Skip to main content
Log in

Interaction between gaze and visual and proprioceptive position judgements

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

There is considerable evidence that targets for action are represented in a dynamic gaze-centered frame of reference, such that each gaze shift requires an internal updating of the target. Here, we investigated the effect of eye movements on the spatial representation of targets used for position judgements. Participants had their hand passively placed to a location, and then judged whether this location was left or right of a remembered visual or remembered proprioceptive target, while gaze direction was varied. Estimates of position of the remembered targets relative to the unseen position of the hand were assessed with an adaptive psychophysical procedure. These positional judgements significantly varied relative to gaze for both remembered visual and remembered proprioceptive targets. Our results suggest that relative target positions may also be represented in eye-centered coordinates. This implies similar spatial reference frames for action control and space perception when positions are coded relative to the hand.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Andersen RA, Essick GK, Siegel RM (1985) Encoding of spatial location by posterior parietal neurons. Science 230:456–458

    Article  CAS  PubMed  Google Scholar 

  • Arbib MA (1991) Interaction of multiple representations of space in the brain. In: Paillard J (ed) Brain and space. Oxford University Press, Oxford, pp 379–403

    Google Scholar 

  • Batista AP, Buneo CA, Snyder LH, Andersen RA (1999) Reach plans in eye-centered coordinates. Science 285:257–260

    Article  CAS  PubMed  Google Scholar 

  • Blangero A, Rossetti Y, Honore J, Pisella L (2005) Influence of gaze direction on pointing to unseen proprioceptive targets. Adv Cogn Psychol 1:9–16

    Article  Google Scholar 

  • Blangero A, Ota H, Revol P, Vindras P, Rode G, Boisson D, Vighetto A, Rossetti Y, Pisella L (2007) Optic ataxia is not only ‚optic’: impaured spatial integration of proprioceptive information. Neuroimage 36:T61–T68

    Article  PubMed  Google Scholar 

  • Blangero A, Ota H, Rossetti Y, Fujii T, Ohtake H, Tabuchi M, Vighetto A, Yamadori A, Vindras P, Pisella L (2010) Systematic retinotopic reaching error vectors in unilateral optic ataxia. Cortex 46:77–93

    Article  PubMed  Google Scholar 

  • Bock O (1986) Contribution of retinal versus extraretinal signals towards visual localization in goal-directed movements. Exp Brain Res 64:476–482

    Article  CAS  PubMed  Google Scholar 

  • Brotchie PR, Andersen RA, Snyder H, Goodman SJ (1995) Head position signals used by parietal neurons to encode locations of visual stimuli. Nature 375:232–235

    Article  CAS  PubMed  Google Scholar 

  • Buneo CA, Jarvis MR, Batista AP, Andersen RA (2002) Direct visuomotor transformations for reaching. Nature 416:632–636

    Article  CAS  PubMed  Google Scholar 

  • Chieffi A, Allport DS (1997) Independent coding of target distance and direction in visuo-spatial working memory. Psychol Res 60:244–250

    Article  CAS  PubMed  Google Scholar 

  • Chieffi S, Allport DA, Woodin M (1999) Hand-centered coding of target location in visuo-spatial working memory. Neuropsychol 37:495–502

    Article  CAS  Google Scholar 

  • Cohen YE, Andersen RA (2002) A common reference frame for movement plans in the posterior parietal cortex. Nat Rev Neurosci 3:553–562

    Article  CAS  PubMed  Google Scholar 

  • Colby CL, Duhamel JR, Goldberg ME (1995) Oculocentric spatial representation in parietal cortex. Cereb Cortex 5:470–481

    Article  CAS  PubMed  Google Scholar 

  • Culham JC, Valyear KF (2006) Human parietal cortex in action. Curr Opin Neurobiol 16:205–212

    Article  CAS  PubMed  Google Scholar 

  • Culham JC, Gallivan J, Cavina-Pratesi C, Quinlan DJ (2007) fMRI investigations of reaching and ego space in human superior parieto-occipital cortex. In: Klatzky RL, Behrmann M, MacWhinney B (eds) Embodiment, ego-space and action. Psychology Press, New York, pp 247–274

    Google Scholar 

  • Desmurget M, Vindras P, Greá H, Viviani P, Grafton ST (2000) Proprioception does not quickly drift during visual occlusion. Exp Brain Res 134:363–377

    Article  CAS  PubMed  Google Scholar 

  • Duhamel JR, Colby CL, Goldberg ME (1992) The updating of the representation of visual space in parietal cortex by intended eye movements. Science 255:90–92

