Skip to main content

Advertisement

Log in

Vitamin D Receptor Ablation and Vitamin D Deficiency Result in Reduced Grip Strength, Altered Muscle Fibers, and Increased Myostatin in Mice

  • Original Research
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Abstract

Vitamin D deficiency is associated with muscle weakness, pain, and atrophy. Serum vitamin D predicts muscle strength and age-related muscle changes. However, precise mechanisms by which vitamin D affects skeletal muscle are unclear. To address this question, this study characterizes the muscle phenotype and gene expression of mice with deletion of vitamin D receptor (VDRKO) or diet-induced vitamin D deficiency. VDRKO and vitamin D-deficient mice had significantly weaker grip strength than their controls. Weakness progressed with age and duration of vitamin D deficiency, respectively. Histological assessment showed that VDRKO mice had muscle fibers that were significantly smaller in size and displayed hyper-nuclearity. Real-time PCR also indicated muscle developmental changes in VDRKO mice with dysregulation of myogenic regulatory factors (MRFs) and increased myostatin in quadriceps muscle (>2-fold). Vitamin D-deficient mice also showed increases in myostatin and the atrophy marker E3-ubiqutin ligase MuRF1. As a potential explanation for grip strength weakness, both groups of mice had down-regulation of genes encoding calcium-handling and sarco-endoplasmic reticulum calcium transport ATPase (Serca) channels. This is the first report of reduced strength, morphological, and gene expression changes in VDRKO and vitamin D-deficient mice where confounding by calcium, magnesium, and phosphate have been excluded by direct testing. Although suggested in earlier in vitro work, this study is the first to report an in vivo association between vitamin D, myostatin, and the regulation of muscle mass. These findings support a direct role for vitamin D in muscle function and corroborate earlier work on the presence of VDR in this tissue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Girgis CM, Clifton-Bligh RJ, Hamrick MW, Holick MF, Gunton JE (2013) The roles of vitamin D in skeletal muscle: form, function, and metabolism. Endocr Rev 34:33–83

    Article  CAS  PubMed  Google Scholar 

  2. Visser M, Deeg DJ, Lips P (2003) Low vitamin D and high parathyroid hormone levels as determinants of loss of muscle strength and muscle mass (sarcopenia): the Longitudinal Aging Study Amsterdam. J Clin Endocrinol Metab 88:5766–5772

    Article  CAS  PubMed  Google Scholar 

  3. Ward KA, Das G, Roberts SA, Berry JL, Adams JE, Rawer R, Mughal MZ (2010) A randomized, controlled trial of vitamin D supplementation upon musculoskeletal health in postmenarchal females. J Clin Endocrinol Metab 95:4643–4651

    Article  CAS  PubMed  Google Scholar 

  4. Szulc P, Schoppet M, Goettsch C, Rauner M, Dschietzig T, Chapurlat R, Hofbauer LC (2012) Endocrine and clinical correlates of myostatin serum concentration in men—the STRAMBO study. J Clin Endocrinol Metab 97:3700–3708

    Article  CAS  PubMed  Google Scholar 

  5. Girgis CM, Clifton-Bligh RJ, Turner N, Lau SL, Gunton JE (2014) Effects of vitamin D in skeletal muscle: falls, strength, athletic performance and insulin sensitivity. Clin Endocrinol (Oxf) 80:169–181

    Article  CAS  Google Scholar 

  6. Wang Y, DeLuca HF (2011) Is the vitamin D receptor found in muscle? Endocrinology 152:354–363

    Article  CAS  PubMed  Google Scholar 

  7. Bischoff HA, Borchers M, Gudat F, Duermueller U, Theiler R, Stahelin HB, Dick W (2001) In situ detection of 1,25-dihydroxyvitamin D3 receptor in human skeletal muscle tissue. Histochem J 33:19–24

    Article  CAS  PubMed  Google Scholar 

  8. Srikuea R, Zhang X, Park-Sarge OK, Esser KA (2012) VDR and CYP27B1 are expressed in C2C12 cells and regenerating skeletal muscle: potential role in suppression of myoblast proliferation. Am J Physiol Cell Physiol 303:C396–C405

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  9. Ceglia L, da Silva Morais M, Park LK, Morris E, Harris SS, Bischoff-Ferrari HA, Fielding RA, Dawson-Hughes B (2010) Multi-step immunofluorescent analysis of vitamin D receptor loci and myosin heavy chain isoforms in human skeletal muscle. J Mol Histol 41:137–142

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  10. Ceglia L, Niramitmahapanya S, Morais MD, Rivas DA, Harris SS, Bischoff-Ferrari H, Fielding RA, Dawson-Hughes B (2013) A randomized study on the effect of vitamin D3 supplementation on skeletal muscle morphology and vitamin D receptor concentration in older women. J Clin Endocrinol Metab 98:E1927–E1935

