Skip to main content

Advertisement

Log in

Effect of pCO2 on the growth, respiration, and photophysiology of massive Porites spp. in Moorea, French Polynesia

  • Original Paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

I tested the hypothesis that high pCO2 (76.6 Pa and 87.2 Pa vs. 42.9 Pa) has no effect on the metabolism of juvenile massive Porites spp. after 11 days at 28 °C and 545 μmol quanta m−2 s−1. The response was assessed as aerobic dark respiration, skeletal weight (i.e., calcification), biomass, and chlorophyll fluorescence. Corals were collected from the shallow (3–4 m) back reef of Moorea, French Polynesia (17°28.614′S, 149°48.917′W), and experiments conducted during April and May 2011. An increase in pCO2 to 76.6 Pa had no effect on any dependent variable, but 87.2 Pa pCO2 reduced area-normalized (but not biomass-normalized) respiration 36 %, as well as maximum photochemical efficiency (F v/F m) of open RCIIs and effective photochemical efficiency of RCIIs in actinic light (∆F/\( F_{\text{m}}^{\prime } \)); neither biomass, calcification, nor the energy expenditure coincident with calcification (J g−1) was effected. These results do not support the hypothesis that high pCO2 reduces coral calcification through increased metabolic costs and, instead, suggest that high pCO2 causes metabolic depression and photochemical impairment similar to that associated with bleaching. Evidence of a pCO2 threshold between 76.6 and 87.2 Pa for inhibitory effects on respiration and photochemistry deserves further attention as it might signal the presence of unpredictable effects of rising pCO2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Al-Horani FA, Al-Moghrabi SM, de Beer D (2003) The mechanism of calcification and its relation to photosynthesis and respiration in the scleractinian coral Galaxea fascicularis. Mar Biol 142:419–426

    CAS  Google Scholar 

  • Allemand D, Tambutté E, Zoccola D, Tambutté S (2011) Coral calcification, cells to reefs. In: Dubinsky Z, Stambler N (eds) Coral reefs: an ecosystem in transition. Springer, Berlin, pp 119–150

    Chapter  Google Scholar 

  • Anthony KRN, Kline DI, Diaz-Pulido G, Dove S, Hoegh-Guldberg O (2008) Ocean acidification causes bleaching and productivity loss in coral reef builders. Proc Natl Acad Sci USA 105:17442–17446

    Article  CAS  Google Scholar 

  • Atkinson MJ, Cuet P (2008) Possible effects of ocean acidification on coral reef biogeochemistry: topics for research. Mar Ecol Prog Ser 373:249–256

    Article  CAS  Google Scholar 

  • Barnes DJ, Lough JM (1992) Systematic variation in the depth of skeleton occupied by coral tissue in massive colonies of Porites from the Great Barrier Reef. J Exp Mar Biol Ecol 159:113–128

    Article  Google Scholar 

  • Birkeland C (1976) An experimental method of studying corals during early stages of growth. Micronesica 12:319–322

    Google Scholar 

  • Chalker BE (1976) Calcium transport during skeletogenesis in hermatypic corals. Comp Biochem Physiol 54A:455–459

    Article  Google Scholar 

  • Chauvin A, Denis V, Cuet P (2011) Is the response of coral calcification to seawater acidification related to nutrient loading? Coral Reefs 30:911–923

    Article  Google Scholar 

  • Comeau S, Jeffree R, Teyssie J-L, Gattuso J-P (2010) Response of the Arctic pteropod Limacina helicina to projected future environmental conditions. PLoS One 5:e11362

    Article  Google Scholar 

  • Crawley A, Kline DI, Dunn S, Anthony K, Dove S (2010) The effect of ocean acidification on symbiont photorespiration and productivity in Acropora formosa. Global Change Biol 16:851–863

    Article  Google Scholar 

  • Davies PS (1980) Respiration in some Atlantic reef corals in relation to vertical distribution and growth form. Biol Bull 158:187–194

    Article  Google Scholar 

  • Davies PS (1989) Short-term growth measurements of corals using an accurate buoyant weighing technique. Mar Biol 101:389–395

    Article  Google Scholar 

  • de Putron SJ, McCorkle DC, Cohen AL, Dillon AB (2011) The impact of seawater saturation state and bicarbonate ion concentration on calcification by new recruits of two Atlantic corals. Coral Reefs 30:321–328

    Article  Google Scholar 

  • Dickson AG, Sabine CL, Christian JR (eds) (2007) Guide to best practices for ocean CO2 measurements. PICES Special Publication 3, p 191

