Skip to main content
Log in

Mechanistic origins of variability in phytoplankton dynamics: Part I: niche formation revealed by a size-based model

  • Original Paper
  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

This paper aims to unravel the complexity of how cell size determines major ecological and physiological functions in unicellular algae. It assembles recent mechanistic descriptions for size dependencies of respiration and maximal resource uptake rates. New dependencies are derived for mortality due to sinking and grazing. The model also describes how internal nutrient quota varies within an autotrophic community due to the allometry of nutrient uptake. Net production, grazing, and sedimentation can be shown to be uni- or multi-modal functions of cell size, in accordance with literature data. Grazing mortality attains maxima at distinct prey sizes, which result from overlaying major zooplankton feeding spectra. Sedimentation vanishes for small cells due to Stokes’ law, but also for huge diatoms as long as they are vital. Their greater degree of vacuolation possibly promotes the capacity of buoyancy regulation. After synthesizing the physiological, morphological, and ecological relationships, intricate and eventually multi-modal growth–size dependencies arise. This niche building may explain part of the great diversity in phytoplankton. Multi-modal allometries can also induce paradoxical community shifts or enlarge the variety of community responses to external changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aberle N, Lengfellner K, Sommer U (2007) Spring bloom succession, grazing impact and herbivore selectivity of ciliate communities in response to winter warming. Oecologia 150:668–681

    Article  CAS  Google Scholar 

  • Abrams PA (1999) Tha adaptive dynamics of consumer choice. Am Nat 153:83–97

    Article  Google Scholar 

  • Aksnes D, Cao F (2011) Inherent and apparent traits in microbial nutrient uptake. Mar Ecol Progr Ser 440:41–51

    Article  Google Scholar 

  • Andersen K, Beyer J (2006) Asymptotic size determines species abundance in the marine size spectrum. Am Nat 168:54–61

    Article  Google Scholar 

  • Andrade E (1930) The viscosity of liquids. Nature 125:309–310

    Article  Google Scholar 

  • Armstrong RA (2003) A hybrid spectral representation of phytoplankton growth and zooplankton response: the "control rod" model of plankton interaction. Deep Sea Res II 50:2895–2916

    Article  Google Scholar 

  • Baird M (2010) Limits to prediction in a size-resolved pelagic ecosystem model. J Plankton Res 32:1131–1146

    Article  Google Scholar 

  • Baldyga J, Pohorecki R (1995) Turbulent micromixing in chemical reactors—a review. Chem Eng J Biochem Eng J 58:183–195

    Article  CAS  Google Scholar 

  • Banas N (2011) Adding rich trophic interactions to a size-spectral plankton model: emergent diversity patterns and limits on predictability. Ecol Mod 222:2663–2675

    Article  CAS  Google Scholar 

  • Bienfang P, Harrison P (1984) Co-variation of sinking rate and cell quota among nutrient replete marine phytoplankton. Mar Ecol Progr Ser 14:297–300

    Article  CAS  Google Scholar 

  • Bienfang P, Harrison P, Quarmby L (1982) Sinking rate response to depletion of nitrate, phosphate and silicate in four marine diatoms. Mar Biol 67:295–302

    Article  CAS  Google Scholar 

  • Boyd C, Gradmann D (2002) Impact of osmolytes on buoyancy of marine phytoplankton. Mar Biol 141:605–618

    Article  Google Scholar 

  • Bruggeman J (2011) A phylogenetic approach to the estimation of phytoplankton traits. J Phycol 87:52–65

    Article  Google Scholar 

  • Cermeño P, Marañón E, Rodríguez J, Fernández E (2005) Large-sized phytoplankton sustain higher carbon-specific photosynthesis than smaller cells in a coastal eutrophic ecosystem. Mar Ecol Progr Ser 297:51–60

    Article  Google Scholar 

  • Cohen J, Pimm S, Yodzis P, Saldaña J (1993) Body sizes of animal predators and animal prey in food webs. J Animal Ecol 62:67–78

    Article  Google Scholar 

  • Dieckmann U, Law R (1996) The dynamical theory of coevolution: a derivation from stochastic ecological processes. J Math Biol 34:579–612

    Article  CAS  Google Scholar 

  • Ebenhöh W (1988) Coexistence of an unlimited number of algal species in a model system. Theor Popul Biol 34:130–144

