Skip to main content

Advertisement

Log in

Multiple lineages and absence of panmixia in the “circumpolar” crinoid Promachocrinus kerguelensis from the Atlantic sector of Antarctica

  • Research Article
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

Despite considerable interest in physiology, evolution and life history of Antarctic marine invertebrates, only a limited number of studies have examined the genetic variability and diversity patterns of these organisms. Moreover, understanding and characterizing patterns of Antarctic biodiversity has taken on a degree of urgency because of potential impacts of global warming. To expand an understanding of the evolutionary history of Antarctic marine invertebrates, the genetic diversity of the crinoid Promachocrinus kerguelensis Carpenter, 1888 was investigated, which is documented to have a circumpolar distribution extending to subantarctic islands. Specimens of P. kerguelensis were collected from the western side of the Antarctic Peninsula, and the subantarctic islands South Georgia, South Sandwich and Bouvetøya Island from 2001 to 2004. P. kerguelensis was previously subject to morphological review that confirmed the taxonomic recognition of only one species. The wide distribution and reported high dispersal capability for P. kerguelensis predicts one large panmictic population. In contrast, nucleotide sequence data from mitochondrial cytochrome oxidase subunit I and cytochrome b genes, collected herein, reveal distinct genetic structure and cryptic speciation within P. kerguelensis. In the Antarctic Atlantic sector alone, there were at least five “species-level” clades. Some of these clades are geographically limited, and most exist in sympatry. The largest and most widespread of these clades was examined to help elucidate connectivity along the subantarctic islands of the Scotia Arc and the Antarctic Peninsula. Within this clade, most genetic diversity was contained within populations, but significant differences were present between regions (Antarctic Peninsula, South Sandwich Is., South Georgia, Bouvetøya Is.), suggesting a corresponding lack of gene flow. Given that P.kerguelensis” is a well-studied taxon, the finding of considerable genetic diversity within the Atlantic sector alone suggests that the recognized diversity of Antarctica’s benthic marine life may be underestimated, and will rise dramatically with phylogeographic analyses of putative widespread species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Allcock AL, Brierley AS, Thorpe JP, Rodhouse PG (1997) Restricted gene flow and evolutionary divergence between geographically separated populations of the Antarctic octopus Pareledone turqueti. Mar Biol 129:97–102

    Article  Google Scholar 

  • Arntz WE, Rios C (1999) Magellan-Antarctic: ecosystems that drifted apart. Sci Mar 63(Suppl 1):1–518

    Google Scholar 

  • Arntz WE, Gutt J, Klages M (1997) Antarctic marine biodiversity: an overview. In: Battaglia B, Valencia J, Walton DWH (eds) Antarctic communities: species, structure and survival. Cambridge University Press, Cambridge, pp 3–14

    Google Scholar 

  • Arntz WE, Thatje S, Linse K, Avila C, Ballesteros M, Barnes DKA, Cope T, Cristobo FJ, de Broyer C, Gutt J, Isla E, López-González P, Montiel A, Munilla T, Ramos Esplá AA, Raupach M, Rauschert M, Rodríguez E, Teixidó N (2006) Missing link in the Southern Ocean: sampling the marine benthic fauna of remote Bouvet Island. Polar Biol 29:83–96

    Article  Google Scholar 

  • Avise JC, Neigel JE, Arnold J (1984) Demographic influences on mitochondrial DNA lineage survivorship in animal populations. J Mol Evol 20:99–105

    Article  CAS  PubMed  Google Scholar 

  • Barnes DKA (2006) A most isolated benthos: coastal bryozoans of Bouvet Island. Polar Biol 29:114–119

    Article  Google Scholar 

  • Barnes DKA, Hodgson DA, Convey P, Allen CS, Clark A (2006) Incursion and excursion of Antarctic biota: past, present and future. Glob Ecol Biogeogr 15:121–142

    Article  Google Scholar 

  • Beaumont AR, Wei JHC (1991) Morphological and genetic variation in the Antarctic limpet Nacella concinna (Strebel, 1908). J Mollus Stud 57:443–450

    Article  Google Scholar 

  • Brandt A (2005) Evolution of Antarctic biodiversity in the context of the past: the importance of the Southern Ocean deep sea. Antarct Sci 17:509–521

    Article  Google Scholar 

  • Canals M, Urgeles R, Calafat AM (2000) Deep sea-floor evidence of past ice streams off the Antarctic Peninsula. Geology 28:31–34