  • Doney SC, Fabry VJ, Feely RA, Kleypas JA (2009) Ocean Acidification: the other CO2 problem. Annu Rev Mar Sci 1:169–192

    Article  Google Scholar 

  • Edmunds PJ (2008) The effects of temperature on the growth of juvenile scleractinian corals. Mar Biol 154:153–162

    Article  Google Scholar 

  • Edmunds PJ (2011) Zooplanktivory ameliorates the effects of ocean acidification on the reef coral Porites spp. Limnol Oceanogr 56:2402–2410

    Article  CAS  Google Scholar 

  • Edmunds PJ, Spencer-Davies P (1986) An energy budget for Porites porites (Scleractinia). Mar Biol 92:339–347

    Article  Google Scholar 

  • Edmunds PJ, Spencer-Davies P (1988) Post-illumination stimulation of respiration rate in the coral Porites porites. Coral Reefs 7:7–9

    Article  Google Scholar 

  • Edmunds PJ, Putnam HM, Gates RD Photophysiological consequences of vertical stratification of Symbiodinium in tissue of the coral Porites lutea. Biol Bull (in review)

  • Edmunds PJ, Brown DB, Moriarty V (2012) Interactive effects of ocean acidification and temperature on two scleractinian corals from Moorea, French Polynesia. Glob Change Biol 18:2173–2183

    Article  Google Scholar 

  • Elliott JM, Davison W (1975) Energy equivalents of oxygen consumption in animal energetics. Oecologia 19:195–201

    Article  Google Scholar 

  • Enriquez S, Borowitzka MA (2010) The use of fluorescence signal in studies of seagrasses and macroalgae. In: Suggett DJ, Prásil OJ, Borowitzka MA (eds) Chlorophyll a fluorescence in aquatic sciences: methods and applications. Springer, Berlin, pp 187–208

    Chapter  Google Scholar 

  • Erez J, Reynaud S, Silverman J, Schneider K, Allemand D (2011) Coral calcification under ocean acidification and global change. In: Dubinsky Z, Stambler N (eds) Coral reefs: an ecosystem in transition. Springer, Berlin, pp 151–176

    Chapter  Google Scholar 

  • Fabricius KE, Langdon C, Uthicke S, Humphrey C, Noonan S, De’ath G, Okazaki R, Muehllehner N, Glas MS, Lough JM (2011) Losers and winners in coral reefs acclimatized to elevated carbon dioxide concentrations. Nat Clim Change 1:165–169

    Article  CAS  Google Scholar 

  • Fangue NA, O’Donnell MJ, Sewell MA, Matson PG, MacPherson AC, Hofmann GE (2010) A laboratory-based, experimental system for the study of ocean acidification effects on marine invertebrate larvae. Limnol Oceanogr 8:441–452

    Article  CAS  Google Scholar 

  • Fine M, Tchernov (2007) Scleractinian coral species survive and recover from decalcification. Science 315:1811

    Article  CAS  Google Scholar 

  • Fitt WK, Brown BE, Warner ME, Dunne RP (2001) Coral bleaching: interpretation of thermal tolerance limits and thermal thresholds in tropical corals. Coral Reefs 20:51–65

    Article  Google Scholar 

  • Garcia HE, Gordon LI (1992) Oxygen solubility in seawater: better fitting equations. Limnol Oceanogr 37:1307–1312

    Article  CAS  Google Scholar 

  • Gattuso JP, Frankignoulle M, Bourge I, Romaine S, Buddemeier RW (1998) Effect of calcium carbonate saturation of seawater on coral calcification. Glob Planet Change 18:37–46

    Article  Google Scholar 

  • Gattuso JP, Gao K, Lee K, Rost B, Schultz (2010) Approaches and tools to manipulate the carbonate chemistry. In: Riebesell U, Fabry VJ, Hansson L, Gattuso JP (eds) Guide to best practices for ocean acidification research and data reporting. Publication office of the European Union, Luxembourg, pp 41–52

    Google Scholar 

  • Godinot C, Houlbrèque F, Grover R, Ferrier-Pagès C (2011) Coral uptake of inorganic Phosphorus and Nitrogen negatively affected by simultaneous changes in temperature and pH. PLoS One 6:e25024

    Article  CAS  Google Scholar 

  • Goreau TF (1959) The physiology of skeleton formation in corals. I. A method for measuring rate of calcium deposition by corals under different conditions. Biol Bull 116:59–75