    Article  Google Scholar 

  • Edwards K, Klausmeier C, Litchman E (2011) Evidence for a three-way tradeoff between nitrogen and phosphorus competitive abilities and cell size in phytoplankton. Ecology 92:2085–2095

    Article  Google Scholar 

  • Edwards K, Thomas M, Klausmeier C, Litchman E (2012) Allometric scaling and taxonomic variation in nutrient utilization traits and maximum growth rate of phytoplankton. Lim Ocean 57:554–566

    Article  Google Scholar 

  • Einstein H, Krone R (1962) Experiments to determine modes of cohesive sediment transport in salt water. J Geophys Res 67:1451–1461

    Article  Google Scholar 

  • Fernandez F (1979) Particle selection in the nauplius of Calanus pacificus. J Plankton Res 1:313–328

    Article  Google Scholar 

  • Finkel ZV (2001) Light absorption and size scaling of light-limited metabolism in marine diatoms. Lim Ocean 46:86–94

    Article  CAS  Google Scholar 

  • Finkel ZV, Beardall J, Flynn KJ, Quigg A, Rees TAV, Raven JA (2010) Phytoplankton in a changing world: cell size and elemental stoichiometry. J Plankton Res 32:119–137

    Article  CAS  Google Scholar 

  • Fisher AE, Harrison PJ (1996) Does carbohydrate content affect the sinking rates of marine diatoms?. J Phycol 32:360–365

    Article  CAS  Google Scholar 

  • Flynn K (2001) A mechanistic model for describing dynamic multi-nutrient, light, temperature interactions in phytoplankton. J Plankton Res 23:977–997

    Article  Google Scholar 

  • Frost B (1972) Effects of size and concentration of food particles on the feeding behavior of the marine planktonic copepod Calanus pacificus. Lim Ocean 17:805–815

    Article  Google Scholar 

  • Frost B (1975) A threshold feeding behavior in Calanus pacificus. Lim Ocean 20:263–266

    Article  Google Scholar 

  • Fuchs H, Franks P (2010) Plankton community properties determined by nutrients and size-selective feeding. Mar Ecol Progr Ser 413:1–15

    Article  Google Scholar 

  • Fussmann GF, Weithoff G, Yoshida T (2005) A direct, experimental test of resource vs. consumer dependence. Ecology 86:2924–2930

    Article  Google Scholar 

  • Gismervik I (1997) Stoichiometry of some marine planktonic crustaceans. J Plankton Res 19:279–285

    Article  Google Scholar 

  • Goldman J, Mann R (1980) Temperature-influenced variations in speciation and chemical composition of marine phytoplankton in outdoor mass cultures. J Exp Mar Biol Ecol 46:29–39

    Article  CAS  Google Scholar 

  • Greene CH, Landry MR (1985) Patterns of prey selection in the cruising calanoid predator Euchaeta elongata. Ecology 66:1408–1416

    Article  Google Scholar 

  • Gross F, Zeuthen E (1948) The buoyancy of plankton diatoms: a problem of cell physiology. Proc R Soc London B 135:382–389

    Article  CAS  Google Scholar 

  • Hansen B, Bjornsen PK, Hansen PJ (1994) The size ratio between planktonic predators and their prey. Lim Ocean 39:395–403

    Article  Google Scholar 

  • Hansen J, Bjornsen P, Hansen BW (1997) Zooplankton grazing and growth: scaling within the 2-2,000-μm body size range. Lim Ocean 42:687–704

    Article  Google Scholar 

  • Hansen PJ (1992) Prey size selection, feeding rates and growth dynamics of heterotrophic dinoflagellates with special emphasis on Gyrodinium spirale. Mar Biol 114:327–334

    Article  Google Scholar 

  • Hessen D (1992) Nutrient element limitation of zooplankton production. Am Nat 140:799–814

    Article  Google Scholar 

  • Isla J, Lengfellner K, Sommer U (2008) Physiological response of the copepod Pseudocalanus sp. in the Baltic Sea at different thermal scenarios. Global Change Biol 14:895–906

    Article  Google Scholar 

  • Jackson GA (1990) A model of the formation of marine algal flocs by physical coagulation processes. Deep Sea Res 37:1197–1211

    Article  CAS  Google Scholar 

  • Kahn N, Swift E (1978) Positive buoyancy through ionic control in the nonmotile marine dinoflagellate Pyrocystis noctiluca Murray ex Schuett. Lim Ocean 23:649–658