    Article  Google Scholar 

  • Chen L, DeVries AL, Cheng C-HC (1997) Evolution of antifreeze glycoprotein gene from a trypsinogen gene in Antarctic notothenioid fish. Proc Natl Acad Sci 94:3811–3816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Clark A (1990) Temperature and evolution. Southern Ocean cooling and the Antarctic marine fauna. In: Kerry KR, Hempel G (eds) Antarctic ecosystems: ecological change and conservation. Springer, Berlin, pp 9–22

    Chapter  Google Scholar 

  • Clarke A Crame JA (1992) The Southern Ocean benthic fauna and climate change: a historical perspective. Philos Trans R Soc B 338:299–309

    Article  Google Scholar 

  • Clarke A, Johnston NM (2003) Antarctic marine benthic diversity. Oceanogr Mar Biol Ann Rev 41:47–114

    Google Scholar 

  • Clark AH, Clark AM (1967) A monograph of the existing crinoids 1(5). US Nat Mus Bull 82:1–860

    Google Scholar 

  • Clement M, Posada D, Crandall KA (2000) TCS: a computer program to estimate gene genealogies. Mol Ecol 9:1657–1659

    Article  CAS  PubMed  Google Scholar 

  • Dayton PK (1989) Interdecadal variation in an Antarctic sponge and its predators from oceanographic climate shifts. Science 245:1484–1486

    Article  CAS  PubMed  Google Scholar 

  • Dayton PK (1990) Polar benthos. In: Smith WO (ed) Polar oceanography, Part B: chemistry, biology, and geology. Academic Press, San Diego, pp 631–685

    Chapter  Google Scholar 

  • Dell RK (1972) Antarctic benthos. Adv Mar Biol 10:1–216

    Article  Google Scholar 

  • Dell RK (1990) Antarctic Mollusca, with special reference to the Ross Sea. R Soc NZ Bull 27:1–311

    Google Scholar 

  • Eastman JT, Clarke A (1998) A comparison of adaptive radiations of Antarctic fish with those of non-Antarctic fish. In: di Prisco G, Pisano E, Clark A (eds) Fishes of Antarctica: a biological overview. Springer, Berlin, pp 3–26

    Chapter  Google Scholar 

  • Eléaume M (2006) Approche morphométrique de la variabilité phénotypique: conséquences systématiques et évolutives. Application aux crinoïdes actuels (Crinoidea : Echinodermata). Muséum national d’Histoire naturelle, Paris

    Google Scholar 

  • Folmer O, Black M, Hoeh W, Lutz R, Vrijenhoek R (1994) DNA primers for amplification of mitochondrial cytochrome c oxidase subunit I from diverse metazoan invertebrates. Mol Mar Biol Biotech 3:294–299

    CAS  Google Scholar 

  • Furnes H, Løvlie R (1978) An eruptional model for the recent lava flow on Bouvetøya, South Atlantic Ocean. Norsk Polar Skrift 169:103–108

    Google Scholar 

  • Gray JS (2001) Antarctic marine benthic biodiversity in a world-wide latitudinal context. Polar Biol 24:633–641

    Article  Google Scholar 

  • Gutt J, Sirenko BI, Smirnov IS, Arntz WE (2004) How many macrozoobenthic species might inhabit the Antarctic shelf? Antarct Sci 16:11–16

    Article  Google Scholar 

  • Hedgpeth JW (1969) Distribution of selected groups of marine invertebrates in waters south of 35°S latitude. Antarct Map Folio Ser 11:1–7

    Google Scholar 

  • Held C (2000) Phylogeny and biogeography of serolid isopods (Crustacea, Isopoda, Serolidae) and the use of ribosomal expansion segments in molecular systematics. Mol Phylogenet Evol 15:165–178

    Article  CAS  PubMed  Google Scholar 

  • Held C (2003) Molecular evidence for cryptic speciation within the widespread Antarctic crustacean Ceratoserolis trilobitoides (Crustacea, Isopoda). In: Huiskes AHL, Giekes WWC, Rozema J, Schorno RML, van der Vies SM, Wolff WJ (eds) Antarctic biology in a global context. Backhuys, Leiden, The Netherlands, pp 135–139

    Google Scholar 

  • Held C, Wägele J-W (2005) Cryptic speciation in the giant Antarctic isopod Glyptonotus antarcticus (Isopoda: Valvifera: Chaetiliidae). Sci Mar 69:175–181