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  11. Girgis CM, Mokbel N, Minn Cha K, Houweling PJ, Abboud M, Fraser DR, Mason RS, Clifton-Bligh RJ, Gunton JE (2014) The vitamin D receptor (VDR) is expressed in skeletal muscle of male mice and modulates 25-hydroxyvitamin D (25OHD) uptake in myofibers. Endocrinology 155:3227–3237

    Article  PubMed Central  PubMed  Google Scholar 

  12. Pojednic RM, Ceglia L, Olsson K, Gustafsson T, Lichtenstein AH, Dawson-Hughes B, Fielding RA (2014) Effects of 1,25-dihydroxyvitamin D and vitamin D on the expression of the vitamin D receptor in human skeletal muscle cells. Calcif Tissue Int 96:256–263

    Article  PubMed Central  PubMed  Google Scholar 

  13. Boland RL (2011) VDR activation of intracellular signaling pathways in skeletal muscle. Mol Cell Endocrinol 347:11–16

    Article  CAS  PubMed  Google Scholar 

  14. Abboud M, Puglisi DA, Davies BN, Rybchyn M, Whitehead NP, Brock KE, Cole L, Gordon-Thomson C, Fraser DR, Mason RS (2013) Evidence for a specific uptake and retention mechanism for 25-hydroxyvitamin D (25OHD) in skeletal muscle cells. Endocrinology 154:3022–3030

    Article  CAS  PubMed  Google Scholar 

  15. Girgis CM, Clifton-Bligh RJ, Mokbel N, Cheng K, Gunton JE (2014) Vitamin D signaling regulates proliferation, differentiation, and myotube size in C2C12 skeletal muscle cells. Endocrinology 155:347–357

    Article  CAS  PubMed  Google Scholar 

  16. Tanaka M, Kishimoto KN, Okuno H, Saito H, Itoi E (2014) Vitamin D receptor gene silencing effects on differentiation of myogenic cell lines. Muscle Nerve 49:700–708

    Article  CAS  PubMed  Google Scholar 

  17. Garcia LA, King KK, Ferrini MG, Norris KC, Artaza JN (2011) 1,25(OH)2vitamin D3 stimulates myogenic differentiation by inhibiting cell proliferation and modulating the expression of promyogenic growth factors and myostatin in C2C12 skeletal muscle cells. Endocrinology 152:2976–2986

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  18. Amling M, Priemel M, Holzmann T, Chapin K, Rueger JM, Baron R, Demay MB (1999) Rescue of the skeletal phenotype of vitamin D receptor-ablated mice in the setting of normal mineral ion homeostasis: formal histomorphometric and biomechanical analyses. Endocrinology 140:4982–4987

    CAS  PubMed  Google Scholar 

  19. Bhat M, Kalam R, Qadri SS, Madabushi S, Ismail A (2013) Vitamin D deficiency induced muscle wasting occurs through the ubiquitin proteasome pathway and is partially corrected by calcium in male rats. Endocrinology 154:4018–4029

    Article  CAS  PubMed  Google Scholar 

  20. Mokbel N, Hoffman NJ, Girgis CM, Small L, Turner N, Daly RJ, Cooney GJ, Holt LJ (2014) Grb10 deletion enhances muscle cell proliferation, differentiation and GLUT4 plasma membrane translocation. J Cell Physiol 229:1753–1764

    Article  CAS  PubMed  Google Scholar 

  21. Burne TH, Johnston AN, McGrath JJ, Mackay-Sim A (2006) Swimming behaviour and post-swimming activity in vitamin D receptor knockout mice. Brain Res Bull 69:74–78

    Article  CAS  PubMed  Google Scholar 

  22. Kalueff AV, Lou YR, Laaksi I, Tuohimaa P (2004) Impaired motor performance in mice lacking neurosteroid vitamin D receptors. Brain Res Bull 64:25–29

    Article  CAS  PubMed  Google Scholar 

  23. Minasyan A, Keisala T, Zou J, Zhang Y, Toppila E, Syvala H, Lou YR, Kalueff AV, Pyykko I, Tuohimaa P (2009) Vestibular dysfunction in vitamin D receptor mutant mice. J Steroid Biochem Mol Biol 114:161–166

    Article  CAS  PubMed  Google Scholar 

  24. Rodman JS, Baker T (1978) Changes in the kinetics of muscle contraction in vitamin D-depleted rats. Kidney Int 13:189–193

    Article  CAS  PubMed  Google Scholar 

  25. Tague SE, Clarke GL, Winter MK, McCarson KE, Wright DE, Smith PG (2011) Vitamin D deficiency promotes skeletal muscle hypersensitivity and sensory hyperinnervation. J Neurosci 31:13728–13738

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  26. Pleasure D, Wyszynski B, Sumner A, Schotland D, Feldman B, Nugent N, Hitz K, Goodman DB (1979) Skeletal muscle calcium metabolism and contractile force in vitamin D-deficient chicks. J Clin Invest 64:1157–1167