    Article  CAS  Google Scholar 

  • Katechakis A, Stibor H, Sommer U, Hansen T (2004) Feeding selectivities and food niche separation of Acartia clausi, Penilia avirostris (Crustacea) and Doliolum denticulatum (Thaliacea) in Blanes Bay (Catalan Sea, NW Mediterranean). J Plankton Res 26:589–603

    Article  Google Scholar 

  • Kiørboe T (2011) How zooplankton feed: mechanisms, traits and trade-offs. Biol Rev 86:311–339

    Article  Google Scholar 

  • Kiørboe T, Saiz E (1995) Planktivorous feeding in calm and turbulent environments, with emphasis on copepods. Mar Ecol Progr Ser 122:135–145

    Article  Google Scholar 

  • Kiørboe T, Andersen K, Dam H (1990) Coagulation efficiency and aggregate formation in marine phytoplankton. Mar Biol 107:235–245

    Article  Google Scholar 

  • Kiørboe T, Saiz E, Viitasalo M (1996) Prey switching behaviour in the planktonic copepod Acartia tonsa. Mar Ecol Progr Ser 143:65–75

    Article  Google Scholar 

  • Kiørboe T, Tiselius P, Mitchell-Innes B, Hansen J, Visser A, Mari X (1998) Intensive aggregate formation with low vertical flux during an upwelling-induced diatom bloom. Lim Ocean 43:104–116

    Article  Google Scholar 

  • Klausmeier CA, Litchman E, Daufresne T, Levin SA (2004) Optimal nitrogen-to-phosphorus stoichiometry of phytoplankton. Nature 429:171–174

    Article  CAS  Google Scholar 

  • Kriest I, Evans G (1999) Representing phytoplankton aggregates in biogeochemical models. Deep Sea Res 46:1841–1859

    Article  CAS  Google Scholar 

  • Lehman JT (1976) The filter-feeder as an optimal forager, and the predicted shapes of feeding curves. Lim Ocean 21:501–516

    Article  Google Scholar 

  • Li W, Morris I (1982) Temperature adaptation in Phaeodactylum tricornutum bohlin: photosynthetic rate compensation and capacity. J Exp Mar Biol Ecol 58:135–150

    Article  CAS  Google Scholar 

  • Litchman E, Klausmeier CA (2008) Trait-based community ecology of phytoplankton. Ann Rev Ecol Syst 39:615–639

    Article  Google Scholar 

  • Litchman E, Klausmeier CA, Miller JR, Schofield OM, Falkowski PG (2006) Multi-nutrient, multi-group model of present and future oceanic phytoplankton communities. Biogeosciences 3:585–606

    Article  CAS  Google Scholar 

  • Litchman E, Klausmeier C, Schofield O, Falkowski P (2007) The role of functional traits and trade-offs in structuring phytoplankton communities: scaling from cellular to ecosystem level. Ecol Lett 10:1170–1181

    Article  Google Scholar 

  • Litchman E, Klausmeier C, Yoshiyama K (2009) Contrasting size evolution in marine and freshwater diatoms. Proc Natl Acad Sci 106:2665–2670

    Article  CAS  Google Scholar 

  • Maerz J, Wirtz K (2009) Resolving physically and biologically driven suspended particulate matter dynamics in a tidal basin with a distribution-based model. Est Coast Shelf Sci 84:128–138

    Article  CAS  Google Scholar 

  • Marañón E (2008) Inter-specific scaling of phytoplankton production and cell size in the field. J Plankton Res 30:157–163

    Article  CAS  Google Scholar 

  • Marquis E, Niquil N, Dupuy C (2011) Does the study of microzooplankton community size structure effectively define their dynamics? investigation in the bay of biscay (france). J Plankton Res 33:1104–1118

    Article  Google Scholar 

  • Menden-Deuer S, Lessard EJ (2000) Carbon to volume relationships for dinoflagellates, diatoms, and other protist plankton. Lim Ocean 45:569–579

    Article  CAS  Google Scholar 

  • Merico A, Bruggeman J, Wirtz K (2009) A trait-based approach for downscaling complexity in plankton ecosystem models. Ecol Model 220:3001–3010

    Article  CAS  Google Scholar 

  • Miklasz K, Denny M (2010) Diatom sinking speeds: improved predictions and insight from a modified Stokes’ law. Lim Ocean 55:2513–2525

    Google Scholar 

  • Moloney CL, Field JG (1989) General allometric equations for rates of nutrient uptake, ingestion, and respiration in plankton organisms. Lim Ocean 34:1290–1299

