Skip to main content
Log in

Repetitive TMS of cerebellum interferes with millisecond time processing

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Time processing is important in several cognitive and motor functions, but it is still unclear how the human brain perceives time intervals of different durations. Processing of time in millisecond and second intervals may depend on different neural networks and there is now considerable evidence to suggest that these intervals are possibly measured by independent brain mechanisms. Using repetitive transcranial magnetic stimulation (rTMS), we determined that the cerebellum is essential in explicit temporal processing of millisecond time intervals. In the first experiment, subjects’ performance in a time reproduction task of short (400–600 ms) and long (1,600–2,400 ms) intervals, were evaluated immediately after application of inhibitory rTMS trains over the left and right lateral cerebellum (Cb) and the right dorsolateral prefrontal cortex (DLPFC). We found that rTMS over the lateral cerebellum impaired time perception in the short interval (millisecond range) only; for the second range intervals, impaired timing was found selectively for stimulation of the right DLPFC. In the second experiment, we observed that cerebellar involvement in millisecond time processing was evident when the time intervals were encoded but not when they were retrieved from memory. Our results are consistent with the hypothesis that the cerebellum can be considered as an internal timing system, deputed to assess millisecond time intervals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Buhusi CV, Meck WH (2005) What makes us tick? Functional and neural mechanisms of interval timing. Nat Rev Neurosci 6:755–765

    Article  PubMed  CAS  Google Scholar 

  • Chen R, Classen J, Gerloff C, Celnik P, Wassermann EM, Hallett M, Cohen LG (1997) Depression of motor cortex excitability by low-frequency transcranial magnetic stimulation. Neurology 48:1398–1403

    PubMed  CAS  Google Scholar 

  • Coull JT, Nobre AC (1998) Where and when to pay attention: the neural systems for directing attention to spatial locations and to time intervals as revealed by both PET and fMRI. J Neurosci 18:7426–7435

    PubMed  CAS  Google Scholar 

  • Daskalakis ZJ, Paradiso GO, Christensen BK, Fitzgerald PB, Gunraj C, Chen R (2004) Exploring the connectivity between the cerebellum and motor cortex in humans. J Physiol 557:689–700

    Article  PubMed  CAS  Google Scholar 

  • Gibbon J, Malapani C, Dale CL, Gallistel CR (1997) Toward a neurobiology of temporal cognition: advances and challenges. Curr Opin Neurobiol 7:170–184

    Article  PubMed  CAS  Google Scholar 

  • Harrington DL, Haaland K, Knight R (1998) Cortical networks underlying mechanism of time perception. J Neurosci 18:1085–1095

    PubMed  CAS  Google Scholar 

  • Harrington DL, Lee RR, Boyd LA, Rapcsak SZ, Knight RT (2004) Does the representation of time depend on the cerebellum? Effect of cerebellar stroke. Brain 127:561–574

    Article  PubMed  Google Scholar 

  • Hashimoto M, Ohtsuka K (1995) Transcranial magnetic stimulation over the posterior cerebellum during visually guided saccades in man. Brain 118:1185–1193

    Article  PubMed  Google Scholar 

  • Hinton SC, Meck WH (2004) Frontal–striatal circuitry activated by human peak-interval timing in the supra-seconds range. Brain Res Cogn Brain Res 21:171–182

    Article  PubMed  Google Scholar 

  • Ivry RB, Keele SW, Diener HC (1988) Dissociation of the lateral and medial cerebellum in movement timing and movement execution. Exp Brain Res 73:167–180

    Article  PubMed  CAS  Google Scholar 

  • Ivry RB, Spencer RM, Zelaznik HN, Diedrichsen J (2002) The cerebellum and event timing. Ann NY Acad Sci 978:302–317

    Article  PubMed  Google Scholar 

  • Ivry RB, Spencer RM (2004) The neural representation of time. Curr Opin Neurobiol 14:225–232

    Article  PubMed  CAS  Google Scholar 

  • Jueptner M, Rijntjes M, Weiller C, Faiss JH, Timmann D, Mueller SP, Diener HC (1995) Localization of a cerebellar timing process using PET. Neurology 45:1540–1545

