Skip to main content
Log in

Vestibular control of the head: possible functions of the vestibulocollic reflex

  • REVIEW
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Here, we review the angular vestibulocollic reflex (VCR) focusing on its function during unexpected and voluntary head movements. Theoretically, the VCR could (1) stabilize the head in space during body movements and/or (2) dampen head oscillations that could occur as a result of the head’s underdamped mechanics. The reflex appears unaffected when the simplest, trisynaptic VCR pathways are severed. The VCR’s efficacy varies across species; in humans and monkeys, head stabilization is ineffective during low-frequency body movements in the yaw plan. While the appearance of head oscillations after the attenuation of semicircular canal function suggests a role in damping, this interpretation is complicated by defects in the vestibular input to other descending motor pathways such as gaze premotor circuits. Since the VCR should oppose head movements, it has been proposed that the reflex is suppressed during voluntary head motion. Consistent with this idea, vestibular-only (VO) neurons, which are possible vestibulocollic neurons, respond vigorously to passive, but not active, head rotations. Although VO neurons project to the spinal cord, their contribution to the VCR remains to be established. VCR cancelation during active head movements could be accomplished by an efference copy signal negating afferent activity related to active motion. Oscillations occurring during active motion could be eliminated by some combination of reflex actions and voluntary motor commands that take into account the head’s biomechanics. A direct demonstration of the status of the VCR during active head movements is required to clarify the function of the reflex.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  • Angelaki DE, Cullen KE (2008) Vestibular system: the many facets of a multimodal sense. Annu Rev Neurosci 31:125–150

    Article  PubMed  CAS  Google Scholar 

  • Baker J, Goldberg J, Peterson B, Schor R (1982) Oculomotor reflexes after semicircular canal plugging in cats. Brain Res 252:151–155

    Article  PubMed  CAS  Google Scholar 

  • Berthoz A, Anderson JH (1971) Frequency analysis of vestibular influence on extensor motoneurons. II. Relationship between neck and forelimb extensors. Brain Res 34:376–380

    Article  PubMed  CAS  Google Scholar 

  • Bilotto G, Goldberg J, Peterson BW, Wilson VJ (1982) Dynamic properties of vestibular reflexes in the decerebrate cat. Exp Brain Res 47:343–352

    Article  PubMed  CAS  Google Scholar 

  • Bizzi E (1981) Eye-head coordination. In: Brooks VB (ed) Handbook of physiology the nervous system section 1 volume 2 part 2. American Physiological Society, Bethesda, pp 1321–1336

    Google Scholar 

  • Boyle R (1993) Activity of medial vestibulospinal tract cells during rotation and ocular movement in the alert squirrel monkey. J Neurophysiol 70:2176–2180

    PubMed  CAS  Google Scholar 

  • Boyle R, Belton T, McCrea RA (1996) Responses of identified vestibulospinal neurons to voluntary eye and head movements in the squirrel monkey. Ann N Y Acad Sci 781:244–263

    Article  PubMed  CAS  Google Scholar 

  • Bronstein AM, Hood JD (1986) The cervico-ocular reflex in normal subjects and patients with absent vestibular function. Brain Res 373:399–408

    Article  PubMed  CAS  Google Scholar 

  • Carey JP, Della Santina CC (2005) Principles of applied vestibular physiology. In: Cummings CC (ed) Otolaryngology—head & neck surgery, vol 4, 4th edn. Elsevier Mosby, Philadelphia, pp 3115–3159

    Google Scholar 

  • Colebatch JG, Halmagyi GM, Skuse NF (1994) Myogenic potentials generated by a click-evoked vestibulocollic reflex. J Neurol Neurosurg Psychiatry 57:190–197

    Article  PubMed  CAS  Google Scholar 

  • Cullen KE, Minor LB (2002) Semicircular canal afferents similarly encode active and passive head-on-body rotations: implications for the role of vestibular efference. J Neurosci 22:RC226