    Article  Google Scholar 

  • Helgen LE, Rouse GW (2006) Species delimitation and distribution in Aporometra (Crinoidea: Echinodermata); endemic Australian featherstars. Invertebr Syst 20:395–414

    Article  CAS  Google Scholar 

  • Holland ND (1991) Echinodermata Crinoidea. In: Giese AC, Pearse JS, Pearse VB (eds) Reproduction of marine invertebrates. Boxwood, California, pp 247–299

    Google Scholar 

  • Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17:754–755

    Article  CAS  PubMed  Google Scholar 

  • Huybrechts P (2002) Sea-level changes at the LGM from ice-dynamic reconstructions of the Greenland and Antarctic ice sheets during the glacial cycles. Q Sci Rev 21:203–231

    Article  Google Scholar 

  • John DD (1938) Crinoidea. Discov Rep 18:121–222

    Article  Google Scholar 

  • Knowlton N (1993) Sibling species in the sea. Ann Rev Ecol Syst 24:189–216

    Article  Google Scholar 

  • Knowlton N (2000) Molecular genetic analyses of species boundaries in the sea. Hydrobiologia 420:73–90

    Article  CAS  Google Scholar 

  • Kohtsuka H, Nakano H (2005) Development and growth of the feather star Decametra tigrina (Crinoidea), with emphasis on the morphological differences between adults and juveniles. J Mar Biol Assoc UK 85:1503–1510

    Article  Google Scholar 

  • Lahaye MC (1987) Comportement larvaire et ontogenèse postembryonnaire chez la comatule Antedon bifida (Echinodermata, Crinoidea). Thèse. Lab. Biologie Marine, Univ. Libre Bruxelles:1–155

  • Lawver LA, Gahagan LM (2003) Evolution of Cenozoic seaways in the circum-Antarctic region. Palaeogeo Palaeoclim Palaeoecol 198:11–37

    Article  Google Scholar 

  • Lessios HA, Kessing BD, Pearse JS (2001) Population structure and speciation in tropical seas: global phylogeography of the sea urchin Diadema. Evolution 55:955–975

    Article  CAS  PubMed  Google Scholar 

  • Lessios HA, Kessing BD, Robertson DR, Paulay G (1999) Phylogeography of the pantropical sea urchin Eucidaris in relation to land barriers and ocean currents. Evolution 53:806–817

    Article  CAS  PubMed  Google Scholar 

  • Maddison DR, Maddison WP (2003) MacClade. Sinauer Associates, Inc., Sunderland, Massachusetts

    Google Scholar 

  • Marr JWS (1963) Unstalked crinoids of the Antarctic Continental Shelf. Philos Trans R Soc B 246:327–379

    Article  Google Scholar 

  • McCartney MA, Keller G, Lessios HA (2000) Dispersal barriers in tropical oceans and speciation in Atlantic and eastern Pacific sea urchins of the genus Echinometra. Mol Ecol 9:1391–1400

    Article  CAS  PubMed  Google Scholar 

  • McClintock JB, Pearse JS (1987) Reproductive biology of the common Antarctic crinoid Promachocrinus kerguelensis (Echinodermata: Crinoidea). Mar Biol 96:375–383

    Article  Google Scholar 

  • Mladenov PV, Chia FS (1983) Development, settling behaviour, metamorphosis and pentacrinoid feeding and growth of the feather star Florometra serratissima. Mar Biol 73:309–323

    Article  Google Scholar 

  • Mutschke E, Rios C (2006) Spatial distribution and relative abundance of echinoderms from the strait of Magellan, Chile. Cienc Tecnol Mar 29:91–102

    Google Scholar 

  • Nei M (1987) Molecular evolutionary genetics. Columbia University Press, New York

    Google Scholar 

  • Nylander J (2002) MrModeltest. http://www.morphbank.ebc.uu.se/MR.BAYES

  • Page TJ, Linse K (2002) More evidence of speciation and dispersal across the Antarctic Polar Front through molecular systematics of Southern Ocean Limatula (Bivalvia: Limidae). Polar Biol 25:818–826

    Google Scholar 

  • Palumbi SR (1992) Marine speciation on a small planet. Trends Ecol Evol 7:114–118

    Article  CAS  PubMed  Google Scholar 

  • Palumbi SR (1995) Using genetics as an indirect estimator of larval dispersal. In: McEdward L (ed) Ecology of marine invertebrate larvae. CRC, Boca Raton, pp 369–387

