Skip to main content
Log in

Cross-Species Replication of a Serum Osteocalcin Quantitative Trait Locus on Human Chromosome 16q in Pedigreed Baboons

  • Clinical Investigations
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

Osteocalcin (OC), a serum marker of bone formation, in its intact form reflects osteoblast activity. It is of interest to clinicians and bone biologists due to easy measurability and potential utility as an identifier of those at risk for fracture and other complications associated with bone metabolism disorders. The only published linkage study in humans shows significant evidence for a quantitative trait locus (QTL) affecting OC levels on 16q. We used the baboon, a primate model for skeletal maintenance and turnover, to detect and quantify the effects of genes on serum OC levels and to localize chromosomal regions harboring the responsible loci. We assayed OC levels in 591 pedigreed animals, assessed OC heritability, and conducted a genomewide linkage scan for evidence of QTLs affecting this phenotype. Heritability in these baboons is 0.24. Suggestive linkage is evident with markers in a region homologous to human chromosome 16q. This first genomewide linkage scan in a nonhuman primate for QTLs affecting bone formation as reflected by OC levels provides cross-species replication of the QTL on chromosome 16q previously localized in humans. Given the concordance of results of the only two genome scans for this trait in two primate species, further studies of this region are warranted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Khosla S, Kleerekoper M (2003) Biochemical markers of bone turnover. In: Favus MJ (ed), Primer on the metabolic bone diseases and disorders of mineral metabolism. American Society for Bone and Mineral Research, Washington DC, pp 166–172

    Google Scholar 

  2. Delmas PD, Eastell R, Garnero P, Seibel MJ, Stepan J (2000) The use of biochemical markers of bone turnover in osteoporosis. Committee of Scientific Advisors of the International Osteoporosis Foundation. Osteoporos Int 11(suppl 6):S2–S17

    Article  PubMed  Google Scholar 

  3. Brown JP, Delmas PD, Malaval L, Edouard C, Chapuy MC, Meunier PJ (1984) Serum bone Gla-protein: a specific marker for bone formation in postmenopausal osteoporosis. Lancet 1:1091–1093

    Article  PubMed  Google Scholar 

  4. Ross PD (1999) Predicting bone loss and fracture risk with biochemical markers: a review. J Clin Densitom 2:285–294

    Article  PubMed  Google Scholar 

  5. Szulc P, Seeman E, Delmas PD (2000) Biochemical measurements of bone turnover in children and adolescents. Osteoporos Int 11:281–294

    Article  PubMed  Google Scholar 

  6. Eastell R, Simmons PS, Colwell A, Assiri AM, Burritt MF, Russell RG, Riggs BL (1992) Nyctohemeral changes in bone turnover assessed by serum bone Gla-protein concentration and urinary deoxypyridinoline excretion: effects of growth and ageing. Clin Sci (Lond) 83:375–382

    Google Scholar 

  7. Khosla S, Melton LJ 3rd, Atkinson EJ, O’Fallon WM, Klee GG, Riggs BL (1998) Relationship of serum sex steroid levels and bone turnover markers with bone mineral density in men and women: a key role for bioavailable estrogen. J Clin Endocrinol Metab 83:2266–2274

    Article  PubMed  Google Scholar 

  8. Puchacz E, Lian JB, Stein GS, Wozney J, Huebner K, Croce C (1989) Chromosomal localization of the human osteocalcin gene. Endocrinology 124:2648–2650

    PubMed  Google Scholar 

  9. Raymond MH, Schutte BC, Torner JC, Burns TL, Willing MC (1999) Osteocalcin: genetic and physical mapping of the human gene BGLAP and its potential role in postmenopausal osteoporosis. Genomics 60:210–217

    Article  PubMed  Google Scholar 

  10. Morrison NA, Yeoman R, Kelly PJ, Eisman JA (1992) Contribution of trans-acting factor alleles to normal physiological variability: vitamin D receptor gene polymorphism and circulating osteocalcin. Proc Natl Acad Sci USA 89:6665–6669