    Google Scholar 

  • Cullen KE (2004) Sensory signals during active versus passive movement. Curr Opin Neurobiol 14:698–706

    Article  PubMed  CAS  Google Scholar 

  • Cullen KE, Huterer M, Braidwood DA, Sylvestre PA (2004) Time course of vestibuloocular reflex suppression during gaze shifts. J Neurophysiol 92:3408–3422

    Article  PubMed  Google Scholar 

  • Decety J (1996) Neural representations for action. Rev Neurosci 7:285–297

    PubMed  CAS  Google Scholar 

  • Dutia MB, Hunter MJ (1985) The sagittal vestibulocollic reflex and its interaction with neck proprioceptive afferents in the decerebrate cat. J Physiol 359:17–29

    PubMed  CAS  Google Scholar 

  • Ewald JR (1892) Physiologische Untersuchungen über das Endorgan des Nervus octavus. Wiesbaden, Bergmann

    Google Scholar 

  • Ezure K, Sasaki S (1978) Frequency-response analysis of vestibular-induced neck reflex in cat. I. Characteristics of neural ransmission from horizontal semicircular canal to neck motoneurons. J Neurophysiol 41:445–458

    PubMed  CAS  Google Scholar 

  • Ezure K, Sasaki S, Uchino Y, Wilson VJ (1978) Frequency-response analysis of vestibular-induced neck reflex in cat. II. Functional significance of cervical afferents and polysynaptic descending pathways. J Neurophysiol 41:459–471

    PubMed  CAS  Google Scholar 

  • Farrer C, Franck N, Paillard J, Jeannerod M (2003) The role of proprioception in action recognition. Conscious Cogn 12:609–619

    Article  PubMed  CAS  Google Scholar 

  • Flourens M (1824) Recherches expérimentales sur les propriétés du système nerveux dans les animaux vertébrés.. Paris

  • Freedman EG (2001) Interactions between eye and head control signals can account for movement kinematics. Biol Cybern 84:453–462

    Article  PubMed  CAS  Google Scholar 

  • Freedman EG (2008) Coordination of the eyes and head during visual orienting. Exp Brain Res 190:369–387

    Article  PubMed  Google Scholar 

  • Freedman EG, Sparks DL (2000) Coordination of the eyes and head: movement kinematics. Exp Brain Res 131:22–32

    Article  PubMed  CAS  Google Scholar 

  • Fukushima K, Ohashi T, Fukushima J (1994) Effects of chemical deactivation of the interstitial nucleus of Cajal on the vertical vestibulo-collic reflex induced by pitch rotation in alert cats. Neurosci Res 20:281–286

    Article  PubMed  CAS  Google Scholar 

  • Galiana HL, Guitton D (1992) Central organization and modeling of eye-head coordination during orienting gaze shifts. Ann N Y Acad Sci 656:452–471

    Google Scholar 

  • Gdowski GT, McCrea RA (1999) Integration of vestibular and head movement signals in the vestibular nuclei during whole-body rotation. J Neurophysiol 82:436–449

    PubMed  CAS  Google Scholar 

  • Ghez C, Martin JH (1982) The control of rapid limb movement in the cat. III. Agonist—antagonist coupling. Exp Brain Res 45:115–125

    Article  PubMed  CAS  Google Scholar 

  • Gioanni H (1988) Stabilizing gaze reflexes in the pigeon (Columba livia). I. Horizontal and vertical optokinetic eye (OKN) and head (OCR) reflexes. Exp Brain Res 69:567–582

    Article  PubMed  CAS  Google Scholar 

  • Goldberg JM, Fernandez C (1975) Responses of peripheral vestibular neurons to angular and linear accelerations in the squirrel monkey. Acta Otolaryngol 80:101–110

    Article  PubMed  CAS  Google Scholar 

  • Goldberg J, Peterson BW (1986) Reflex and mechanical contributions to head stabilization in alert cats. J Neurophysiol 1986 56:857–875

    Google Scholar 

  • Graf W, de Waele C, Vidal PP (1995a) Functional anatomy of the head-neck movement system of quadrupedal and bipedal mammals. J Anat 186(1):55–74

