62. Federspiel NA, Scott L (1992) J Bacteriol 174:5994–5998

    Google Scholar 

  63. Glauser M, Sidler WA, Graham KW, Bryant DA, Frank G, Wehrli E, Zuber H (1992) FEBS Lett 297:19–23

    Google Scholar 

  64. Garnier F, Dubacq JP, Thomas JT (1994) Plant Physiol 106:747–754

    Google Scholar 

  65. Rusckowski M, Zilinskas BA (1982) Plant Physiol 70:1055–1059

    Google Scholar 

  66. Rümbeli R, Schirmer T, Bode W, Sidler W, Zuber H (1985) J Mol Biol 186:197–200

    Google Scholar 

  67. Huang F, Parmryd I, Nilsson F, Persson AL, Pakrasi HB, Andersson B, Norling B (2002) Mol Cell Proteom 1:956–966

    Google Scholar 

  68. Kaneko T, Sato S, Kotani H, Tanaka A, Asamizu E, Nakamura Y, Miyajima N, Hirosawa M, Sugiura M, Sasamoto S, Kimura T, Hosouchi T, Matsuno A, Muraki A, Nakazaki N, Naruo K, Okumura S, Shimpo S, Takeuchi C, Wada T, Watanabe A, Vamada M (1996) DNA Res 3:109–136

    CAS  PubMed  Google Scholar 

  69. Sazuka T, Yamaguchi M, Ohara O (1999) Electrophoresis 20:2160–2171

    Google Scholar 

  70. Rocap G, Larimer FW, Lamerdin J, Malfatti S, Chain P, Ahlgren NA, Arellano A, Coleman M, Hauser L, Hess WR, Johnson ZI, Land M, Lindell D, Post AF, Regala W, Shah M, Shaw SL, Steglich C, Sullivan MB, Ting CS, Tolonen A, Webb EA, Zinser ER, Chisholm SW (2003) Nature 424:1042–1047

    Google Scholar 

  71. Palenik B, Brahamsha B, Larimer FW, Land M, Hauser L, Chain P, Lamerdin J, Regala W, Allen EE, McCarren J, Paulsen I, Dufresne A, Partensky F, Webb EA, Waterbury J (2003) Nature 424:1037–1042

    Google Scholar 

  72. Full genome and identified gene products available at Oak Ridge National Laboratory, Computational Biology, http://genome.ornl.gov

  73. Hunsucker SW, Klage K, Slaughter SM, Potts M, Helm RF (2004) Biochem Biophys Res Commun 317:1121–1127

    Google Scholar 

  74. Mankiewicz J, Tarczynska M, Walter Z, Zalewski M (2003) Acta Biol Crac Ser Bot 45:9–20

    Google Scholar 

  75. Rao PVL, Gupta N, Bhaskar ASB, Jayaraj R (2002) J Environ Biol 23:215–224

    Google Scholar 

  76. Tyagi MB, Thakur JK, Singh DP, Kumar A, Prasuna EG, Kumar A (1999) J Microbiol Biotech 9:9–21

    Google Scholar 

  77. Meriluoto J (1997) Anal Chim Acta 352:277–298

    Article  CAS  Google Scholar 

  78. Pravda M, Kreuzer MP, Guilbault GG (2002) Anal Lett 35:1–15

    Google Scholar 

  79. Chrost RJ (1991) In: Chrost RJ (ed) Microbial enzymes in aquatic environments. Springer, Berlin Heidelberg New York, pp 29–59

  80. Gonzalez-Gil S, Keafer BA, Jovine RVM, Aguilera A, Lu SH, Anderson DM (1998) Mar Ecol Prog Ser 164:21–35

    Google Scholar 

  81. Berges JA, Falkowski PG (1996) J Phycol 32:566–574

    Google Scholar 

  82. Martinez J, Azam F (1993) Mar Ecol Prog Ser 92:89–97

    Google Scholar 

  83. Ammerman JW, Glover WB (2000) Mar Ecol Prog Ser 201:1–12 (and references contained therein)

    Google Scholar 

  84. Arrieta JM, Herndl GJ (2002) Limnol Oceanogr 47:594–599

    CAS  Google Scholar 

  85. Arrieta JM, Herndl GJ (2001) Appl Environ Microbiol 67:4896–4900

    Google Scholar 

  86. Borbely G, Suranyi G (1988) In: Packer L, Glazer AN (eds) Methods in enzymology, vol 167. Academic, San Diego, chap 69

  87. Hill DR, Hladun SL, Scherer S, Potts M (1994) J Biol Chem 269:7726–7734

    Google Scholar 

  88. National Research Council (1993) Applications of analytical chemistry to oceanic carbon cycle studies. National Academy Press, Washington, DC

Download references

Acknowledgements

The authors gratefully acknowledge support of this work by the National Science Foundation under Grant No. 0099050, and assistance provided by James Karlinsey in the collection of microchip CE data presented herein.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christa L. Colyer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Colyer, C.L., Kinkade, C.S., Viskari, P.J. et al. Analysis of cyanobacterial pigments and proteins by electrophoretic and chromatographic methods. Anal Bioanal Chem 382, 559–569 (2005). https://doi.org/10.1007/s00216-004-3020-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-004-3020-4

Keywords

Navigation