    Article  CAS  Google Scholar 

  • Moloney CL, Field JG (1991) The size-based dynamics of plankton food webs. I. A simulation model of carbon and nitrogen flows. J Plankton Res 13:1003–1038

    Article  Google Scholar 

  • Myklestad SM (2000) Dissolved organic carbon from phytoplankton. Handbook Environ Chem 5:111–148

    Article  Google Scholar 

  • Nishikawa T, Tarutani K, Yamamoto T (2010) Nitrate and phosphate uptake kinetics of the harmful diatom Coscinodiscus wailesii, a causative organism in the bleaching of aquacultured Porphyra thalli. Harmful Algae 9:563–567

    Article  CAS  Google Scholar 

  • Paffenhöfer G, Van Sant K (1985) The feeding response of a marine planktonic copepod to quantity and quality of particles. Mar Ecol Progr Ser 27:55–65

    Article  Google Scholar 

  • Pagano M, Kouassi E, Saint-Jean L, Arfi R, Bouvy M (2003) Feeding of Acartia clausi and Pseudodiaptomus hessei (Copepoda: Calanoida) on natural particles in a tropical lagoon (Ebrié, Côte d’Ivoire). Est Coast Shelf Sci 56:433–445

    Article  Google Scholar 

  • Pahlow M (2005) Linking chlorophyll-nutrient dynamics to the Redfield N: C ratio with a model of optimal phytoplankton growth. Mar Ecol Progr Ser 287:33–43

    Article  CAS  Google Scholar 

  • Pahlow M, Prowe AEF (2010) Model of optimal current feeding in zooplankton. Mar Ecol Progr Ser 403:129–144

    Article  Google Scholar 

  • Peeters F, Straile D, Lorke A, Ollinger D (2007) Turbulent mixing and phytoplankton spring bloom development in a deep lake. Lim Ocean 52:286–298

    Article  Google Scholar 

  • Petchey O, Beckerman A, Riede J, Warren P (2008) Size, foraging, and food web structure. Proc Natl Acad Sci 105:4191–4196

    Article  CAS  Google Scholar 

  • Raven J (1984) Dark respiration. In: Energetics and transport in aquatic plants, MBL Lectures, vol 4. Alan R. Liss; Inc., New York, pp. 253–317

  • Raven JA, Waite AM (2004) The evolution of silicification in diatoms: inescapable sinking and sinking as escape. New Phytol 162:45–61

    Article  Google Scholar 

  • Reynolds C (1984) The ecology of freshwater phytoplankton. Cambridge University Press, Cambridge

    Google Scholar 

  • Rhee G, Gotham I (1981) The effect of environmental factors on phytoplankton growth: temperature and the interactions of temperature with nutrient limitation. Lim Ocean 26:635–648

    Google Scholar 

  • Riebesell U (1989) Comparison of sinking and sedimentation rate measurements in a diatom winter/spring bloom. Mar Ecol Progr Ser 54:109–119

    Article  Google Scholar 

  • Rose J, Caron D (2007) Does low temperature constrain the growth rates of heterotrophic protists? evidence and implications for algal blooms in cold waters. Lim Ocean 52:886–895

    Article  Google Scholar 

  • Rothhaupt K (1990) Differences in particle size-dependent feeding efficiencies of closely related rotifer species. Lim Ocean 35:16–23

    Article  Google Scholar 

  • Rothschild B, Osborn T (1988) Small-scale turbulence and plankton contact rates. J Plankton Res 10:465–474

    Article  Google Scholar 

  • Ruiz J, Prieto L, Ortegón F (2002) Diatom aggregate formation and fluxes: a modeling analysis under different size-resolution schemes and with empirically determined aggregation kernels. Deep Sea Res Part I 49:495–515

    Article  Google Scholar 

  • Saiz E, Calbet A (2007) Scaling of feeding in marine calanoid copepods. Lim Ocean 52:668–675

    Article  Google Scholar 

  • Sanford L (2008) Modeling a dynamically varying mixed sediment bed with erosion, deposition, bioturbation, consolidation, and armoring. Comput Geosci 34:1263–1283

    Article  Google Scholar 

  • Sarthou G, Timmermans KR, Blain S, Tréguer P (2005) Growth physiology and fate of diatoms in the ocean: a review. J Sea Res 53:25–42