    Article  CAS  Google Scholar 

  • Green DH, Edmunds PJ, Carpenter RC (2008) Increasing relative abundance of Porites astreoides on Caribbean reefs mediated by an overall decline in coral cover. Mar Ecol Prog Ser 359:1–10

    Article  Google Scholar 

  • Guppy M, Withers P (1999) Metabolic depression in animals: physiological perspectives and biochemical generalizations. Biol Rev 74:1–40

    Article  CAS  Google Scholar 

  • Guppy M, Fuery CJ, Flanigan JE (1994) Biochemical principles of metabolic depression. Comp Biochem Phys B 109:175–189

    Article  CAS  Google Scholar 

  • Herfort L, Thake B, Taubner I (2008) Bicarbonate stimulation of calcification and photosynthesis in two hermatypic corals. J Phycol 44:91–98

    Article  CAS  Google Scholar 

  • Hoegh-Guldberg O, Mumby PJ, Hooten AJ, Steneck RS, Greenfield P, Gomez E, Harvell CD, Sale PF, Edwards AJ, Caldeira K, Knowlton N, Eakin CM, Iglesias-Prieto R, Muthiga N, Bradbury RH, Dubi A, Hatziolos ME (2007) Coral reefs under rapid climate change and ocean acidification. Science 318:1737–1742

    Article  CAS  Google Scholar 

  • Holcomb M, McCorkle D, Cohen AL (2010) Long-term effects of nutrients and CO2 enrichment on the temperate coral Astrangia poculata (Ellis and Solander, 1786). J Exp Mar Biol Ecol 386:27–33

    Article  Google Scholar 

  • Iglesias-Prieto R, Beltrán VH, LaJeunesse TC, Reyes-Bonilla H, Thomé PE (2004) Different algal symbionts explain the vertical distribution of dominant reef corals in the eastern Pacific. Proc R Soc Lond B 271:1757–1763

    Article  CAS  Google Scholar 

  • Iguchi A, Ozaki S, Nakamura T, Inoue M, Tanaka Y, Suzuki A, Kawahata H, Sakai K (2011) Effects of acidified seawater on coral calcification and symbiotic algae on the massive coral Porites australiensis. Mar Environ Res 73:32–36

    Article  Google Scholar 

  • Jones RJ, Hoegh-Guldberg O, Larkum AWD, Schreiber U (1998) Temperature-induced bleaching of corals begins with impairment of the CO2 fixation mechanism in zooxanthellae. Plant Cell Environ 21:1219–1230

    Article  CAS  Google Scholar 

  • Jury CP, Whitehead RF, Szmant AM (2010) Effects of variation in carbonate chemistry on the calcification rates of Madracis auretenra (= Madracis mirabilis sensu Wells, 1973): bicarbonate concentrations best predict calcification rates. Global Change Biol 16:1632–1644

    Article  Google Scholar 

  • Kleypas JA, Langdon C (2006) Coral reefs and changing seawater carbonate chemistry. In: Phinney JT, Hoegh-Guldberg O, Kleypas JA, Skirving W, Strong A (eds) Coral reefs and climate change: science and management. American Geophysical Union, Washington, pp 73–110

    Chapter  Google Scholar 

  • Kleypas JA, Buddemeier RW, Archer D, Gattuso JP, Langdon C, Opdyke BN (1999) Geochemical consequences of increased atmospheric carbon dioxide on coral reefs. Science 284:118–120

    Article  CAS  Google Scholar 

  • Kroeker KJ, Kordas RL, Crim RN, Singh GG (2010) Meta-analysis reveals negative yet variable effects of ocean acidification on marine organisms. Ecol Lett 13:1419–1434

    Article  Google Scholar 

  • Kühl M, Cohen Y, Dalsgaard T, Jørgensen BB, Revsbech NP (1995) Microenvironment and photosynthesis of zooxantellae in scleractinian corals studied with microsensors for O2, pH and light. Mar Ecol Prog Ser 117:159–172

    Article  Google Scholar 

  • Kühl M, Holst G, Larkum AWD, Ralph PJ (2008) Imaging of oxygen dynamics within the endolithic algal community of the massive coral Porites lobata. J Phycol 44:541–550

    Article  Google Scholar 

  • Langdon C (2000) Review of experimental evidence for effects of CO2 on calcification of reef builders. In: Proceedings of the 9th international coral reef symposium, vol 2, pp 1091–1098