    PubMed  CAS  Google Scholar 

  • Jones CR, Rosenkranz K, Rothwell JC, Jahanshahi M (2004) The right dorsolateral prefrontal cortex is essential in time reproduction: an investigation with repetitive transcranial magnetic stimulation. Exp Brain Res 158:366–372

    Article  PubMed  Google Scholar 

  • Koch G, Oliveri M, Carlesimo GA, Caltagirone C (2002) Selective deficit of time perception in a patient with right prefrontal cortex lesion. Neurology 59:1658–1659

    PubMed  Google Scholar 

  • Koch G, Oliveri M, Torriero S, Caltagirone C (2003) Underestimation of time perception after repetitive transcranial magnetic stimulation. Neurology 60:1844–1846

    PubMed  Google Scholar 

  • Koch G, Oliveri M, Brusa L, Stanzione P, Torriero S, Caltagirone C (2004) High frequency rTMS improves time perception in Parkinson’s disease. Neurology 63:2405–2406

    PubMed  CAS  Google Scholar 

  • Koekkoek SK, Hulscher HC, Dortland BR, Hensbroek RA, Elgersma Y, Ruigrok TJ, De Zeeuw CI (2003) Cerebellar LTD and learning-dependent timing of conditioned eyelid responses. Science 301:1736–1739

    Article  PubMed  CAS  Google Scholar 

  • Kotani S, Kawahara S, Kirino Y (2003) Purkinje cell activity during learning a new timing in classical eyeblink conditioning. Brain Res 994:193–202

    Article  PubMed  CAS  Google Scholar 

  • Lewis PA, Miall RC (2003a) Brain activation patterns during measurement of sub- and supra-second intervals. Neuropsychologia 41:1583–1592

    Article  CAS  Google Scholar 

  • Lewis PA, Miall RC (2003b) Distinct systems for automatic and cognitively controlled time measurement: evidence from neuroimaging. Curr Opin Neurobiol 13:250–255

    Article  CAS  Google Scholar 

  • Macar F, Coull J, Vidal F (2006) The supplementary motor area in motor and perceptual time processing: fMRI studies. Cogn Process 7:89–94

    Article  PubMed  Google Scholar 

  • Malapani C, Dubois B, Rancurel G, Gibbon J (1998) Cerebellar dysfunctions of temporal processing in the seconds range in humans. Neuroreport 9:3907–3912

    Article  PubMed  CAS  Google Scholar 

  • Mangels JA, Ivry RB, Shimizu N (1998) Dissociable contributions of the prefrontal and neocerebellar cortex to time perception. Brain Res Cogn Brain Res 7:15–39

    Article  PubMed  CAS  Google Scholar 

  • Meck WH, Benson AM (2002) Dissecting the brain’s internal clock: how frontal–striatal circuitry keeps time and shifts attention. Brain Cogn 48:195–211

    Article  PubMed  Google Scholar 

  • Mimura M, Kinsbourne M, O’Connor M (2000) Time estimation by patients with frontal lesions and by Korsakoff amnesics. J Int Neuropsychol Soc 6:517–528

    Article  PubMed  CAS  Google Scholar 

  • Mauk MD, Buonomano DV (2004) The neural basis of temporal processing. Annu Rev Neurosci 27:307–340

    Article  PubMed  CAS  Google Scholar 

  • Nagel M, Zangemeister WH (2003) The effect of transcranial magnetic stimulation over the cerebellum on the synkinesis of coordinated eye and head movements. J Neurol Sci 213:35–45

    Article  PubMed  CAS  Google Scholar 

  • Nenadic I, Gaser C, Volz HP, Rammsayer T, Hager F, Sauer H (2003) Processing of temporal information and the basal ganglia: new evidence from fMRI. Exp Brain Res 148:238–246

    PubMed  Google Scholar 

  • Nichelli P, Always D, Grafman J (1996) Perceptual timing in cerebellar degeneration. Neuropsychologia 34:863–871