    PubMed  Google Scholar 

  11. Garnero P, Arden NK, Griffiths G, Delmas PD, Spector TD (1996) Genetic influence on bone turnover in postmenopausal twins. J Clin Endocrinol Metab 81:140–146

    Article  PubMed  Google Scholar 

  12. Kelly PJ, Hopper JL, Macaskill GT, Pocock NA, Sambrook PN, Eisman JA (1991) Genetic factors in bone turnover. J Clin Endocrinol Metab 72:808–813

    PubMed  Google Scholar 

  13. Livshits G, Yakovenko C, Kobyliansky E (2000) Quantitative genetic analysis of circulating levels of biochemical markers of bone formation. Am J Med Genet 94:324–331

    Article  PubMed  Google Scholar 

  14. Mitchell BD, Cole SA, Bauer RL, Iturria SJ, Rodriguez EA, Blangero J, MacCluer JW, Hixson JE (2000) Genes influencing variation in serum osteocalcin concentrations are linked to markers on chromosomes 16q and 20q. J Clin Endocrinol Metab 85:1362–1366

    Article  PubMed  Google Scholar 

  15. Cerroni AM, Tomlinson GA, Turnquist JE, Grynpas MD (2000) Bone mineral density, osteopenia, and osteoporosis in the rhesus macaques of Cayo Santiago. Am J Phys Anthropol 113:389–410

    Article  PubMed  Google Scholar 

  16. Aufdemorte TB, Fox WC, Miller D, Buffum K, Holt GR, Carey KD (1993) A nonhuman primate model for the study of osteoporosis and oral bone loss. Bone 14:581–586

    Article  PubMed  Google Scholar 

  17. Kammerer CM, Sparks ML, Rogers J (1995) Effects of age, sex, and heredity on measures of bone mass in baboons (Papio hamadryas). J Med Primatol 24:236–242

    PubMed  Google Scholar 

  18. DeRousseau CJ (1985) Aging in the musculoskeletal system of rhesus monkeys: III. Bone loss. Am J Phys Anthropol 68:157–167

    PubMed  Google Scholar 

  19. Chen LD, Kushwaha RS, McGill HC Jr, Rice KS, Carey KD (1998) Effect of naturally reduced ovarian function on plasma lipoprotein and 27-hydroxycholesterol levels in baboons (Papio sp.). Atherosclerosis 136:89–98

    Article  PubMed  Google Scholar 

  20. Brommage R (2001) Perspectives on using nonhuman primates to understand the etiology and treatment of postmenopausal osteoporosis. J Musculoskel Neuron Interact 1:307–325

    Google Scholar 

  21. Hendrickx A, Dukelow W (1995) Reproductive biology. In: Henrickson R (ed), Nonhuman primates in biomedical research: biology and management. Academic Press, San Diego, pp 147–191

    Google Scholar 

  22. Havill LM, Mahaney MC, Czerwinski SA, Carey KD, Rice K, Rogers J (2003) Bone mineral density reference standards in adult baboons (Papio hamadryas) by sex and age. Bone 33:877–888

    Article  PubMed  Google Scholar 

  23. National Research Council (1996) Guide for the care and use of laboratory animals. National Academy of Sciences, Washington DC.

    Google Scholar 

  24. Quidel Corporation (2004) Metra™ osteocalcin, http://www.quidel.com/Products/BoneHealth/Research/metra_osteocalcin_desc.php?section=pro

  25. Rogers J, Mahaney MC, Witte SM, Nair S, Newman D, Wedel S, Rodriguez LA, Rice KS, Slifer SH, Perelygin A, Slifer M, Palladino-Negro P, Newman T, Chambers K, Joslyn G, Parry P, Morin PA (2000) A genetic linkage map of the baboon (Papio hamadryas) genome based on human microsatellite polymorphisms. Genomics 67:237–247

    Article  PubMed  Google Scholar 

  26. Matise TC, Perlin M, Chakravarti A (1994) Automated construction of genetic linkage maps using an expert system (MultiMap): a human genome linkage map. Nat Genet 6:384–390