    Article  CAS  PubMed  Google Scholar 

  • Eggert T, Ditterich J, Straube A (2001) Mislocalization of peripheral targets during fixation. Vis Res 41:343–352

    Article  CAS  PubMed  Google Scholar 

  • Fiehler K, Burke M, Engel A, Bien S, Rösler F (2008) Kinesthetic working memory and action control within the dorsal stream. Cereb Cortex 18:243–253

    Article  PubMed  Google Scholar 

  • Flanders M, Helms Tillery SI, Soechting JF (1992) Early stages in a sensorimotor transformation. Behav Brain Sci 15:309–362

    Google Scholar 

  • Goldberg ME, Bruce CJ (1990) Primate frontal eye fields. III. Maintenance of a spatially accurate saccade signal. J Neurophysiol 64:489–508

    CAS  PubMed  Google Scholar 

  • Goodale MA, Westwood DA, Milner AD (2004) Two distinct modes of control for object-directed action. Prog Brain Res 144:131–144

    Article  PubMed  Google Scholar 

  • Harrar V, Harris LR (2009) Eye position affects the perceived location of touch. Exp Brain Res 198:403–410

    Article  PubMed  Google Scholar 

  • Henriques DYP, Crawford JD (2002) Role of eye, head and shoulder geometry in the planning of accurate arm movements. J Neurophysiol 87:1677–1685

    CAS  PubMed  Google Scholar 

  • Henriques DYP, Klier EM, Smith MA, Lowy D, Crawford JD (1998) Gaze-centered remapping of remembered visual space in an open-loop pointing task. J Neurosci 18:1583–1594

    CAS  PubMed  Google Scholar 

  • Jackson SR, Newport R, Husain M, Fowlie JE, O’Donoghue M, Bajaj N (2009) There may be more to reaching than meets the eye: re-thinking optic ataxia. Neuropsychologia 47:1397–1408

    Article  PubMed  Google Scholar 

  • Kesten H (1958) Accelerated stochastic approximation. Ann Math Statist 29:41–59

    Article  Google Scholar 

  • Khan AZ, Pisella L, Vighetto A, Cotton F, Luaute J, Boisson D, Salemme R, Crawford JD, Rossetti Y (2005a) Optic ataxia errors depend on remapped, not viewed, target location. Nat Neurosci 8:418–420

    CAS  PubMed  Google Scholar 

  • Khan AZ, Pisella L, Rossetti Y, Vighetto A, Crawford JD (2005b) Impairment of gaze-centered updating of reach targets in bilateral parietal-occipital damaged patients. Cereb Cortex 15:1547–1560

    Article  PubMed  Google Scholar 

  • Klier EM, Angelaki DE (2008) Spatial updating and the maintenance of visual constancy. Neurosci 156:801–818

    Article  CAS  Google Scholar 

  • Koyama M, Hasegawa I, Osada T, Adachi Y, Nakahara K, Miyashita Y (2004) Functional magnetic resonance imaging of macaque monkeys performing visually guided saccade tasks: comparison of cortical eye fields with humans. Neuron 41:795–807

    Article  CAS  PubMed  Google Scholar 

  • Lewald J (1998) The effect of gaze eccentricity on perceived sound direction and its relation to visual localization. Hearing Res 115:206–216

    Article  CAS  Google Scholar 

  • Lewald J, Ehrenstein WH (1996a) Auditory-visual shift in localization depending on gaze direction. Neuroreport 7:1929–1932

    Article  CAS  PubMed  Google Scholar 

  • Lewald J, Ehrenstein WH (1996b) The effect of eye position on auditory lateralization. Exp Brain Res 108:473–485

    Article  CAS  PubMed  Google Scholar 

  • Mays LE, Sparkes DL (1980) Saccades are spatially, not retinocentrically, coded. Science 208:1163–1165

    Article  CAS  PubMed  Google Scholar 

  • McGuire LMM, Sabes PN (2009) Sensory transformations and the use of multiple reference frames for reach planning. Nat Neurosci 12:1056–1061

    Article  CAS  PubMed  Google Scholar 

  • Medendorp WP, Crawford JD (2002) Visuospatial updating of reaching targets in near and far space. Neuroreport 13:633–636

    Article  PubMed  Google Scholar 

  • Medendorp WP, Goltz HC, Vilis T (2003) Gaze-centered updating of visual space in human parietal cortex. J Neurosci 23:6209–6214

