Skip to main content
Log in

The effect of experimental pain on motor training performance and sensorimotor integration

  • Research Article
  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Abstract

Experimental pain is known to affect neuroplasticity of the motor cortex as well as motor performance, but less is known about neuroplasticity of somatosensory processing in the presence of pain. Early somatosensory evoked potentials (SEPs) provide a mechanism for investigating alterations in sensory processing and sensorimotor integration (SMI). The overall aim of this study was to investigate the interactive effects of acute pain, motor training, and sensorimotor processing. Two groups of twelve participants (N = 24) were randomly assigned to either an intervention (capsaicin cream) or placebo (inert lotion) group. SEP amplitudes were collected by stimulation of the median nerve at baseline, post-application and post-motor training. Participants performed a motor sequence task while reaction time and accuracy data were recorded. The amplitude of the P22-N24 complex was significantly increased following motor training for both groups F(2,23) = 3.533, p < 0.05, while Friedman’s test for the P22-N30 complex showed a significant increase in the intervention group [χ 2 (df = 2, p = 0.016) = 8.2], with no significant change in the placebo group. Following motor training, reaction time was significantly decreased for both groups F(1,23) = 59.575, p < 0.01 and overall accuracy differed by group [χ 2 (df = 3, p < 0.001) = 19.86], with post hoc testing indicating that the intervention group improved in accuracy following motor training [χ 2 (df = 1, p = 0.001) = 11.77] while the placebo group had worse accuracy [χ 2 (df = 1, p = 0.006) = 7.67]. The improved performance in the presence of capsaicin provides support for the enhancement of knowledge acquisition with the presence of nontarget stimuli. In addition, the increase in SEP peak amplitudes suggests that early SEP changes are markers of SMI changes accompanying motor training and acute pain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Apps R, Garwicz M (2005) Anatomical and physiological foundations of cerebellar information processing. Nat Rev Neurosci 6(4):297–311

    Article  CAS  PubMed  Google Scholar 

  • Boudreau S, Romaniello A, Wang K, Svensson P, Sessle BJ, Arendt-Nielsen L (2007) The effects of intra-oral pain on motor cortex neuroplasticity associated with short-term novel tongue-protrusion training in humans. Pain 132(1–2):169

    Article  PubMed  Google Scholar 

  • Cebolla A, Palmero-Soler E, Dan B, Cheron G (2011) Frontal phasic and oscillatory generators of the N30 somatosensory evoked potential. NeuroImage 54(2):1297–1306

    Article  CAS  PubMed  Google Scholar 

  • Cheron G, Borenstein S (1987) Specific gating of the early somatosensory evoked potentials during active movement. Electroencephalogr Clin Neurophysiol 67(6):537–548

    Article  CAS  PubMed  Google Scholar 

  • Cheron G, Borenstein S (1991) Gating of the early components of the frontal and parietal somatosensory evoked potentials in different sensory-motor interference modalities. Electroencephalogr Clini Neurophysiol 80(6):522–530

    Article  CAS  Google Scholar 

  • Conner JM, Culberson A, Packowski C, Chiba AA, Tuszynski MH (2003) Lesions of the basal forebrain cholinergic system impair task acquisition and abolish cortical plasticity associated with motor skill learning. Neuron 38(5):819–829

    Article  CAS  PubMed  Google Scholar 

  • Cruccu G, Aminoff M, Curio G, Guerit J, Kakigi R, Mauguiere F, Rossini P, Treede R, Garcia-Larrea L (2008) Recommendations for the clinical use of somatosensory-evoked potentials. Clin Neurophysiol 119(8):1705–1719

    Article  CAS  PubMed  Google Scholar 

  • Dolphin NW, Crue BL Jr (1989) Pain: clinical manual for nursing practice. Clin J Pain 5(4):363

    Article  Google Scholar 

  • Dostrovsky JO, Guilbaud G (1990) Nociceptive responses in medial thalamus of the normal and arthritic rat. Pain 40(1):93–104

    Article  CAS  PubMed  Google Scholar 

  • Doyon J, Ungerleider LG (2002) Functional anatomy of motor skill learning. In: Squire L, Schacter D (eds) Neuropsychology of memory, 3rd edn. Guilford Press, New York, pp 225–238

  • Ferguson A, Crown E, Grau J (2006) Nociceptive plasticity inhibits adaptive learning in the spinal cord. Neuroscience 141(1):421–431

    Article  CAS  PubMed  Google Scholar 

  • Flor H (2003) Cortical reorganisation and chronic pain: implications for rehabilitation. J Rehabil Med 41:66–72

    Article  PubMed  Google Scholar 

  • Friston K, Frith C, Passingham R, Liddle P, Frackowiak R (1992) Motor practice and neurophysiological adaptation in the cerebellum: a positron tomography study. Biol Sci 248(1323):223–228