    Article  CAS  Google Scholar 

  • Scalley ML, Baker D (1997) Protein folding kinetics exhibit an Arrhenius temperature dependence when corrected for the temperature dependence of protein stability. Proc Natl Acad Sci 94:10636–10640

    Article  CAS  Google Scholar 

  • Schartau M, Landry MR, Armstrong RA (2010) Density estimation of plankton size spectra: a reanalysis of IronEx II data. J Plankton Res 32:1167–1184

    Article  Google Scholar 

  • Shuter BJ (1978) Size dependence of phosphorus and nitrogen subsistence quotas in unicellular microorganisms. Lim Ocean 23:1248–1255

    Article  CAS  Google Scholar 

  • Smayda TJ (1970) The suspension and sinking of phytoplankton in the sea. Oceanogr Mar Biol Annu Rev 8:353–414

    Google Scholar 

  • Smetacek V (1985) Role of sinking in diatom life-history cycles: ecological, evolutionary and geological significance. Mar Biol 84:239–251

    Article  Google Scholar 

  • Smetacek V, Assmy P, Henjes J (2004) The role of grazing in structuring southern ocean pelagic ecosystems and biogeochemical cycles. Antarct Sci 16:541–558

    Article  Google Scholar 

  • Smith R, Kalff J (1982) Size-dependent phosphorus uptake kinetics and cell quota in phytoplankton. J Phycol 18:275–284

    Article  CAS  Google Scholar 

  • Smith S (2011) Consistently modeling the combined effects of temperature and concentration on nitrate uptake in the ocean. J Geophys Res 116:G04,020

    Google Scholar 

  • Smith SL, Yamanaka Y, Pahlow M, Oschlies A (2009) Optimal uptake kinetics: physiological acclimation explains the pattern of nitrate uptake by phytoplankton in the ocean. Mar Ecol Progr Ser 384:1–12

    Article  CAS  Google Scholar 

  • Smith SL, Pahlow M, Merico A, Wirtz KW (2011) Optimality as a unifying concept for planktonic organisms and their ecology. Lim Ocean 56:2080–2094

    Article  CAS  Google Scholar 

  • Sommer U, Lengfellner K (2008) Climate change and the timing, magnitude, and composition of the phytoplankton spring bloom. Glob Change Biol 14:1199–1208

    Article  Google Scholar 

  • Spicer P, Keller W, Pratsinis S (1996) The effect of impeller type on floc size and structure during shear-induced flocculation. J Coll Interface Sci 184:112–122

    Article  CAS  Google Scholar 

  • Sterner R, Hessen D (1994) Algal nutrient limitation and the nutrition of aquatic herbivores. Ann Rev Ecol Syst 25:1–29

    Article  Google Scholar 

  • Tambi H, Flaten G, Egge J, Bødtker G, Jacobsen A, Thingstad T (2009) Relationship between phosphate affinities and cell size and shape in various bacteria and phytoplankton. Aquat Microb Ecol 57:311–320

    Article  Google Scholar 

  • Thompson P, Guo M, Harrison P (1992) Effects of variation in temperature. I. On the biochemical composition of eight species of marine phytoplankton. J Phycol 28:481–488

    Article  CAS  Google Scholar 

  • Tilman D, Kilham S, Kilham P (1982) Phytoplankton community ecology: the role of limiting nutrients. Ann Rev Ecol Syst 13:349–372

    Article  Google Scholar 

  • Tirok K, Bauer B, Wirtz K, Gaedke U (2011) Community dynamics driven by feedbacks between functionally diverse trophic levels. PLOS One 6:e27357

    Article  CAS  Google Scholar 

  • Troost TA, Kooi BW, Dieckmann U (2008) Joint evolution of predator body size and prey-size preference. Evol Ecol 22:771–799

    Google Scholar 

  • Vanderploeg HA, Scavia D (1979) Calculation and use of selectivity coefficients of feeding: Zooplankton grazing. Ecol Mod 7:135–149

    Article  Google Scholar 

  • Visser AW, Mariani P, Pigolotti S (2009) Swimming in turbulence: zooplankton fitness in terms of foraging efficiency and predation risk. J Plankton Res 31:121–133

    Article  Google Scholar 

  • Waite A, Fisher A, Thompson P, Harrison P (1997) Sinking rate verses cell volume relationships illuminate sinking rate control mechanisms in marine diatoms. Mar Ecol Progr Ser 157:97–108