    PubMed  Google Scholar 

  • Graf W, de Waele C, Vidal PP, Wang DH, Evinger C (1995b) The orientation of the cervical vertebral column in unrestrained awake animals. II. Movement strategies. Brain Behav Evol 45:209–231

    Article  PubMed  CAS  Google Scholar 

  • Grantyn A, Berthoz A (1987) Reticulo-spinal neurons participating in the control of synergic eye and head movements during orienting in the cat. I. Behavioral properties. Exp Brain Res 66:339–354

    Article  PubMed  CAS  Google Scholar 

  • Grantyn A, Ong-Meang Jacques V, Berthoz A (1987) Reticulo-spinal neurons participating in the control of synergic eye and head movements during orienting in the cat. II. Morphological properties as revealed by intra-axonal injections of horseradish peroxidase. Exp Brain Res 66:355–377

    Article  PubMed  CAS  Google Scholar 

  • Guitton D (1992) Control of eye-head coordination during orienting gaze shifts. Trends Neurosci 15:174–179

    Google Scholar 

  • Guitton D, Volle M (1987) Gaze control in humans: eye-head coordination during orienting movements to targets within and beyond the oculomotor range. J Neurophysiol 58:427–459

    PubMed  CAS  Google Scholar 

  • Guitton D, Kearney RE, Wereley N, Peterson BW (1986) Visual, vestibular and voluntary contributions to human head stabilization. Exp Brain Res 64:59–69

    Article  PubMed  CAS  Google Scholar 

  • Guitton D, Bergeron A, Choi WY, Matsuo S (2003) On the feedback control of orienting gaze shifts made with eye and head movements. Prog Brain Res 142:55–68

    Article  PubMed  Google Scholar 

  • Hallett M, Shahani BT, Young RR (1975) EMG analysis of stereotyped voluntary movements in man. J Neurol Neurosurg Psychiatry 38:1154–1162

    Article  PubMed  CAS  Google Scholar 

  • Hannaford B, Won SK, Lee SH, Stark L (1986) Neurological control of head movements: inverse modeling and electromyography. Math Biosci 78:159–178

    Article  Google Scholar 

  • Harada Y, Taniguchi M, Namatame H, Iida A (2001) Magnetic materials in otoliths of bird and fish lagena and their function. Acta Otolaryngol 121:590–595

    Article  PubMed  CAS  Google Scholar 

  • Highstein SM, Ito M, Tsuchiya T (1971) Synaptic linkage in the vestibulo-ocular reflex pathway of rabbit. Exp Brain Res 113:306–326

    PubMed  CAS  Google Scholar 

  • Horak FB, MacPherson JM (1996) Postural orientation and equilibrium. In: Rowell LB, Shepherd JT (eds) Handbook of physiology. Section 12. Exercise, regulation and integration of multiple systems. Oxford University Press, New York, pp 255–292

    Google Scholar 

  • Huterer M, Cullen KE (2002) Vestibuloocular reflex dynamics during high-frequency and high-acceleration rotations of the head on body in rhesus monkey. J Neurophysiol 88:13–28

    PubMed  Google Scholar 

  • Ito M, Nisimaru N, Yamamoto M (1976a) Pathways for the vestibulo-ocular reflex excitation arising from semicircular canals of rabbits. Exp Brain Res 24:257–271

    PubMed  CAS  Google Scholar 

  • Ito M, Nisimaru N, Yamamoto M (1976b) Postsynaptic inhibition of oculomotor neurons involved in vestibulo-ocular reflexes arising from semicircular canals of rabbits. Exp Brain Res 24:273–283

    PubMed  CAS  Google Scholar 

  • Ito Y, Corna S, von Brevern M, Bronstein A, Gresty M (1997) The functional effectiveness of neck muscle reflexes for head-righting in response to sudden fall. Exp Brain Res 117(2):266–272