    Article  CAS  Google Scholar 

  • Fujii M, Yamada T, Aihara M, Kokubun Y, Noguchi Y, Matsubara M, Malcolm H (1994) The effects of stimulus rates upon median, ulnar and radial nerve somatosensory evoked potentials. Electroencephalogr Clin Neurophysiol 92(6):518–526

    Article  CAS  PubMed  Google Scholar 

  • Gao JH, Parsons LM, Bower JM, Xiong J, Li J, Fox PT (1996) Cerebellum implicated in sensory acquisition and discrimination rather than motor control. Science 272(5261):545–547

  • Grafton ST, Mazziotta JC, Presty S, Friston KJ, Frackowiak R, Phelps ME (1992) Functional anatomy of human procedural learning determined with regional cerebral blood flow and PET. J Neurosci 12(7):2542–2548

    CAS  PubMed  Google Scholar 

  • Haavik H, Murphy B (2013) Selective changes in cerebellar-cortical processing following motor training. Exp Brain Res 231(4):397–403

    Article  CAS  PubMed  Google Scholar 

  • Haavik Taylor H, Murphy B (2007) Altered cortical integration of dual somatosensory input following the cessation of a 20 min period of repetitive muscle activity. Exp Brain Res 178(4):488–498

    Article  PubMed  Google Scholar 

  • Haavik Taylor H, Murphy B (2010) Altered central integration of dual somatosensory input after cervical spine manipulation. J Manip Physiol Ther 33(3):178–188

    Article  Google Scholar 

  • Hazeltine E, Grafton ST, Ivry R (1997) Attention and stimulus characteristics determine the locus of motor-sequence encoding: A PET study. Brain 120(1):123–140

    Article  PubMed  Google Scholar 

  • Hluštík P, Solodkin A, Noll DC, Small SL (2004) Cortical plasticity during three-week motor skill learning. J Clin Neurophysiol 21(3):180–191

    Article  PubMed  Google Scholar 

  • Hodges PW, Moseley GL (2003) Pain and motor control of the lumbopelvic region: effect and possible mechanisms. J Electromyogr Kinesiol 13(4):361–370

    Article  PubMed  Google Scholar 

  • Hook MA, Huie JR, Grau JW (2008) Peripheral inflammation undermines the plasticity of the isolated spinal cord. Behav Neurosci 122(1):233

    Article  PubMed Central  PubMed  Google Scholar 

  • Iadarola MJ, Berman KF, Zeffiro TA, Byas-Smith MG, Gracely RH, Max MB, Bennett GJ (1998) Neural activation during acute capsaicin-evoked pain and allodynia assessed with PET. Brain 121(5):931–947

    Article  PubMed  Google Scholar 

  • Jenkins I, Brooks D, Nixon P, Frackowiak R, Passingham R (1994) Motor sequence learning: a study with positron emission tomography. J Neurosci 14(6):3775–3790

    CAS  PubMed  Google Scholar 

  • Jueptner M, Weiller C (1998) A review of differences between basal ganglia and cerebellar control of movements as revealed by functional imaging studies. Brain 121(8):1437–1449

    Article  PubMed  Google Scholar 

  • Kanovsky P, Bares M, Rektor I (2003) The selective gating of the N30 cortical component of the somatosensory evoked potentials of median nerve is different in the mesial and dorsolateral frontal cortex: evidence from intracerebral recordings. Clin Neurophysiol 114(6):981–991

    Article  PubMed  Google Scholar 

  • Karni A, Meyer G, Rey-Hipolito C, Jezzard P, Adams MM, Turner R, Ungerleider LG (1998) The acquisition of skilled motor performance: fast and slow experience-driven changes in primary motor cortex. Proc Natl Acad Sci 95(3):861–868

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Kelso JS (1992) Theoretical concepts and strategies for understanding perceptual-motor skill: from information capacity in closed systems to self-organization in open, nonequilibrium systems. J Exp Psychol Gen 121(3):260

    Article  CAS  PubMed  Google Scholar 

  • Knecht S, Sörös P, Gürtler S, Imai T, Ringelstein E, Henningsen H (1998) Phantom sensations following acute pain. Pain 77(2):209–213

    Article  CAS  PubMed  Google Scholar 

  • Koeneke S, Lutz K, Herwig U, Ziemann U, Jäncke L (2006) Extensive training of elementary finger tapping movements changes the pattern of motor cortex excitability. Exp Brain Res 174(2):199–209

    Article  CAS  PubMed  Google Scholar 

  • Maihöfner C, Handwerker HO, Neundörfer B, Birklein F (2003) Patterns of cortical reorganization in complex regional pain syndrome. Neurology 61(12):1707–1715

