Skip to main content
Log in

Micro free-flow electrophoresis: theory and applications

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Free-flow electrophoresis (FFE) is a technique that performs an electrophoretic separation on a continuous stream of analyte as it flows through a planar flow channel. The electric field is applied perpendicularly to the flow to deflect analytes laterally according to their mobility as they flow through the separation channel. Miniaturization of FFE (μFFE) over the past 15 years has allowed analytical and preparative separation of small volume samples. Advances in chip design have improved separations by reducing interference from bubbles generated by electrolysis. Mechanisms of band broadening have been examined theoretically and experimentally to improve resolution in μFFE. Separations using various modes such as zone electrophoresis, isoelectric focusing, isotachophoresis, and field-step electrophoresis have been demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Dolnik V (2008) Electrophoresis 29:143–156

    Article  CAS  Google Scholar 

  2. Heller C (2001) Electrophoresis 22:629–643

    Article  CAS  Google Scholar 

  3. Kostal V, Arriaga E (2008) Electrophoresis 29:2578–2586

    Article  CAS  Google Scholar 

  4. Barrolier VJ, Watzke E, Gibian HZ (1958) Naturforschung 13B:754

    Google Scholar 

  5. Hannig K (1961) Z Anal Chem 181:244–254

    Article  CAS  Google Scholar 

  6. Roman MC, Brown PR (1994) Anal Chem 66:86–94

    Article  Google Scholar 

  7. Pruski Z, Kasicka V, Mudra P, Stepanek J, Smekal O, Hlavack J (1990) Electrophoresis 11:932–986

    Article  Google Scholar 

  8. Zeiller K, Loser R, Pascher G, Hannig K (1975) Hoppe-Syler’s Z Physiol Chem 356:1225–1244

    CAS  Google Scholar 

  9. Rodkey LS (1990) Appl Theor Electrophor 1:243–247

    CAS  Google Scholar 

  10. Kessler R, Manz H-J (1990) Electrophoresis 11:979–980

    Article  CAS  Google Scholar 

  11. Hoffstetter-Kuhn S, Wagner H (1990) Electrophoresis 11:451–456

    Article  CAS  Google Scholar 

  12. Nath S, Schutte H, Weber G, Hustedt H, Deckwer W-D (1990) Electrophoresis 11:937–941

    Article  CAS  Google Scholar 

  13. Knisley KA, Rodkey LS (1990) Electrophoresis 11:927–931

    Article  CAS  Google Scholar 

  14. Clifton MJ, Jouve N, de Balmann H, Sanchez V (1990) Electrophoresis 11:913–919

    Article  CAS  Google Scholar 

  15. Poggel M, Melin T (2001) Electrophoresis 22:1008–1015

    Article  CAS  Google Scholar 

  16. Krivankova L, Bocek P (1998) Electrophoresis 19:1064–1074

    Article  CAS  Google Scholar 

  17. Rhodes PH, Snyder RS (1986) Electrophoresis 7:113

    Article  CAS  Google Scholar 

  18. Hannig K, Wirth H, Meyer B-H, Zeiller K (1975) Hoppe-Seyler’s Z Physiol Chem 356:1209–1223

    CAS  Google Scholar 

  19. Dittrich PS, Tachikawa K, Manz A (2006) Anal Chem 78:3887–3907

    Article  CAS  Google Scholar 

  20. Manz A, Eijkel JCT (2001) Pure Appl Chem 73:1555–1561

    Article  CAS  Google Scholar 

  21. Raymond D, Manz A, Widmer HM (1994) Anal Chem 66:2858–2865

    Article  CAS  Google Scholar 

  22. Raymond D, Manz A, Widmer HM (1996) Anal Chem 68:2515–2522

    Article  CAS  Google Scholar 

  23. Kasicka V, Prusik Z, Pospisek J (1992) J Chromatogr. 608:13–22

    Article  CAS  Google Scholar 

  24. Kasicka V, Prusik Z, Sazelova P, Jiri J, Barth T (1998) J Chromatogr A 796:211–220

    Article  CAS  Google Scholar 

  25. Giddings JC (1991) Unified separation science. Wiley, New York

    Google Scholar 

  26. Janasek D, Schilling M, Manz A, Franzke J (2006) Lab Chip 6:710–713

    Article  CAS  Google Scholar 

  27. Kohlheyer D, Besselink GAJ, Schlautmann S, Schasfoort RBM (2006) Lab Chip 6:374–380