    Google Scholar 

  • Picken GB (1985) Benthic Research in Antarctica: past, present and future. In: Gray JS, Christiansen ME (eds) Marine biology of polar regions and the effects of stress on marine organisms. Wiley, Chichester, pp 167–183

    Google Scholar 

  • Posada D, Crandall KA (1998) MODELTEST: testing the model of DNA substitution. Bioinformatics 14:817–818

    Article  CAS  PubMed  Google Scholar 

  • Rambaut A (2002) Se-Al v2.0a11. University of Oxford, Oxford

    Google Scholar 

  • Raupach MJ, Wägele J-W (2006) Distinguishing cryptic species in Antarctic Asellota (Crustacea: Isopoda)—a preliminary study of mitochondrial DNA in Acanthaspidia drygalskii. Antarct Sci 18:191–198

    Article  Google Scholar 

  • Rogers AR, Harpending H (1992) Population growth makes waves in the distribution of pairwise genetic differences. Mol Biol Evol 9:552–569

    CAS  PubMed  Google Scholar 

  • Sará M, Balduzzi A, Barbieri M, Bavestrello G, Burlando B (1992) Biogeographic traits and checklist of Antarctic demosponges. Polar Biol 12:559–585

    Article  Google Scholar 

  • Scher HD, Martin EE (2006) Timing and climatic consequences of the opening of the Drake Passage. Science 312:428–430

    Article  CAS  PubMed  Google Scholar 

  • Schneider S, Excoffier L (1999) Estimation of past demographic parameters from the distribution of pairwise differences when the mutation rates vary among sites: application to human mitochondrial DNA. Genetics 152:1079–1089

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schneider S, Roessli D, Excoffier L (2000) Arlequin: a software for population genetics data analysis. University of Geneva, Geneva

    Google Scholar 

  • Shaw PW, Arkhipkin AI, Al-Khairulla H (2004) Genetic structuring of Patagonian toothfish populations in the Southwest Atlantic Ocean: the effect of the Antarctic Polar Front and deep-water troughs as barriers to genetic exchange. Mol Ecol 13:3293–3303

    Article  CAS  PubMed  Google Scholar 

  • Speel JA, Dearborn JH (1983) Comatulid crinoids from the R/V Eltanin cruises in the southern ocean. Antarct Res Ser 38:1–60

    Article  Google Scholar 

  • Swofford DL (2002) PAUP*. Sinauer, Sunderland, Massachusetts

    Google Scholar 

  • Tamura K, Nei M (1993) Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 10:512–526

    CAS  PubMed  Google Scholar 

  • Thatje S, Hillenbrand C-D, Larter R (2005) On the origin of Antarctic marine benthic community structure. Trends Ecol Evol 20:534–540

    Article  PubMed  Google Scholar 

  • Vaughan DG, Marshall GJ, Connolley WM, Parkinson C, Mulvaney R, Hodgson DA, King JC, Pudsey CJ, Turner J (2003) Recent rapid regional climate warming on the Antarctic Peninsula. Clim Change 60:243–274

    Article  Google Scholar 

  • Waters JM, O’Loughlin PM, Roy MS (2004) Cladogenesis in a starfish species complex from southern Australia: evidence for vicariant speciation? Mol Phylogenet Evol 32:236–245

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study would not have been possible without a huge amount of logistical support from NSF, Raytheon and the crew of the ARSV Laurence M. Gould. Participants in the Halanych/Scheltema cruises and those on ICEFISH 2004 are thanked sincerely for their efforts. Greg Rouse, Lauren Helgen and Chuck Messing were generous in sharing unpublished data, primers, and outgroup information. Financially, this study was supported by NSF grants OPP-9910164 (SGER) and OPP0338087 to R. Scheltema, OPP-0338218 to K. Halanych, and OPP-0132032 to H.W. Deitrich. Sven Thatje and two anonymous reviewers are thanked for their suggestions on improving the manuscript. This study is contribution #23 of the Auburn University (AU) Marine Biology Program, and complies with the current laws of the countries in which the work was performed.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. G. Wilson.

Additional information

Communicated by J.P. Grassle.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wilson, N.G., Hunter, R.L., Lockhart, S.J. et al. Multiple lineages and absence of panmixia in the “circumpolar” crinoid Promachocrinus kerguelensis from the Atlantic sector of Antarctica. Mar Biol 152, 895–904 (2007). https://doi.org/10.1007/s00227-007-0742-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-007-0742-9

Keywords

Navigation