    Article  Google Scholar 

  • Waite AM, Thompson PA, Harrison PJ (1992) Does energy control the sinking rates of marine diatoms. Lim Ocean 37:468–477

    Article  Google Scholar 

  • Wen Y, Vezina A, Peters R (1997) Allometric scaling of compartmental fluxes of phosphorus in freshwater algae. Lim Ocean 42:45–56

    Article  CAS  Google Scholar 

  • Winterwerp JC (1998) A simple model for turbulence induced flocculation of cohesive sediment. J Hydraulic Res 36:309–326

    Article  Google Scholar 

  • Wirtz KW (2000) Simulating the dynamics of leaf physiology and morphology with an extended optimality approach. Ann Bot 86:753–764

    Article  Google Scholar 

  • Wirtz KW (2003) Adaptive significance of C partitioning and SLA regulation in Betula pendula. Tree Physiol 23:181–190

    Article  Google Scholar 

  • Wirtz KW (2011) Non-uniform scaling in phytoplankton growth rate due to intracellular light and CO2 decline. J Plankton Res 33:1325–1341

    Article  Google Scholar 

  • Wirtz KW (2012a) Intermittency in processing explains the diversity and shape of functional grazing responses. Oecologia 169:879–894

    Article  Google Scholar 

  • Wirtz KW (2012b) Who is eating whom? Morphology and feeding type determine the size relation between planktonic predators and their ideal prey. Mar Ecol Progr Ser 445:1–12

    Article  Google Scholar 

  • Wirtz KW (2013) Maximum ingestion rate of planktonic feeders scales with digestive surface area. J Plankton Res 35:33–48. doi:10.1093/plankt/fbs075

    Google Scholar 

  • Wirtz KW, Eckhardt B (1996) Effective variables in ecosystem models with an application to phytoplankton succession. Ecol Mod 92:33–53

    Article  Google Scholar 

  • Wirtz KW, Pahlow M (2010) Dynamic CHL and N–C regulation in algae optimizes instantaneous growth rate. Mar Ecol Progr Ser 402:81–96

    Article  CAS  Google Scholar 

  • Wohlers J, Engel A, Zöllner E, Breithaupt P, Jürgens K, Hoppe HG, Sommer U, Riebesell U (2009) Changes in biogenic carbon flow in response to sea surface warming. Proc Natl Acad Sci 106:7067–7072

    Article  CAS  Google Scholar 

  • Woodward G, Hildrew A (2002) Body-size determinants of niche overlap and intraguild predation within a complex food web. J Animal Ecol 71:1063–1074

    Article  Google Scholar 

  • YoshidaLE Takehito; Joneas, Ellner SP, Fussmann GF, Hairston NG (2003) Rapid evolution drives ecological dynamics in a predator-prey system. Nature 424:303–306

    Article  CAS  Google Scholar 

  • Yoshiyama K, Mellard J, Litchman E, Klausmeier C (2009) Phytoplankton competition for nutrients and light in a stratified water column. Am Nat 174:190–203

    Article  Google Scholar 

  • Zhou M, Carlotti F, Zhu Y (2010) A size-spectrum zooplankton closure model for ecosystem modelling. J Plankton Res 32:1147–1165

    Article  Google Scholar 

  • Ziervogel K, Bohling B (2003) Sedimentological parameters and erosion behaviour of submarine coastal sediments in the south-western Baltic Sea. Geomar Let 23:43–52

    Google Scholar 

  • Ziervogel K, Forster S (2006) Do benthic diatoms influence erosion thresholds of coastal subtidal sediments. J Sea Res 55:43–53

    Article  Google Scholar 

Download references

Acknowledgments

I thank N. Banas, U. Sommer, and two anonymous reviewers for helpful comments on the manuscript. This work was supported by the Helmholtz Society via the program PACES and by the German Research Foundation (DFG) within the Priority Program 1162 The impact of climate variability on aquatic ecosystems (AQUASHIFT) (GA401/7-1,7-2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai W. Wirtz.

Additional information

Communicated by U. G. Berninger.

Electronic supplementary material

Below is the link to the electronic supplementary material.

PDF (184 KB)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wirtz, K.W. Mechanistic origins of variability in phytoplankton dynamics: Part I: niche formation revealed by a size-based model. Mar Biol 160, 2319–2335 (2013). https://doi.org/10.1007/s00227-012-2163-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00227-012-2163-7

Keywords

Navigation