  • Langdon C, Atkinson MJ (2005) Effect of elevated pCO2 on photosynthesis and calcification of corals and interactions with seasonal change in temperature/irradiance and nutrient enrichment. J Geophys Res 110:C09S07

    Article  Google Scholar 

  • Langenbuch M, Pörtner HO (2002) Changes in metabolic and N excretion in the marine invertebrate Sipunculus nudus under conditions of environmental hypercapnia: identifying effective acid-base variables. J Exp Biol 205:1153–1160

    CAS  Google Scholar 

  • Langenbuch M, Bock C, Leibfritz D, Pörtner HO (2006) Effects of environmental hypercapnia on animal physiology: a 13C NMR study of protein synthesis rates in the marine invertebrate Sipunculus nudus. Comp Biochem Physiol A 144:479–484

    Article  CAS  Google Scholar 

  • Lewis E, Wallace DWR (1998) Program developed for CO2 system calculations. ORNL/CDIAC-105. Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, US Department of Energy, Oak Ridge, Tennessee

  • Loya Y, Sakai K, Yamazato K, Nakano Y, Sambali H, van Woesik R (2001) Coral bleaching: the winners and the losers. Ecol Lett 4:122–131

    Article  Google Scholar 

  • Marsh JA (1970) Primary productivity of reef-building calcareous red algae. Ecology 51:255–263

    Article  Google Scholar 

  • Maxwell K, Johnson GN (2000) Chlorophyll fluorescence—a practical guide. J Exp Bot 51:659–668

    Article  CAS  Google Scholar 

  • Mehrbach C, Culberson CH, Hawley JE, Pytkowicz RM (1973) Measurement of the apparent dissociation constants of carbonic acid in seawater at atmospheric pressure. Limnol Oceanogr 18:897–907

    Article  CAS  Google Scholar 

  • Moya A, Tambutté S, Tambutté E, Zoccola D, Caminiti N, Allemand D (2006) Study of calcification during a daily cycle of the coral Stylophora pistillata: implications for “light enhanced calcification”. J Exp Biol 209:3413–3419

    Article  CAS  Google Scholar 

  • Muscatine L (1990) The role of symbiotic algae in carbon and energy flux in reef corals. In: Dubinsky Z (ed) Ecosystems of the world, Vol 25: coral reefs. Elsevier, Amsterdam, pp 75–87

    Google Scholar 

  • Pandolfi JM, Connolly SR, Marshall DJ, Cohen AL (2011) Projecting coral reef futures under global warming and ocean acidification. Science 333:418–422

    Article  CAS  Google Scholar 

  • Patterson MR, Sebens KP, Olson RR (1991) In situ measurements of flow effects on primary production and dark respiration in reef corals. Limnol Oceanogr 36:936–948

    Article  CAS  Google Scholar 

  • Pörtner HO, Bock C, Reipschläger A (2000) Modulation of the cost of pHi regulation during metabolic depression: a 31P-NMR study in invertebrate (Sipunculus nudus) isolated muscle. J Exp Biol 203:2417–2428

    Google Scholar 

  • Quinn GP, Keough MJ (2003) Experimental design and data analysis for biologists. Cambridge University Press, Cambridge

    Google Scholar 

  • Reipschläger A, Pörtner HO (1996) Metabolic depression during environmental stress: the role of extra- versus intracellular pH in Sipunculus nudus. J Exp Biol 199:1801–1807

    Google Scholar 

  • Reynaud S, Leclerq Romaine-Lioud S, Ferrier-Pages C, Jaubert J, Gattuso J-P (2003) Interacting effects of CO2 partial pressure and temperature on photosynthesis and calcification. Glob Change Biol 9:1660–1668

    Article  Google Scholar 

  • Riebesell U, Fabry VJ, Hansson L, Gattuso JP (2010) Guide to best practices for ocean acidification research and data reporting. Publication office of the European Union, Luxembourg

    Google Scholar 

  • Rosa R, Seibel BA (2008) Synergistic effects of climate-related variables suggest future physiological impairment in a top oceanic predator. Proc Natl Acad Sci USA 105:20776–20780

    Article  CAS  Google Scholar 

  • Schneider K, Erez J (2006) The effect of carbonate chemistry on calcification and photosynthesis in the hermatypic coral Acropora eurystoma. Limnol Oceanogr 51:1284–1293

    Article  CAS  Google Scholar 

  • Schneider K, Levy O, Dubinsky Z, Erez J (2009) In situ diel cycles of photosynthesis and calcification in hermatypic corals. Limnol Oceanogr 54:1995–2002