    Article  PubMed  CAS  Google Scholar 

  • Jex HR, Magdaleno RE (1978) Biomechanical models for vibration feedthrough to hands and head for a semisupine pilot. Aviat Space Environ Med 49:304–316

    PubMed  CAS  Google Scholar 

  • Kawato M (1999) Internal models for motor control and trajectory planning. Curr Opin Neurobiol 9:718–727

    Article  PubMed  CAS  Google Scholar 

  • Keshner EA (2000) Modulating active stiffness affects head stabilizing strategies in young and elderly adults during trunk rotations in the vertical plane. Gait Posture 11:1–11

    Article  PubMed  CAS  Google Scholar 

  • Keshner EA, Peterson BW (1995) Mechanisms controlling human head stabilization. I. Head-neck characteristics during random rotations in the horizontal plane. J Neurophysiol 73:2293–2301

    PubMed  CAS  Google Scholar 

  • Keshner EA, Cromwell RL, Peterson BW (1995) Mechanisms controlling human head stabilization. II. Head-neck characteristics during random rotations in the vertical plane. J Neurophysiol 73:2302–2312

    PubMed  CAS  Google Scholar 

  • Kitama T, Grantyn A, Berthoz A (1995) Orienting-related eye-neck neurons of the medial ponto-bulbar reticular formation do not participate in horizontal canal-dependent vestibular reflexes of alert cats. Brain Res Bull 38:337–347

    Article  PubMed  CAS  Google Scholar 

  • Korte GE (1979) The brainstem projection of the vestibular nerve in the cat. J Comp Neurol 184:279–292

    Article  PubMed  CAS  Google Scholar 

  • Laurutis VP, Robinson DA (1986) The vestibulo-ocular reflex during human saccadic eye movements. J Physiol 373:209–233

    PubMed  CAS  Google Scholar 

  • Leigh RJ, Zee DS (2006) Eye-head movements. In the neurology of eye movements. Oxford, New York, pp 315–342

    Google Scholar 

  • Lorente de Nó R (1933) Vestibulo-ocular reflex arc. Arch Neurol Psychiat 30:245–291

    Google Scholar 

  • McCrea RA, Gdowski GT, Boyle R, Belton T (1999) Firing behavior of vestibular neurons during active and passive head movements: vestibulo-spinal and other non-eye-movement related neurons. J Neurophysiol 82:416–428

    PubMed  CAS  Google Scholar 

  • McGill SM, Jones K, Bennett G, Bishop PJ (1994) Passive stiffness of the human neck in flexion, extension, and lateral bending. Clin Biomech 9:193–198

    Article  Google Scholar 

  • Melvill Jones G (2000) Chapter 41: Posture. In: Kandel ER, Schwartz JH, Jessell TM (eds) Principles of neural science, 4th edn. McGraw-Hill: New York, p 816–831

  • Money KE, Correia KE (1972) The vestibular system of the owl. Comp Biochem Physiol 42A:353–358

    Article  Google Scholar 

  • Money KE, Scott JW (1962) Functions of separate sensory receptors of nonauditory labyrinth of the cat. Am J Physiol 202:1211–1220

    PubMed  CAS  Google Scholar 

  • Moore ST, Hirasaki E, Cohen B, Raphan T (1999) Effect of viewing distance on the generation of vertical eye movements during locomotion. Exp Brain Res 129:347–361

    Article  PubMed  CAS  Google Scholar 

  • Moser EI, Kropff E, Moser MB (2008) Place cells, grid cells, and the brain’s spatial representation system. Annu Rev Neurosci 31:69–89

    Article  PubMed  CAS  Google Scholar 

  • Paige GD (1983) Vestibuloocular reflex and its interactions with visual following mechanisms in the squirrel monkey. II. Response characteristics and plasticity following unilateral inactivation of horizontal canal. J Neurophysiol 49:152–168

    PubMed  CAS  Google Scholar 

  • Peng GC, Hain TC, Peterson BW (1996) A dynamical model for reflex activated head movements in the horizontal plane. Biol Cybern 75:309–319