    Article  PubMed  Google Scholar 

  27. Matise TC, Schroeder MD, Chiarulli DM, Weeks DE (1995) Parallel computation of genetic likelihoods using CRI-MAP, PVM, and a network of distributed workstations. Hum Hered 45:103–116

    PubMed  Google Scholar 

  28. Havill LM, Mahaney MC, Cox LA, Morin PA, Joslyn G, Rogers J (2005) A QTL for normal variation in forearm BMD in pedigreed baboons maps to the ortholog of human chromosome 11q. J Clin Endocrinol Metab 90:3638–3645

    Article  PubMed  Google Scholar 

  29. Almasy L, Blangero J (1998) Multipoint quantitative-trait linkage analysis in general pedigrees. Am J Hum Genet 62:1198–1211

    Article  PubMed  Google Scholar 

  30. Fulker DW, Cherny SS, Cardon LR (1995) Multipoint interval mapping of quantitative trait loci, using sib pairs. Am J Hum Genet 56:1224–1233

    PubMed  Google Scholar 

  31. Ott J (1988) Analysis of human genetic linkage. Johns Hopkins University Press, Baltimore

    Google Scholar 

  32. Feingold E, Brown PO, Siegmund D (1993) Gaussian models for genetic linkage analysis using complete high-resolution maps of identity by descent. Am J Hum Genet 53:234–251

    PubMed  Google Scholar 

  33. Lander E, Kruglyak L (1995) Genetic dissection of complex traits: guidelines for interpreting and reporting linkage results. Nat Genet 11:241–247

    Article  PubMed  Google Scholar 

  34. Martin LJ, Carey KD, Comuzzie AG (2003) Variation in menstrual cycle length and cessation of menstruation in captive baboons. Mech Ageing Dev 124:865–871

    Article  PubMed  Google Scholar 

  35. Johansen JS, Giwercman A, Hartwell D, Nielsen CT, Price PA, Christiansen C, Skakkebaek NE (1988) Serum bone Gla-protein as a marker of bone growth in children and adolescents: correlation with age, height, serum insulin-like growth factor I, and serum testosterone. J Clin Endocrinol Metab 67:273–278

    PubMed  Google Scholar 

  36. Okazaki M, Takeshita S, Kawai S, Kikuno R, Tsujimura A, Kudo A, Amann E (1994) Molecular cloning and characterization of OB-cadherin, a new member of cadherin family expressed in osteoblasts. J Biol Chem 269:12092–12098

    PubMed  Google Scholar 

  37. Kremmidiotis G, Baker E, Crawford J, Eyre HJ, Nahmias J, Callen DF (1998) Localization of human cadherin genes to chromosome regions exhibiting cancer-related loss of heterozygosity. Genomics 49:467–471

    Article  PubMed  Google Scholar 

  38. Broman KW, Murray JC, Sheffield VC, White RL, Weber JL (1998) Comprehensive human genetic maps: individual and sex-specific variation in recombination. Am J Hum Genet 63:861–869

    Article  Google Scholar 

Download references

Acknowledgments

This research was made possible in part by support in the form of a collaborative research contract with AxyS Pharmaceuticals, Inc. (formerly Sequana Therapeutics, Inc.), and research grants from the National Institutes of Health (F32 AR049694, P01 HL28972, R01 HL54141, R01 RR008781, and R01 MH59490). The authors gratefully acknowledge the technical contributions and support of the following persons: K.D. Carey, D.E. Newman, K.S. Rice, T. Riley, E. Rodriguez, E. Windhorst, and S.M. Witte.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. M. Havill.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Havill, L.M., Cox, L.A., Rogers, J. et al. Cross-Species Replication of a Serum Osteocalcin Quantitative Trait Locus on Human Chromosome 16q in Pedigreed Baboons. Calcif Tissue Int 77, 205–211 (2005). https://doi.org/10.1007/s00223-005-0056-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-005-0056-1

Keywords

Navigation