    Article  PubMed  Google Scholar 

  • Maihöfner C, Jesberger F, Seifert F, Kaltenhäuser M (2010) Cortical processing of mechanical hyperalgesia: a MEG study. Eur J Pain 14(1):64–70

    Article  PubMed  Google Scholar 

  • Manto M, Bastian AJ (2007) Cerebellum and the deciphering of motor coding. Cerebellum 6:3–6

    Article  Google Scholar 

  • Mauguiere F (1999) Somatosensory evoked potentials: normal responses, abnormal waveforms and clinical applications in neurological diseases. In: Niedermeyer E (ed) Electroencephalography: basic principles, clinical applications, and related fields. Williams and Wilkins, Baltimore

    Google Scholar 

  • Mauguiere F, Allison T, Babiloni C, Buchner H, Eisen A, Goodin D, Jones S, Kakigi R, Matsuoka S, Nuwer M (1999) Somatosensory evoked potentials. The International Federation of Clinical Neurophysiology. Electroencephalogr Clin Neurophysiol 52:79–90

    CAS  Google Scholar 

  • McGaughy J, Dalley J, Morrison C, Everitt B, Robbins T (2002) Selective behavioral and neurochemical effects of cholinergic lesions produced by intrabasalis infusions of 192 IgG-saporin on attentional performance in a five-choice serial reaction time task. J Neurosci 22(5):1905–1913

    CAS  PubMed  Google Scholar 

  • Molinari M, Leggio M, Thaut M (2007) The cerebellum and neural networks for rhythmic sensorimotor synchronization in the human brain. Cerebellum 6(1):18–23

    Article  PubMed  Google Scholar 

  • Molinari M, Restuccia D, Leggio MG (2009) State estimation, response prediction, and cerebellar sensory processing for behavioral control. Cerebellum 8(3):399–402

    Article  PubMed  Google Scholar 

  • Murphy B, Taylor H, Wilson S, Oliphant G, Mathers K (2003) Rapid reversible changes to multiple levels of the human somatosensory system following the cessation of repetitive contractions: a somatosensory evoked potential study. Clin Neurophysiol 114(8):1531–1537

    Article  CAS  PubMed  Google Scholar 

  • Neugebauer V, Li W (2003) Differential sensitization of amygdala neurons to afferent inputs in a model of arthritic pain. J Neurophysiol 89(2):716–727

    Article  PubMed  Google Scholar 

  • Nissen MJ, Knopman DS, Schacter DL (1987) Neurochemical dissociation of memory systems. Neurology 37(5):789

    Article  CAS  PubMed  Google Scholar 

  • Nuwer MR, Aminoff M, Desmedt J, Eisen AA, Goodin D, Matsuoka S, Mauguière F, Shibasaki H, Sutherling W, Vibert JF (1994) IFCN recommended standards for short latency somatosensory evoked potentials. Report of an IFCN committee. International Federation of Clinical Neurophysiology. Electroencephalogr Clin Neurophysiol 91(1):6

    Article  CAS  PubMed  Google Scholar 

  • Pascual-Leone A, Torres F (1993) Plasticity of the sensorimotor cortex representation of the reading finger in Braille readers. Brain 116:39–52

    Article  PubMed  Google Scholar 

  • Pascual-Leone A, Nguyet D, Cohen LG, Brasil-Neto JP, Cammarota A, Hallett M (1995) Modulation of muscle responses evoked by transcranial magnetic stimulation during the acquisition of new fine motor skills. J Neurophysiol 74(3):1037–1045

    CAS  PubMed  Google Scholar 

  • Passmore SR, Bosse J, Murphy B, Lee TD (2014) The impact and specificity of nerve pertubation on novel vibrotactile sensory letter learning. Somatosens Mot Res (in press)

  • Rosenkranz K, Rothwell JC (2004) The effect of sensory input and attention on the sensorimotor organization of the hand area of the human motor cortex. J Physiol 561(1):307–320

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Rossi S, della Volpe R, Ginanneschi F, Ulivelli M, Bartalini S, Spidalieri R, Rossi A (2003) Early somatosensory processing during tonic muscle path in humans: relation to loss of proprioception and motor ‘defensive’ strategies. Clin Neurophysiol 114(7):1351–1358

    Article  PubMed  Google Scholar 

  • Rottmann S, Jung K, Ellrich J (2008) Electrical low-frequency stimulation induces homotopic long-term depression of nociception and pain from hand in man. Clin Neurophysiol 119(8):1895–1904

    Article  PubMed  Google Scholar 

  • Schweinhardt P, Lee M, Tracey I (2006) Imaging pain in patients: is it meaningful? Curr Opin Neurol 19(4):392–400