    Article  PubMed  CAS  Google Scholar 

  • Peng GC, Hain TC, Peterson BW (1999) Predicting vestibular, proprioceptive, and biomechanical control strategies in normal and pathological head movements. IEEE Trans Biomed Eng 46:1269–1280

    Article  PubMed  CAS  Google Scholar 

  • Peng GC, Minor LB, Zee DS (2004) Coupled asymmetries of the vestibulo-ocular (VOR) and vestibulocollic (VCR) reflexes in patients with unilateral vestibular loss (UVL). Soc Neurosci Abstr 23:1294

    Google Scholar 

  • Perlmutter SI, Iwamoto Y, Barke LF, Baker JF, Peterson BW (1998) Relation between axon morphology in C1 spinal cord and spatial properties of medial vestibulospinal tract neurons in the cat. J Neurophysiol 79:285–303

    PubMed  CAS  Google Scholar 

  • Peterson BW, Boyle R (2004) Vestibulocollic reflexes. In: Highstein SM, Fay RR, Popper AN (eds) The vestibular system. Springer, New York, pp 343–374

    Chapter  Google Scholar 

  • Peterson BW, Fukushima K, Hirai N, Schor RH, Wilson VJ (1980) Responses of vestibulospinal and reticulospinal neurons to sinusoidal vestibular stimulation. J Neurophysiol 43:1236–1250

    PubMed  CAS  Google Scholar 

  • Peterson BW, Choi H, Hain T, Keshner E, Peng GC (2001) Dynamic and kinematic strategies for head movement control. Ann N Y Acad Sci 942:381–393

    Article  PubMed  CAS  Google Scholar 

  • Pozzo T, Berthoz A, Lefort L (1990) Head stabilization during various locomotor tasks in humans. I. Normal subjects. Exp Brain Res 82:97–106

    Article  PubMed  CAS  Google Scholar 

  • Pozzo T, Berthoz A, Lefort L, Vitte E (1991) Head stabilization during various locomotor tasks in humans. II. Patients with bilateral peripheral vestibular deficits. Exp Brain Res 85:208–217

    Article  PubMed  CAS  Google Scholar 

  • Rabbitt RD, Boyle R, Highstein SM (1999) Influence of surgical plugging on horizontal semicircular canal mechanics and afferent response dynamics. J Neurophysiol 82:1033–1053

    PubMed  CAS  Google Scholar 

  • Reynolds JS, Gdowski GT (2008) Head movements produced during whole body rotations and their sensitivity to changes in head inertia in squirrel monkeys. J Neurophysiol 95:2369–2382

    Article  Google Scholar 

  • Robinson DA (1982) The use of matrices in analyzing the three-dimensional behavior of the vestibulo-ocular reflex. Biol Cybern 46:53–66

    Article  PubMed  CAS  Google Scholar 

  • Robinson FR, Phillips JO, Fuchs AF (1994) Coordination of gaze shifts in primates: brainstem inputs to neck and extraocular motoneuron pools. J Comp Neurol 346:43–62

    Article  PubMed  CAS  Google Scholar 

  • Roy JE, Cullen KE (2001) Selective processing of vestibular reafference during self-generated head motion. J Neurosci 21:2131–2142

    PubMed  CAS  Google Scholar 

  • Roy JE, Cullen KE (2004) Dissociating self-generated from passively applied head motion: neural mechanisms in the vestibular nuclei. J Neurosci 24:2102–2111

    Article  PubMed  CAS  Google Scholar 

  • Sadeghi SG, Goldberg JM, Minor LB, Cullen KE (2009) Effects of canal plugging on the vestibuloocular reflex and vestibular nerve discharge during passive and active head rotations. J Neurophysiol 102:2693–2703

    Article  PubMed  Google Scholar 

  • Sadeghi SG, Minor LB, Cullen KE. (in press) Multimodal integration after unilateral labyrinthine lesion: single vestibular nuclei neuron responses and implications for postural compensation. J Neurophysiol. (Epub. 2010 Dec 8)