    Article  PubMed  CAS  Google Scholar 

  • Oldfield RC (1971) The assessment and analisys of handedness: the Edinburg inventory. Neuropsychologia 9:97–113

    Article  PubMed  CAS  Google Scholar 

  • Oliveri M, Turriziani P, Carlesimo GA, Koch G, Tomaiuolo F, Panella M, Caltagirone C (2001) Parieto-frontal interactions in visual-object and visual-spatial working memory: evidence from transcranial magnetic stimulation. Cereb Cortex 11:606–618

    Article  PubMed  CAS  Google Scholar 

  • Oliveri M, Koch G, Torriero S, Caltagirone C (2005) Increased facilitation of the primary motor cortex following 1 Hz repetitive transcranial magnetic stimulation of the contralateral cerebellum in normal humans. Neurosci Lett 376:188–193

    Article  PubMed  CAS  Google Scholar 

  • Ohtsuka K, Enoki T (1998) Transcranial magnetic stimulation over the posterior cerebellum during smooth pursuit eye movements in man. Brain 121:429–435

    Article  PubMed  Google Scholar 

  • Pascual-Leone A, Hallett M (1994) Induction of errors in a delayed response task by repetitive transcranial magnetic stimulation of the dorsolateral prefrontal cortex. Neuroreport 20:2517–2520

    Article  Google Scholar 

  • Penhune VB, Zattore RJ, Evans AC (1998) Cerebellar contributions to motor timing: a PET study of auditory and visual rhythm reproduction. J Cogn Neurosci 10:752–765

    Article  PubMed  CAS  Google Scholar 

  • Pouthas V, Garnero L, Ferrandez AM, Renault B (2000) ERPs and PET analysis of time perception: spatial and temporal brain mapping during visual discrimination tasks. Hum Brain Mapp 10:49–60

    Article  PubMed  CAS  Google Scholar 

  • Rao SM, Mayer AR, Harrington DL (2001) The evolution of brain activation during temporal processing. Nat Neurosci 4:317–323

    Article  PubMed  CAS  Google Scholar 

  • Schubotz RI, Friederici AD, von Cramon DY (2000) Time perception and motor timing: a common cortical and subcortical basis revealed by fMRI. Neuroimage 11:1–12

    Article  PubMed  CAS  Google Scholar 

  • Smith A, Taylor E, Lidzba K, Rubia K (2003) A right hemispheric frontocerebellar network for time discrimination of several hundreds of milliseconds. Neuroimage 20:344–350

    Article  PubMed  Google Scholar 

  • Spencer RM, Zelaznik HN, Diedrichsen J, Ivry RB (2003) Disrupted timing of discontinuous but not continuous movements by cerebellar lesions. Science 300:1437–1439

    Article  PubMed  CAS  Google Scholar 

  • Staddon JE, Higa JJ (1999) Time and memory: towards a pacemaker-free theory of interval timing. J Exp Anal Behav 71:215–251

    Article  PubMed  CAS  Google Scholar 

  • Theoret H, Haque J, Pascual-Leone A (2001) Increased variability of paced finger tapping accuracy following repetitive magnetic stimulation of the cerebellum in humans. Neurosci Lett 306:29–32

    Article  PubMed  CAS  Google Scholar 

  • Torriero S, Oliveri M, Koch G, Caltagirone C, Petrosini L (2004) Interference of left and right cerebellar rTMS with procedural learning. J Cogn Neurosci 16:1605–1611

    Article  PubMed  Google Scholar 

  • Ugawa Y, Uesaka Y, Terao Y, Hanajima R, Kanazawa I (1995) Magnetic stimulation over the cerebellum in humans. Ann Neurol 37:703–713

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giacomo Koch.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koch, G., Oliveri, M., Torriero, S. et al. Repetitive TMS of cerebellum interferes with millisecond time processing. Exp Brain Res 179, 291–299 (2007). https://doi.org/10.1007/s00221-006-0791-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-006-0791-1

Keywords

Navigation