    CAS  PubMed  Google Scholar 

  • Medendorp WP, Goltz HC, Crawford JD, Vilis T (2005) Remapping the remembered target location for anti-saccades in human posterior parietal cortex. J Neurophysiol 94:734–740

    Article  PubMed  Google Scholar 

  • Merriam EP, Genovese CR, Colby CL (2003) Spatial updating in human parietal cortex. Neuron 39:361–373

    Article  CAS  PubMed  Google Scholar 

  • Oldfield RC (1971) The assessment and analysis of handedness: the Edinburgh inventory. Neuropsychol 9:97–113

    Article  CAS  Google Scholar 

  • Pellijeff A, Bonilha L, Morgan PS, McKenzie K, Jackson SR (2006) Parietal updating of limb posture: an event-related fMRI study. Neuropsychologia 44:2685–2690

    Article  PubMed  Google Scholar 

  • Pouget A, Ducom JC, Torri J, Bavelier D (2002) Multisensory spatial representations in eye-centered coordinates for reaching. Cognition 83:B1–B11

    Article  PubMed  Google Scholar 

  • Prado J, Clavagnier S, Otzenberger H, Scheiber C, Kennedy H, Perenin M-T (2005) Two cortical systems for reaching in central and peripheral vision. Neuron 48:849–858

    Article  CAS  PubMed  Google Scholar 

  • Reuschel J, Drewing K, Henriques DYP, Rösler F, Fiehler K (2010) Optimal integration of visual and proprioceptive movement information along angular trajectories. Exp Brain Res 201:853–862

    Article  PubMed  Google Scholar 

  • Robins H, Monro S (1951) A stochastic approximation method. Ann Math Statist 22:400–407

    Article  Google Scholar 

  • Sarlegna FR, Sainburg RL (2007) The effect of target modality on visual and proprioceptive contributions to the control of movement distance. Exp Brain Res 176:267–280

    Article  PubMed  Google Scholar 

  • Sereno MI, Pitzalis S, Martinez A (2001) Mapping of contralateral space in retinotopic coordinates by a parietal cortical area in humans. Science 294:1350–1354

    Article  CAS  PubMed  Google Scholar 

  • Soechting JF, Flanders M, Helms Tillery SI (1991) Transformation from head- to shoulder-centered representation of target direction in arm movements. J Cognit Neurosci 2:32–43

    Article  Google Scholar 

  • Sorrento GU, Henriques DYP (2008) Reference frame conversions for repeated arm movements. J Neurophysiol 99:2968–2984

    Article  PubMed  Google Scholar 

  • Thompson AA, Henriques DYP (2008) Updating visual memory across eye movements for ocular and arm motor control. J Neurophysiol 100:2507–2514

    Article  PubMed  Google Scholar 

  • Treutwein B (1995) Adaptive psychophysical procedures. Vision Res 35:2503–2522

    CAS  PubMed  Google Scholar 

  • Van Beers RJ, Sittig AC, Denier van der Gon JJ (1998) The precision of proprioceptive position sense. Exp Brain Res 122:367–377

    Article  PubMed  Google Scholar 

  • Van Pelt S, Medendorp WP (2007) Gaze-centered updating of remembered visual space during active whole body translations. J Neurophysiol 97:1209–1220

    Article  PubMed  Google Scholar 

  • Wolbers T, Hegarty M, Buchel C, Loomis JM (2008) Spatial updating: how the brain keeps track of changing object locations during observer motion. Nat Neurosci 11:1223–1230

    Article  CAS  PubMed  Google Scholar 

  • Jones S, Henriques DYP (submitted) Memory for proprioceptive and multisensory targets is coded relative to gaze

  • Zhang M, Barash S (2004) Persistent LIP activity in memory antisaccades: working memory for a sensorimotor transformation. J Neurophysiol 91:1424–1441

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

This research was supported by grant Fi 1567/2-2 from the German Research Foundation (DFG) assigned to Katja Fiehler and Frank Rösler, the DFG research unit FOR 560 ‘Perception and Action' and by the TransCoop-Program from the Alexander von Humboldt Foundation assigned to Katja Fiehler and Denise Y.P. Henriques. We thank Patricia Franke for her help in collecting and analyzing data, Oguz Balandi for programming the experiment and Johanna Reuschel for supporting the artwork.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katja Fiehler.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Fiehler, K., Rösler, F. & Henriques, D.Y.P. Interaction between gaze and visual and proprioceptive position judgements. Exp Brain Res 203, 485–498 (2010). https://doi.org/10.1007/s00221-010-2251-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-010-2251-1

Keywords

Navigation