  • Schor RH (1974) Responses of cat vestibular neurons to sinusoidal roll tilt. Exp Brain Res 20:347–362

    Article  PubMed  CAS  Google Scholar 

  • Scott SH, Norman KE (2003) Computational approaches to motor control and their potential role for interpreting motor dysfunction. Curr Opin Neurol 16:693–698

    Google Scholar 

  • Shinoda Y, Ohgaki T, Sugiuchi Y, Futami T (1992) Morphology of single medial vestibulospinal tract axons in the upper cervical spinal cord of the cat. J Comp Neurol 316:151–172

    Article  PubMed  CAS  Google Scholar 

  • Shinoda Y, Sugiuchi Y, Izawa Y, Hata Y (2006) Long descending motor tract axons and their control of neck and axial muscles. Prog Brain Res 151:527–563

    Article  PubMed  Google Scholar 

  • Shupert CL, Horak FB (1996) Effects of vestibular loss on head stabilization in response to head and body perturbations. J Vestib Res 6:423–437

    Article  PubMed  CAS  Google Scholar 

  • Sparks DL (2002) The brainstem control of saccadic eye movements. Nat Rev Neurosci 3:952–964

    Article  PubMed  CAS  Google Scholar 

  • Sugiuchi Y, Kakei S, Izawa Y, Shinoda Y (2004) Functional synergies among neck muscles revealed by branching patterns of single long descending motor-tract axons. Prog Brain Res 143:411–421

    Article  PubMed  Google Scholar 

  • Suzuki JI, Cohen B (1964) Head, eye, body and limb movements from semicircular canal nerves. Exp Neurol 10:393–405

    Article  PubMed  CAS  Google Scholar 

  • Sylvestre PA, Cullen KE (2006) Premotor correlates of integrated feedback control for eye-head gaze shifts. J Neurosci 26:4922–4929

    Article  PubMed  CAS  Google Scholar 

  • Szentagothai J (1950) The elementary vestibulo-ocular reflex arc. J Neurophysiol 395–407

  • Tabak S, Smeets JB, Collewijn H (1996) Modulation of the human vestibuloocular reflex during saccades: probing by high-frequency oscillation and torque pulses of the head. J Neurophysiol 76:3249–3263

    PubMed  CAS  Google Scholar 

  • Taube JS (2007) The head direction signal: origins and sensory-motor integration. Annu Rev Neurosci 30:181–207

    Article  PubMed  CAS  Google Scholar 

  • Terzuolo CA, Soechting JF, Viviani P (1973) Studies on the control of some simple motor tasks. I. Relations between parameters of movements and EMG activities. Brain Res 58:212–216

    Article  PubMed  CAS  Google Scholar 

  • Thomson DB, Ikegami H, Wilson VJ (1995) Effect of MLF transection on the vertical vestibulocollic reflex in decerebrate cats. J Neurophysiol 74:1815–1818

    PubMed  CAS  Google Scholar 

  • Tomko DL, Peterka RJ, Schor RH, O’Leary DP (1981) Response dynamics of horizontal canal afferents in barbiturate-anesthetized cats. J Neurophysiol 45:376–396

    PubMed  CAS  Google Scholar 

  • Tomlinson RD, Bahra PS (1986) Combined eye-head gaze shifts in the primate. II. Interactions between saccades and the vestibuloocular reflex. J Neurophysiol 56:1558–1570

    PubMed  CAS  Google Scholar 

  • Uchino YSM, Sato H, Bai R, Kawamoto E (2005) Otolith and canal integration on single vestibular neurons in cats. Brain Res 271–285

  • von Holst E, Mittelstaedt H (1950) Das reafferenzprinzip. Naturwissenschaften 37:464–476

    Article  Google Scholar 

  • Welgampola MS, Colebatch JG (2005) Characteristics and clinical applications of vestibular-evoked myogenic potentials. Neurology 64:1682–1688