    Article  CAS  Google Scholar 

  28. Fonslow BR, Barocas VH, Bowser MT (2006) Anal Chem 78:5369–5374

    Article  CAS  Google Scholar 

  29. Fonslow BR, Bowser MT (2006) Anal Chem 78:8236–8244

    Article  CAS  Google Scholar 

  30. Van Deemter JJ, Zuiderweg FJ, Flinkenberg A (1956) Chem Eng Sci 5:271–289

    Article  Google Scholar 

  31. Shinohara E, Tajima N, Suzuki H, Funazaki J (2001) Anal Sci Suppl 17:i441

    Google Scholar 

  32. Fonslow BR, Bowser MT (2005) Anal Chem 77:5706–5710

    Article  CAS  Google Scholar 

  33. Janasek D, Schilling M, Franzke J, Manz A (2006) Anal Chem 78:3815–3819

    Article  CAS  Google Scholar 

  34. Zhang C-X, Manz A (2003) Anal Chem 75:5759–5766

    Article  CAS  Google Scholar 

  35. Albrecht JW, El-Ali J, Jensen KF (2007) Anal Chem 79:9364–9371

    Article  CAS  Google Scholar 

  36. Albrecht JW, Jensen KF (2006) Electrophoresis 27:4960–4969

    Article  CAS  Google Scholar 

  37. Xu Y, Zhang C-X, Janasek D, Manz A (2003) Lab Chip 3:224–227

    Article  CAS  Google Scholar 

  38. Mazereeuw M, de Best CM, Tjaden UR, Irth H, van der Greef J (2000) Anal Chem 72:3881–3886

    Article  CAS  Google Scholar 

  39. Macounova K, Cabrera CR, Holl MR, Yager P (2000) Anal Chem 72:3745–3751

    Article  CAS  Google Scholar 

  40. McDonald JC, Duffy DC, Anderson JR, Chiu DT, Wu H, Schueller OJA, Whitesides GM (2000) Electrophoresis 21:27–40

    Article  CAS  Google Scholar 

  41. Sia SWG (2003) Electrophoresis 24:3563–3576

    Article  CAS  Google Scholar 

  42. McCreedy T (2000) Trends Anal Chem 19:396–401

    Article  CAS  Google Scholar 

  43. Kohlheyer D, Eijkel JCT, Schlautmann S, van den Berg A, Schasfoort RBM (2008) Anal Chem 80:4111–4118

    Article  CAS  Google Scholar 

  44. Stone VN, Jaldock SJ, Croasdell LA, Dillon LA, Fielden PR, Goddard NJ, Thomas CLP, Brown BJT (2007) J Chromatogr A 1155:199–205

    Article  CAS  Google Scholar 

  45. deJesus DP, Blanes L, doLago CL (2006) Electrophoresis 27:4935–4942

    Article  Google Scholar 

  46. Lu H, Gaudet S, Schmidt MA, Jensen KF (2004) Anal Chem 76:5705–5712

    Article  CAS  Google Scholar 

  47. Macounova K, Cabrera CR, Yager P (2001) Anal Chem 73:1627–1633

    Article  CAS  Google Scholar 

  48. Kohlheyer D, Eijkel JCT, Schlautmann S, van den Berg A, Schasfoort RBM (2007) Anal Chem 79:8190–8198

    Article  CAS  Google Scholar 

  49. Fonslow BR, Bowser MT (2008) Anal Chem 80:3182–3189

    Article  CAS  Google Scholar 

  50. Turgeon RT, Bowser MT (2009) Electrophoresis (in press)

  51. Kobayashi H, Shimamura K, Akaida T, Sakano K, Tajima N, Funazaki J, Suzuki H, Shinohara E (2003) J Chromatogr A 990:169–178

    Article  CAS  Google Scholar 

  52. Hannig K, Wirth H, Schindler RK, Spiegel K (1977) Hoppe-Seyler’s Z Physiol Chem 358:753–763

    CAS  Google Scholar 

  53. Kohlheyer D, Eijkel JCT, van den Berg A, Schasfoort RBM (2008) Electrophoresis 29:977–993

    Article  CAS  Google Scholar 

  54. Song Y-A, Hsu S, Stevens AL, Han J (2006) Anal Chem 78:3528–3536

    Article  CAS  Google Scholar 

  55. Hoffstetter-Kuhn S, Kuhn R, Wagner H (1990) Electrophoresis 11:304–309

    Article  CAS  Google Scholar 

  56. Kasicka V, Prusik Z (1987) J Chromatogr A 390:27–37

    Article  CAS  Google Scholar 

  57. Huh YS, Park TJ, Yang K, Lee EZ, Hong YK, Lee SY, Kim DH, Hong WH (2008) Ultramicroscopy 108:1365–1370

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michael T. Bowser.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Turgeon, R.T., Bowser, M.T. Micro free-flow electrophoresis: theory and applications. Anal Bioanal Chem 394, 187–198 (2009). https://doi.org/10.1007/s00216-009-2656-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-009-2656-5

Keywords

Navigation