    Article  PubMed  Google Scholar 

  • Shiri R, Viikari-Juntura E, Varonen H, Heliövaara M (2006) Prevalence and determinants of lateral and medial epicondylitis: a population study. Am J Epidemiol 164(11):1065–1074

    Article  PubMed  Google Scholar 

  • Sonoo M, Sakuta M, Shimpo T, Genba K, Mannen T (1991) Widespread N18 in median nerve SEP is preserved in a pontine lesion. Electroencephalogr Clin Neurophysiol 80(3):238–240

    Article  CAS  PubMed  Google Scholar 

  • Sörös P, Knecht S, Bantel C, Imai T, Wüsten R, Pantev C, Lütkenhöner B, Bürkle H, Henningsen H (2001) Functional reorganization of the human primary somatosensory cortex after acute pain demonstrated by magnetoencephalography. Neurosci Lett 298(3):195–198

    Article  PubMed  Google Scholar 

  • Stefan K, Wycislo M, Classen J (2004) Modulation of associative human motor cortical plasticity by attention. J Neurophysiol 92(1):66–72

    Article  PubMed  Google Scholar 

  • Streiner GRNDL (2008) Biostatistics: the bare essentials. 3rd edn. McGraw-Hill Europe

  • Svensson P, Romaniello A, Arendt-Nielsen L, Sessle BJ (2003) Plasticity in corticomotor control of the human tongue musculature induced by tongue-task training. Exp Brain Res 152(1):42–51

    Article  PubMed  Google Scholar 

  • Svensson P, Romaniello A, Wang K, Arendt-Nielsen L, Sessle B (2006) One hour of tongue-task training is associated with plasticity in corticomotor control of the human tongue musculature. Exp Brain Res 173(1):165–173

    Article  CAS  PubMed  Google Scholar 

  • Tinazzi M, Zanette G, Polo A, Volpato D, Manganotti P, Bonato C, Testoni R, Fiaschi A (1997) Transient deafferentation in humans induces rapid modulation of primary sensory cortex not associated with subcortical changes: a somatosensory evoked potential study. Neurosci Lett 223(1):21–24

    Article  CAS  PubMed  Google Scholar 

  • Tinazzi M, Zanette G, Volpato D, Testoni R, Bonato C, Manganotti P, Miniussi C, Fiaschi A (1998) Neurophysiological evidence of neuroplasticity at multiple levels of the somatosensory system in patients with carpal tunnel syndrome. Brain 121(9):1785–1794

    Article  PubMed  Google Scholar 

  • Tinazzi M, Fiaschi A, Rosso T, Faccioli F, Grosslercher J, Aglioti SM (2000) Neuroplastic changes related to pain occur at multiple levels of the human somatosensory system: a somatosensory-evoked potentials study in patients with cervical radicular pain. J Neurosci 20(24):9277–9283

    CAS  PubMed  Google Scholar 

  • Tinazzi M, Valeriani M, Moretto G, Rosso T, Nicolato A, Fiaschi A, Aglioti S (2004) Plastic interactions between hand and face cortical representations in patients with trigeminal neuralgia: a somatosensory-evoked potentials study. Neuroscience 127(3):769–776

    Article  CAS  PubMed  Google Scholar 

  • Verrillo RT, Bolanowski SJ, Baran F, Smith PF (1996) Effects of underwater environmental conditions on vibrotactile thresholds. J Acoust Soc Am 100:651

    Article  Google Scholar 

  • Waberski TD, Buchner H, Perkuhn M, Gobbelé R, Wagner M, Kücker W, Silny J (1999) N30 and the effect of explorative finger movements: a model of the contribution of the motor cortex to early somatosensory potentials. Clin Neurophysiol 110(9):1589–1600

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Chen AC, Arendt-Nielsen L (2006) Cortical plasticity: effect of high and low intensity conditioning electrical stimulations (100 Hz) on SEPs to painful finger stimulation. Clin Neurophysiol 117(5):1075–1084

    Article  PubMed  Google Scholar 

  • Zhang Z, Francisco EM, Holden JK, Dennis RG, Tommerdahl M (2009) The impact of non-noxious heat on tactile information processing. Brain Res 1302:97–105

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to acknowledge the following organizations for support and funding: Natural Science and Engineering Research Council of Canada (NSERC), Canada Foundation for Innovation, Ontario Ministry of Research and Innovation, the University of Ontario Institute of Technology and Jessica Bossé for assistance with data collection.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Yielder.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dancey, E., Murphy, B., Srbely, J. et al. The effect of experimental pain on motor training performance and sensorimotor integration. Exp Brain Res 232, 2879–2889 (2014). https://doi.org/10.1007/s00221-014-3966-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00221-014-3966-1

Keywords

Navigation