    Article  Google Scholar 

  • Sebens KP, Johnson AS (1991) Effects of water movement on prey capture and distribution of reef corals. Hydrobiologia 226:91–101

    Article  Google Scholar 

  • Shick JM (1990) Diffusion limitation and hyperoxic enhancement of oxygen consumption in zooxanthellate sea anemones, zoanthids and corals. Biol Bull 179:148–158

    Article  Google Scholar 

  • Sibly RM, Calow P (1989) A life-cycle theory of responses to stress. Biol J Linn Soc 37:101–116

    Article  Google Scholar 

  • Silverman J, Lazar B, Cao L, Caldeira K, Erez J (2009) Coral reefs may start dissolving when atmospheric CO2 doubles. Geophys Res Lett 36:L05606

    Article  Google Scholar 

  • Tambutté S, Holcomb M, Ferrier-Pagés C, Reynaud S, Tambutté E, Zoccola D, Allemand D (2011) Coral biomineralization: from the gene to the environment. J Exp Mar Biol Ecol 408:58–78

    Article  Google Scholar 

  • Thomsen J, Melzner F (2010) Moderate seawater acidification does not elicit long-term metabolic depression in the blue mussel Mytilus edulis. Mar Biol 157:2667–2676

    Article  Google Scholar 

  • Thornhill DJ, Rotjan RD, Todd BD, Chilcoat GC, Iglesias-Prieto R, Kemp DW, LaJeunesse TC, Reynolds JM, Schmidt GW, Shannon T, Warner ME, Fitt WK (2011) A connection between colony biomass and death in Caribbean reef-building corals. PLoS One 6:e29535

    Article  CAS  Google Scholar 

  • van Vuuren DP, Edmonds J, Kainuma M, Riahi K, Thomson A, Hibbard K, Hurtt GC, Kram T, Krey V, Lamarque JF, Masui T, Meinshausen M, Nakicenovic N, Smith SJ, Rose SK (2011) The representative concentration pathways: an overview. Clim Change 109:5–31

    Article  Google Scholar 

  • van Woesik R, Sakai K, Ganase A, Loya Y (2011) Revisiting the winners and the losers a decade after coral bleaching. Mar Ecol Prog Ser 434:67–76

    Article  Google Scholar 

  • Venn A, Tambutté E, Holcomb M, Allemand D, Tambutté S (2011) Live tissue imaging shows reef corals elevate pH under their calcifying tissue relative to seawater. PLoS One 6:e20013

    Article  CAS  Google Scholar 

  • Warner ME, Fitt WK, Schmidt GW (1996) The effects of elevated temperature on the photosynthetic efficiency of zooxanthellae in hospite from four different species of reef coral: a novel approach. Plant Cell Environ 19:291–299

    Article  Google Scholar 

  • Warner ME, Lesser MP, Ralph RJ (2010) Chlorophyll fluorescence in reef building corals. In: Suggett DJ, Prásil OJ, Borowitzka MA (eds) Chlorophyll a fluorescence in aquatic sciences: methods and applications. Springer, Berlin, pp 209–222

    Chapter  Google Scholar 

  • Wood HL, Spicer JI, Widdicombe S (2008) Ocean acidification may increase calcification rates, but at a cost. Proc R Soc B 275:1767–1773

    Article  Google Scholar 

  • Zar JH (2010) Biostatistical analysis. Pearson, New Jersey

    Google Scholar 

Download references

Acknowledgments

This work was supported by the US National Science Foundation (grants OCE 04-17413, OCE 10-26851, and OCE 10-41270) and gifts from the Gordon and Betty Moore Foundation. The manipulations were completed under a permit issued by the French Polynesian Ministry of Research, and would not have been possible without the technical support of V. Moriarty and D. Brown. I am grateful to N. Davies and the staff of the Richard B. Gump South Pacific Research Station for making my visits to Moorea productive and enjoyable, and to comments from two reviewers that improved an early draft of this paper. This is a contribution of the Moorea Coral Reef (MCR) Long-Term Ecological Research site, and contribution number 182 of the California State University, Northridge, Marine Biology Program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter J. Edmunds.

Additional information

Communicated by H.-O. Pörtner.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Edmunds, P.J. Effect of pCO2 on the growth, respiration, and photophysiology of massive Porites spp. in Moorea, French Polynesia. Mar Biol 159, 2149–2160 (2012). https://doi.org/10.1007/s00227-012-2001-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-012-2001-y

Keywords

Navigation