    Article  PubMed  Google Scholar 

  • Wilson VJ, Maeda M (1974) Connections between semicircular canals and neck motoneurons in the cat. J Neurophysiol 37:346–357

    PubMed  CAS  Google Scholar 

  • Wilson VJ, Schor RH (1999) The neural substrate of the vestibulocollic reflex. What needs to be learned. Exp Brain Res 129:483–493

    Article  PubMed  CAS  Google Scholar 

  • Wilson VJ, Yoshida M (1969) Monosynaptic inhibition of neck motoneurons by the medial vestibular nucleus. Brain Res 11:365–380

    Google Scholar 

  • Winklhofer M, Kirschvink JL (2010) A quantitative assessment of torque-transducer models for magnetoreception. J R Soc Interface 7(2):S273–S289

    Google Scholar 

  • Winters JM, Stark L (1985) Analysis of fundamental human movement patterns through the use of in-depth antagonistic muscle models. IEEE Trans Biomed Eng 32:826–839

    Article  PubMed  CAS  Google Scholar 

  • Wolpert DM, Ghahramani Z, Jordan MI (1995) Are arm trajectories planned in kinematic or dynamic coordinates? An adaptation study. Exp Brain Res 103:460–470

    Article  PubMed  CAS  Google Scholar 

  • Zangemeister WH, Stark L (1981) Active head rotations and eye-head coordination. Ann N Y Acad Sci 374:540–559

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jay M. Goldberg.

Appendix

Appendix

The model depicted in Fig. 6 includes the following transfer functions, expressed in terms of the Laplace operator, s (Peng et al. 1996).

$$ {\text{Vestibulocollic}}:\quad {\text{VCR}} = {\frac{{K_{\text{VCR}} \left( {\tau_{1A} s + 1} \right)\left( {\tau_{{{\text{CNS}}1}} s + 1} \right)}}{{\left( {\tau_{C} s + 1} \right)\left( {\tau_{{{\text{CNS}}2}} s + 1} \right)}}} $$
(3)
$$ {\text{Cervicocollic}}:\quad {\text{CCR}} = {\frac{{K_{\text{CCR}} \left( {\tau_{{{\text{MS}}1}} s + 1} \right)\left( {\tau_{{{\text{MS}}2}} s + 1} \right)}}{{s^{2} }}} $$
(4)
$$ {\text{Plant}}:\quad P = {\frac{{s^{2} }}{{Is^{2} + Bs + K}}} $$
(5)
$$ {\text{Torque}}\;{\text{converter}}:\quad T = {\frac{{K_{TC} }}{{\tau_{TC} + 1}}} $$
(6)

The s 2 operator in Eq. 5, which is equivalent in the time domain to taking a second derivative, converts the position variables (Ψ, Θ and VOL) to acceleration variables.

Parameters: I = 0.0148 kg m2, B = 0.1 N m s/rad, K = 2.077 N m/rad, K VCR = 30, K tc  = 1, τ tc  = 0.1 s, τ 1A  = 0.1 s, τ C  = 7 s, τ CNS1 = 0.4 s, τ CNS2 = 20 s, K CCR = 0.1, τ MS1 = 0.1 s, τ MS2 = 0.1 s. Mechanical properties of the head: I, moment of inertia; B, viscosity; K, elasticity. K VCR, K CCR, and K TC , gains of VCR, CCR, and T.

Calculations in Figs. 8 and 9 were based on the following transfer function:

$$ {\frac{\theta (s)}{\psi (s)}} = {\frac{{ - I - {\text{VCR}}(s) \cdot T(s)}}{{{\frac{1}{P(s)}} + T(s)\left[ {{\text{VCR}}(s) + {\text{CCR}}(s)} \right]}}} $$
(7)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Goldberg, J.M., Cullen, K.E. Vestibular control of the head: possible functions of the vestibulocollic reflex. Exp Brain Res 210, 331–345 (2011). https://doi.org/10.1007/s00221-011-2611-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-011-2611-5

Keywords

Navigation