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  27. Schubert L, DeLuca HF (2010) Hypophosphatemia is responsible for skeletal muscle weakness of vitamin D deficiency. Arch Biochem Biophys 500:157–161

    Article  CAS  PubMed  Google Scholar 

  28. Boland R, de Boland AR, Ritz E, Hasselbach W (1983) Effect of 1,25-dihydroxycholecalciferol on sarcoplasmic reticulum calcium transport in strontium-fed chicks. Calcif Tissue Int 35:190–194

    Article  CAS  PubMed  Google Scholar 

  29. Boland R, Matthews C, de Boland AR, Ritz E, Hasselbach W (1983) Reversal of decreased phosphorylation of sarcoplasmic reticulum calcium transport ATPase by 1,25-dihydroxycholecalciferol in experimental uremia. Calcif Tissue Int 35:195–201

    Article  CAS  PubMed  Google Scholar 

  30. Li YC, Pirro AE, Demay MB (1998) Analysis of vitamin D-dependent calcium-binding protein messenger ribonucleic acid expression in mice lacking the vitamin D receptor. Endocrinology 139:847–851

    CAS  PubMed  Google Scholar 

  31. Funai K, Song H, Yin L, Lodhi IJ, Wei X, Yoshino J, Coleman T, Semenkovich CF (2013) Muscle lipogenesis balances insulin sensitivity and strength through calcium signaling. J Clin Invest 123:1229–1240

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  32. Endo I, Inoue D, Mitsui T, Umaki Y, Akaike M, Yoshizawa T, Kato S, Matsumoto T (2003) Deletion of vitamin D receptor gene in mice results in abnormal skeletal muscle development with deregulated expression of myoregulatory transcription factors. Endocrinology 144:5138–5144

    Article  CAS  PubMed  Google Scholar 

  33. Koyama S, Hata S, Witt CC, Ono Y, Lerche S, Ojima K, Chiba T, Doi N, Kitamura F, Tanaka K, Abe K, Witt SH, Rybin V, Gasch A, Franz T, Labeit S, Sorimachi H (2008) Muscle RING-finger protein-1 (MuRF1) as a connector of muscle energy metabolism and protein synthesis. J Mol Biol 376:1224–1236

    Article  CAS  PubMed  Google Scholar 

  34. McPherron AC, Lawler AM, Lee SJ (1997) Regulation of skeletal muscle mass in mice by a new TGF-beta superfamily member. Nature 387:83–90

    Article  CAS  PubMed  Google Scholar 

  35. Girgis C, Mokbel N, Digirolamo DJ (2014) Therapies for musculoskeletal disease: can we treat two birds with one stone? Curr Osteoporos Rep 12:142–153

    Article  PubMed Central  PubMed  Google Scholar 

  36. Grossmann M (2014) Myostatin inhibition: a new treatment for androgen deprivation-induced sarcopenia? J Clin Endocrinol Metab 99:3625–3628

    Article  CAS  PubMed  Google Scholar 

  37. Bischoff-Ferrari HA, Borchers M, Gudat F, Durmuller U, Stahelin HB, Dick W (2004) Vitamin D receptor expression in human muscle tissue decreases with age. J Bone Miner Res 19:265–269

    Article  CAS  PubMed  Google Scholar 

  38. Max D, Brandsch C, Schumann S, Kuhne H, Frommhagen M, Schutkowski A, Hirche F, Staege MS, Stangl GI (2013) Maternal vitamin D deficiency causes smaller muscle fibers and altered transcript levels of genes involved in protein degradation, myogenesis, and cytoskeleton organization in the newborn rat. Mol Nutr Food Res 48:973–984

    Google Scholar 

  39. Krishnaveni GV, Veena SR, Winder NR, Hill JC, Noonan K, Boucher BJ, Karat SC, Fall CH (2011) Maternal vitamin D status during pregnancy and body composition and cardiovascular risk markers in Indian children: the Mysore Parthenon Study. Am J Clin Nutr 93:628–635

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

CMG received salary support from the NHMRC (National Health Medical and Research Council, Australia) as a post-doctoral early career fellow. JEG and RJC-B are also supported by NHMRC.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Christian M. Girgis or Jenny E. Gunton.

Ethics declarations

Conflict of Interest

Christian M. Girgis, Kuan Minn Cha, Peter J. Houweling, Renuka Rao, Nancy Mokbel, Mike Lin, Roderick J. Clifton-Bligh and Jenny E. Gunton have no conflicts of interest or disclosures to report.

Human and Animal Rights and Informed Consent

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Girgis, C.M., Cha, K.M., Houweling, P.J. et al. Vitamin D Receptor Ablation and Vitamin D Deficiency Result in Reduced Grip Strength, Altered Muscle Fibers, and Increased Myostatin in Mice. Calcif Tissue Int 97, 602–610 (2015). https://doi.org/10.1007/s00223-015-0054-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00223-015-0054-x

Keywords

Navigation